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Abstract 

   In this paper, we describe several finite element methods for solving the 
Convection-Diffusion-Reaction problem(CDR)and study two important properties 
for the approximate solution, the convergent and the discrete maximum principle. 

   For convergence we considered two cases, semi-discrete and discrete 
methods, for semi-discrete, we prove that all scheme are converge with )( rhO , 
where h  refers to the discretization parameter, 11  sr  and s is a degree of 
polynomials of finite element space and for discrete we proved that all schemes 
converge with )( rhO . Finally, the discrete maximum principle and L - stable 
are proved. 
1. Introduction 
Diffusion, convection and reaction are fundamental processes in physical, 
biological, chemical fluid dynamics, heat and mass transfer and so on. This is the 
reason that the numerical solution of these kinds of problems attracts a number 
of specialists, engineers as well as mathematician [2, 3, 5, and 7]. The objective 
of this parer is to compare several finite element methods for solving the linear 
diffusion – convection- reaction equation from the point of view of the 
formulation of the methods. The methods that will be described are the 
following [1]  
 New scheme- Gale kin (NS1-G), 
 Modified problem -new schem1- Galer kin (MPs-NS1-G) 
 Modified problem -new schem2- Galerkin (MPs-NS2-G) 
 Modified problem -new schem3- Galerkin (MPs-NS3-G) 
  Essentially, all these methods consist in the addition of a stabilizing term to the 
original Galerkin formulation of the problem. 
          We have organized this paper as follows. The statement of the problem is 
present  in the next section. In section, three presented the semi and full discrete 
cases. The error estimate and the stability are presented in section 4. In section 5, 
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we prove the discrete maximum principle.   The numerical results are shown in 
section 6         
2. Time-dependent modeling problem 
     Consider the linear time-dependent CDR problem] (2], [3]) 
                        ],0(. Tinfcuubuaut  ,                                         (1) 
                                           ],0(0),( Tontxu  , 
                                             onuxu 0)0,(  
Where 2R   with boundary )()0,0(,,  Lcaand  are the 
diffusion coefficient and the reaction coefficient respectively. 

2
21 ],0(:),( RTbbb   Is a convection coefficient. 

The weak form of equation (1) is: Find Vu  satisfying: 
       )(),(),(),.(),(),( 1

0  HVvvfvucvubvuavu t                 (2)              
  
                                 ),()),0,(( 0 vuvxu  , 
where,   
  
  

 
3. The semi and full discrete approximation  
    The semi- discrete approximation for equation (2) reads: Find an approximate 
solution VVu hh   such that: 
    hhhhth Vfucubuau   ),,(),(),.(),(),( ,                                     (3) 
                                                   0)0( hh uu    
Where   is the  basis functions  of  And the fully- discrete Approximation are 
(a)   Forward-Galerkin Method [6]  
Letting  be the time step and  be the approximation of ),( txu  at ntt n  .  
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n
h Vfcuubuauu  


),(),(),.(),(),(1 1 Nn )1(1          (4)                                                                                                                                             

(b)  Forward-Galerkin-New Schemes (Galerkin-NSs) Method [1]  
   In this scheme, we note that the diffusivity term multiplied by another term 1a , 
which is called effective diffusivity.   

                            1a =  

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



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33),)(1/(1
22),1/(1
11),coth(
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NSSchemeNewPe
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(5) 
),(),(),.(),(),(1 1 
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fcuubuauu n
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n
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n
h 

 
 where (Pe b )2/() ah  is mesh Peclet number and  
(c) Forward-Galerkin-Modified Parameters New Schemes (Galerkin-MPs-
NSs) method [1]:  
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In Galerkin method (4) if the parameters ba , and c  are modified as follows [8]: 
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  

where ]1,1[  and the stability term   are weights.    
Now to get the weak form for all schemes, define the space   ).(1

0  HV for            
)(),( 202  LuLf  and 2))((  Lb , equation (1) can be written in the form  

                  ],0(ˆ.ˆˆ Tinfucubuaut                                                      
                                             (٧) 

                                ],0(0),( Tontxu          
                                 onuxu 0)0,(  

where                     
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The weak form of equation (٧) is 
Vvvfvucvubvuavut  ),(),ˆ(),.ˆ(),ˆ(),(                                            (٨) 

                                   ),()),0,(( 0 vuvxu   
5. The error estimate and stability 
5.1 . The Semi-Discrete Approximation 
      The finite element methods for equation (٨) read: 
Find an approximate solution VVu hh   such that: 
  hhhhth Vfucubuau   ),(),ˆ(),.ˆ(),ˆ(),( , .                              (٩) 
Lemma (1) [6]. 
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  Suppose that hu  is the discrete solution of equation (٩). Then, there exists a 
constant C 0  independent of h  such that: 
                              .1)( 2

)),0(:(

202

TCh
TC

h f
C

ueTu    

Theorem 1.  Suppose that u and hu are solutions of (٨) and (11)respectively, 
satisfying tuWTLHTLu ,))(;,0())(;,0( 12  

  , ))(;.0(   LTLu tt . Then there 
exists a constant C  independent of h  such that 
                                      r

LLh hCuu   )( 2  
Proof: 
    Let uI be the interpolate of u  then we can write 
                                   )()( uIuuIuuu hh  , 
let                            
                                 uIuuIu h   , , 
by triangle inequality, we have  
                                  

)()()( 222 LLLLLLhuu    , 

we have 
                                  ,max

0)( 2 uIu
TtLL




  
                                                

)( rHL
r uCh  .                                                             

           (١٠) 
To estimate  , subtracting equation (٩) from (٨),  since 
 
                                            0),(ˆ  uIua , 
then 
                            ),(),ˆ(),.ˆ(),ˆ(),(  tt cba  ,                            
(١١) 
choosing    gives,  
                            ),(),ˆ(),.ˆ(),ˆ(),(  tt cba  , 
since 
                             22

2
1

2
1),( 

dt
ddx

dt
ddttt  

 

 , 

we have 
                               ),(

2
1 222  tdt

d
  

by Cauchy-Schwartz inequality and  -inquality,  we have  
                                  22

4
1 


  tt . 

then 
                                  222

2
12 tdt

d



  ,     
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since the second term is non-negative, we have  
                                  22

2
1

tdt
d 


   ,                                                                   

               (1٢)  
so, there exists Tt  *0   such that  
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Integrating (1٢) from 0t  to *tt   gives  

                           dtt
t

t
*

0

222*

2
1)0()( 


   dt
T

t
0

22

2
1)0( 


                        

then        

                          

T

tLL
dt

0

2
1

2

)(
)

2
1()0(2 


 , 

the first term on the right hand side gives,    )0()0()0()0()0()0()0( uIuuuuIu hh     000 uChuuh        (1٣)                                               
for the second term, we have 
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hence 
                                        r

LL hC )( 2 . 
The proof is complete.                                                                            □ 
5.2  The Fully Discrete Approximation  
    Now we describe all schemes in which the fully discrete equation are defined 
by replacing the time derivative in (٩) with the forward difference quotient to give  
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     (1٥)                                                                                              

Lemma 2. [6]  Suppose that n
hu  is the discrete solution of equation (1٥), then  for 

any 0N  
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Theorem 2 : Suppose that nu  and n
hu  are solutions of equations (٨) and (1٥) 

respectively satisfy the requirements  
tuWTLHTLu ,))(;,0())(;,0( 12  

  , ))(;,0(   LTLu tt . Then there exists a 
constant C  independent of h  such that,  
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)( 2LL
  rhC . 

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/


              Misan Journal for Academic Studies Vol. 11   No. 20  June (2012)  

ISSN-1994-697X 
  

٢٤  

Proof: 
                           )()( nn
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             by triangle inequality, we have  
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Choosing  n   and multiplying by  by using Cauchy-Schwartz inequality 
Young's inequality to the right hand side and multiplying by 2, we get 
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since the second term in the left hand side is non-negative, summing both sides 
from 0n  to Nn   we have, 

                  







  

 


N

n

N

n

nnnN C
0 0

2212021 1



 .  

As we have done in the previous theorems, given 
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applying Jensen's inequality (see [5]) to the right hand side this implies  
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To bound the third term of (18), note that  
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then, we have by Jensen's inequality (see [5]) 
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Applying these results to (1٦) gives,  
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The proof is complete.                                                                  
5-  The Discrete Maximum Principle 
     Now in order to get a fully discrete numerical scheme, we choose a time-step   
and n

hu  the approximate solution in hV  of  ),( txu  at ntt n  . We apply the  -
method ( ]1,0[  is a given parameter) and obtain a system of linear algebraic 
equations [4]: 
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 (1٧)                                                                                         
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In terms of linear basis functions  N
j 1

  of the space hV , where N  is the 
dimension of hV  can represent the approximate solution of the fully discrete 
scheme (1٧) reads:  
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      In matrix form, this may be expressed as: 
                                                                                                  

    nnnnnn FvMcvGvKavMvM ˆˆ1
. Then we have 

   nnn FvMcGKaMvMcGKaM )]ˆˆ()1([])ˆˆ([ 1 ,                             
  (١٨) 

where M denotes the NN  mass matrix , K  denotes the NN  stiffness matrix and 
G  denotes the NN   convection matrix are defined by: 
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dxmmM ijjiNNji 


  ,][ , dxkkK ijjiNNji   


 ,][  




  dxbggG ijjiNNji .ˆ,][  

Here  tn
N

nn ffF ),,( 1
     ,   ( t indicates the transpose). 

1)1(   n
h
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h fff    ,   ( )(( nfIf h

n
h  ),    and let 

              )( jidD    ,    )]ˆˆ([ McGKaMD   ,                                                    
           (١٩)        

              )( jieE     ,    )ˆˆ()1( McGKaME    .                                             
      (2٠)      

Lemma 3. [7] Let ),(,)( jiji eEdD   be ZN   matrices satisfying the 
conditions: 

 (i)      0
11




Z

j
ji

Z

j
ji ed   ,   Ni 1 ,  

(ii)      0jie ,         Ni 1 ,   Zj 1 , 
(iii)      0jid ,        ZjNi  1,1 ,  ij  , 

and assume that       

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             (2١) 

Then each component )1( Niui   is estimated by  
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Theorem 3..  Let jid be defined in equation (١٩), and jie  be defined in equation 
(2٠), if jim ji  ,0  and jim ji  ,0  then all schemes satisfy the DMP. 
Proof:    We have  
                                     )(.0)(0 jimandjim jiii   
Now matrix M  is nonnegative because the basis functions are nonnegative [4]. 
Thus 0M ,                                    
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also 
                                   )(,0 jik ji  ,  we get 
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since (see [4]) 
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It is easy to see that 
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hence, the condition (i) in Lemma 3 holds. Now we prove the condition (i i), 
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then the conditions (i), (i i) and (iii) in Lemma 3 are satisfied. Hence 
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6 Numerical Example  
 
This chapter presents a simple test case to see the behaviour of the Galerkin-NSs 
(NSs-Galerkin ) and Galerkin-MPs-NSs (MPs-NSs-Galerkin) methods. The 
problem (1) was run with the data as follows: the domain   where the problem is 
to be solved in the unit square, ]1,0[]1,0[   , discretized using a uniform mesh 
of 2121  bilinear elements (yielding 441 nodal points) and the diffusion 
coefficient 410a ,the absorption coefficient is 410c . The velocity vector has 
been taken as b ))3(sin,)3((cos b  with 1b , and 25.0 h  [9]. 
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Figure 4.1: exact solution t=0.1 
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(a)                                                                                                                  
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(c)                                                                                                                            (d) 

 
 
 
 
 

                         
                                                   
 
           ( e )                                                                                 (f) 
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Figure 4.2: solution of Galrkin-NS1,Galerkin-Mps-NSs, NS1-Galerkin, MPs-
NS1-Galeki,  MPs-NS2-Galerkin and MPs-NS3-Galerkin methods at t=0.1 
from (a) to (f). 
Conclution: 

After theoretical and practical study to the convection –diffusion problem, we 
may make a number of remarks to the theoretical analysis and numerical result in 
this work. 
1-The stability coefficient on the diffusion term removed the oscillation on 
standard Galerkin method 
2- The numerical results consistent with the exact solution see fig.4.1 and 4.2 
3- The numerical results which we got it from the test problem are consistent with 
the theorem of DMP. 
4-All schemes are convergent , in the semi-discrete with ) and in the full 
discrete converge with error of  
5- For our study we show that if any scheme satisfies the DMP the then this will 
give us a guaranty that the approximate solution converges to the exact solution.   
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