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Abstract

In this paper, we describe several finite element methods for solving the
Convection-Diffusion-Reaction problem(CDR)and study two important properties
for the approximate solution, the convergent and the discrete maximum principle.

For convergence we considered two cases, semi-discrete and discrete

methods, for semi-discrete, we prove that all scheme are converge Witho(hr),
where / refers to the discretization parameter, 1<7<s+1 and Sis a degree of
polynomials of finite element space and for discrete we proved that all schemes

converge with@ (A" +7) Finally, the discrete maximum principle andL” - stable
are proved.
1. Introduction
Diffusion, convection and reaction are fundamental processes in physical,
biological, chemical fluid dynamics, heat and mass transfer and so on. This is the
reason that the numerical solution of these kinds of problems attracts a number
of specialists, engineers as well as mathematician [2, 3, 5, and 7]. The objective
of this parer is to compare several finite element methods for solving the linear
diffusion — convection- reaction equation from the point of view of the
formulation of the methods. The methods that will be described are the
following [1]
e New scheme- Gale kin (NS1-G),
e Modified problem -new scheml- Galer kin (MPs-NS1-G)
e Modified problem -new schem2- Galerkin (MPs-NS2-G)
e Modified problem -new schem3- Galerkin (MPs-NS3-G)
Essentially, all these methods consist in the addition of a stabilizing term to the

original Galerkin formulation of the problem.

We have organized this paper as follows. The statement of the problem is
present in the next section. In section, three presented the semi and full discrete
cases. The error estimate and the stability are presented in section 4. In section 5,
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we prove the discrete maximum principle. The numerical results are shown in
section 6
2. Time-dependent modeling problem
Consider the linear time-dependent CDR problem] (2], [3])
u, —ahu+bVu+cu=f in Qx(0,T] , (1)
u(x,t)=0 on I'x(0,T],
u(x,0)=u’ on Q
Where Qc R> with boundary T, Q=QUT,and (a>0,c>0)eL”(Q) are the
diffusion  coefficient =~ and the  reaction  coefficient  respectively.
b=(b,,b,):Q2x(0,T1— R* Is a convection coefficient.
The weak form of equation (1) is: Find u € V' satisfying:
(u,,v)+@Vu,Vv)+ (bNVuy)+(cu,v) =(f,v) YveV =H,(Q) (2)

(u (x,0),v) = (", v),

where, (u,v) = [ uvdx and L*(0) = {uruis defineonQand [ u* < )}
HY(Q) = {u: u and Vu € L*(0)} .
H}(Q) = {u € H'(0):u = 0 on boundary of 0}
L*(0) = max, . |ul
3. The semi and full discrete approximation

The semi- discrete approximation for equation (2) reads: Find an approximate
solution u eV, <V such that:

(), @) +(aVu,, Vo) +(b.Vu,,p) +(cu,,0) = (f,9), Vo €V, 3)

u, (0) = u,

Where ¢ is the basis functions of V,. And the fully- discrete Approximation are
(a) Forward-Galerkin Method [6]
Letting 7 be the time step and u, € ¥, be the approximation of u(x,7) at t=¢, =nt.

1 + n n n n
;(uZ]—uh,(/’)+(aVuh,V¢)+(b-Vuh,(/>)+(cuh,</>)=(f,(/>) VoeV, n=11N 4)

(b) Forward-Galerkin-New Schemes (Galerkin-NSs) Method [1]
In this scheme, we note that the diffusivity term multiplied by another terma,,
which is called effective diffusivity.
Pecoth(Pe), New Schemel = NS1
a,= 31/(1+ Pe), New Scheme2 = NS?2

1/(1-(Pe)?), New Scheme3 = NS3
)
1 + n n n n
;(uZ l_uh @)+ (a ,Vu, ,Vo)+(b.Vu, )+ (cu,,p) = (f,0)

where Pe = (b 7)/(2 a) 1s mesh Peclet number and a, = aa,

(¢) Forward-Galerkin-Modified Parameters New Schemes (Galerkin-MPs-
NSs) method [1]:
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In Galerkin method (4) if the parameters «,b and ¢ are modified as follows [8]:
a=a, +anb’,
b =b—(E+)nch,

=Cc- é n ¢’ >

a1

(6)
then
%(uZ“—uZ,<P)+((ap+a17752-)WZ,V</J)+((1—(5+1)770)5-WZ,</))+((C—<§7702)uZ,fﬂ)= (f>)
VoeV, ,n=1(1)N
where & e[-1,1] and the stability term n are weights.
Now to get the weak form for all schemes, define the space ¥V =H,(Q).for
fel’(Q),u’ e }(Q) andb e (L*(Q))*, equation (1) can be written in the form
u,—a Au+bVu+éu=f in Qx(0,T]
)
u(x,t)=0 on I'x(0,T]
u(x,0)=u’ on Q
where
a in the standerd Galerkin method
a=ya, in the G-—NSs(NSs—G) methods
ap+a,17b2 in the G-MPs—NSs (MPs—NSs—G) methods

b in the standerd Galerkin and in G- NSs(NSs—-G)

S
Il

b—(&+1)nceb in G—MPs— NSs

c in the standerd Galerkin and in G-NSs(NSs—G)

>
Il

(c—&nc?) in the G-MPs—NSs(MPs—NSs—G)
The weak form of equation (V) is
(u, ,v) +(a Vu,Vv) + (b.Vu,v) + (G u,v) = (f,v) VveV M)
( (x,0),v) = (", v)
5. The error estimate and stability
5.1. The Semi-Discrete Approximation
The finite element methods for equation (A) read:
Find an approximate solution « ,e ¥, = ¥ such that:
() +(@Vu, V) + (b.Vu, @)+ (Cu, .0) = (f.0) VeV, )
Lemma (1) [6].
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Suppose that u, is the discrete solution of equation (?). Then, there exists a
constant C >0 independent of / such that:

2 2 1 2
” uh(T) ” se CTH u’? H +E||f||(c:(o,r)) :
Theorem 1. Suppose that uand u,are solutions of (A) and (11)respectively,
satisfying wu e L”(0,T; H*(Q)NL”(0,T; W) (Q)), u, ,u,eL’0.T;L°(Q)). Then there

exists a constant C independent of # such that
|| u-—u, <Ch’

L*(L%)
Proof:
Let 7ube the interpolate of u then we can write

u—u, =w—ITu)—(u,—-1Iu),

let
p=u—1Iu , O=u,—-1u,
by triangle inequality, we have
”u_uh I (12) S”'D L““(LZ)-'_”(9 L“(LZ)’
we have
”p " (1%) :{)122)75 u—Tul,
<Ch"|\u ey

()

To estimate 0, subtracting equation (%) from (A), since

aw—-ITu,p)=0,
then
(0,.0) +(aV0,Yp) +(b.V0,0)+(20,90) = (p,.0) »
(QRD)
choosing ¢ =0 gives,
6,,0)+(aVH,V0)+(b.V6,0)+(¢0,0) = (p,.0),

since
_ RN PN A YT
(9,,9)—([9,96#—26#([9 ax=_—ol,
we have
1d
2|0l +alvol +58lo[<(p..0)

by Cauchy-Schwartz inequality and = -inquality, we have
1 2 2
le el gle "+ Alef
then
d 2 2 1 2
101 +2elvol <2l
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since the second term is non-negative, we have
d 2 1 2
Llolf <
ol s5lol
(1Y)

so, there exists 0<:" <T such that
o] =max o] =]e

2

Integrating (1Y) from =0 to ¢+ =¢" gives
|12 ), 1Y 2 > 1§ 2
o(t <00 +— da= 00)| +— dt
lo@) [ <[o)] 2ﬁgllptll < [6] 2ﬁgllptll
then

6

17 o
L (1) S”9(0) ||+(ﬁ,([” P, ”2‘#)2 >

the first term on the right hand side gives,
[000) | = [, (0) = T2 (0) || <[, () ~u(O) | + | u(®) ~ Tu(O)| = [[uf =u® |+ Ch|u’| (1Y)

for the second term, we have

1 f 2, 1 f ) (I )
- 2 (. _ 2 o r 2
(2ﬁ£||p, | dr) (2ﬁ£||u, Lu, |[dr)? < (!Ch u, | dr)
r 1
~ch (Ju fao* = chlu,,
then (1¢%)
”9 (%) SH”;’) —u’ H+Ch’ﬂ “ollzar +H”O r}’
hence
|6],. .., <Ch".
The proof is complete. m

5.2 The Fully Discrete Approximation
Now we describe all schemes in which the fully discrete equation are defined
by replacing the time derivative in (%) with the forward difference quotient to give

1 n+ n A n A n A
—(u"u )+ @V V) + (BVuL9)+ (@ufp)=(f0) eV, m=1MN  (1°)

Lemma 2. [6] Suppose that »/ is the discrete solution of equation (1°), then for
any N >0

N
o [ i [+ o 2] £
n=0

Theorem 2 : Suppose that »" and u] are solutions of equations (A) and (1°)

respectively satisfy the requirements

ueL”(0,T;H*(Q)NL (0,T;W.(Q)), u, ,u,eL’(0,T;L°(Q). Then there exists a
constant C independent of # such that,

<C { h'+1 } .

n n
T ey
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Proof:
u'—u,=W" -Iu")y-(w,-Iu") =p" -0"
by triangle inequality, we have

n n n n
‘ h L”(Lz) p L”(Lz) L”(Lz)’
we have
" <Ch"|u" .
H P L*(L%) L*(H")

To find a bound on @, note that
1(9"” -0",0)+ (&VG",V@)+(l;.V9",q0)+(69",q0)
T

1 ~ 1
= ;(uZ”— uy)+(@vVu,,Vo)+b.Vu,,p)+(cu,,p) —;(Iu"” —1lu",p)—(aVIu",Vp)

—(bNVIu",@)—(e1u",p).

scince
a@"—1Iu",p)=0,
and
1 n+ n A n N n A n n
;(uh —u,@) +(aVuy, Vo) +(b.Vu,,e)+(Cuy,0)=(f".0),
then,

l(9"” —0",0)+(aV 0", Vo) +(b.VO",p)+(¢0",p)
T
n ~ n L n ~ n 1 n+ n
:(f aq))_(avu ,VCD)_(bvu aq))_(cu aq))_;(lu ]—II/l aq)))
= W)~ (T~ T ).
T
Adding and subtracting l(u"” —u",p) we get,
T
l(9"” —0",0)+(aV0",p)+ (b.VO",p) +(¢0",0)
T
1 n+l n 1 n+l n n 1 n+l n
:_(u —Uu aq))__(lu —1u ,q0)+(u,,g0)——(u —Uu aq))a
T T T

1 n+ n n
Z;(p L—p" o)+ ("),
where
gn — u[n_l(unﬂ _un)‘
T

Choosing ¢ =6" and multiplying by = by using Cauchy-Schwartz inequality
Young's inequality to the right hand side and multiplying by 2, we get

Jor [ v2eavor | <lor [ +c[ Lo o[ el .
T

2
+7|
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since the second term in the left hand side is non-negative, summing both sides
from n=0 to n=N we have,
|

TR 2 1 2 N
o <[o°] +c{;§\ )

As we have done in the previous theorems, given
0<n" <N such that

pn+] _pn én

n+l

Bn*+l

()’
then

2

0 1
sl 13

n+l n

én

pn+] _ p

2+T§ } v

for the second term note that
pn+]_pn — I,D,df,

this implies

pn+l _pn

Iyy
<fle e,
tN
2 Ipy 2
< ota]
tﬂ
i dt
| T a1
tﬂ

applying Jensen's inequality (see [5]) to the right hand side this implies

thus

n+l

p —p"

2
>

T
<flpfar —chr
0

li ‘ n+l _ n
7 & P P
To bound the third term of (18), note that

1
gn — u[n _;(unﬂ _un))

U, 1*(H")

then,

Ly by
n __ n _ n
t&" =tu - J.u,dt—(tnﬂ —t)u — J.u,dt,
t, Ly

adding and subtracting ¢, u’"' gives

tn+l
n+l1

Tén :tn+lutn+]_tnutn_ Iutdt_(tnﬂut

ty

_tn+]utn) >

tn+l
= I (t_tn+])uttdt’
t"

ISSN-1994-697X

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)



http://www.novapdf.com/
http://www.novapdf.com/

Misan Journal for Academic Studies Vol. 11 No. 20 June (2012) @

then, we have by Jensen's inequality (see [5])
2 2
2 Ly Iy dt
< dt| =1 -,

N T
n 2 2
e e s
n=0

0

én

utt utt

then

2 2

2
d =1t7|u,

2’

Applying these results to (17) gives,
Al e Pl Bel VS

0
u' ||+ ,

+TH oz a2 J’

L (H") }

v,

L™ (1%
hence
H 9n+]

SC(H 7).

L*(1?
The proof is complete.
5- The Discrete Maximum Principle

Now in order to get a fully discrete numerical scheme, we choose a time-step ¢
and u), the approximate solution in ¥, of wu(x,r) at t=¢, =nt. We apply the 6-

method (0 €[0,1] is a given parameter) and obtain a system of linear algebraic
equations [4]:

u —Uu ” A n+ L n+ A n+ n+

———L 0 +(@Vu, " Vo) + bVu; o)+ (Euy0) = ("0,

(1Y)

W, o) — W0, +T(&v“2+9’v§0h) +T(b-VuZ+9,€0h)+T(5MZ+9,€0;1) = T(fn+9’§0h) .
In terms of linear basis functions {(pj}]N of the space V,, where N 1s the
dimension of V, can represent the approximate solution of the fully discrete

scheme (1V) reads:
N
u,(x,0) = D v(1)@,(x), ¢, =, i=1..,N,j=1..,N
j=1
such that

N N N N R N
DSV @L0) =DV (@.0)+TD V@V V) +TY VBV ,0)+TY VT 0,,0)
=

J=1 Jj=1 j=1 Jj=1
N

=ty (f"".9).
j=1

In matrix form, this may be expressed as:

MV =MV +ar Kv© + GV + e MV =t F? Then we have
M +10(@K+G+cM)V =M —t(1-0) (@K +G+eM)V' +TF™,

(M)
where M denotes the N x N mass matrix ,X denotes the N x N stiffness matrix and
G denotes the Nx N convection matrix are defined by:
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M =m; ;Lyens m;; = Jgojgol.dx, K =k Iy ki = JVgongoldx
Q Q

G= [gij]NxNa 8= JAb'ngngidx
Q

Here F™°=(f"",...fi") , (¢ indicates the transpose).

K =a=0f1+0£" (/i =1,/(0)), and let
D:(dl.j) , D=[M+10(aK+G+cM)],

Q)
E=(e,) , E=[M-t(1-0)(aK+G+cM)].
2+)
Lemma 3. [7] Let D=(d,)), E=(e)), be NxZ matrices satisfying the
conditions:
4 4
(i) Dd, ;2)e,>0 , I<i<N,
j=] j=]
(i) e, 20, 1<i<N, 1<j<Z,
(i) 4, <0, 1<i<N, 1<j<Z, j#i,
and assume that Du=Ew+tg.
2Y)
Then each component u,(1<i < N) is estimated by
]rgeg]% uj‘ < maxymax|w; +T]I£1Ji>§ g; ’NIEIIS]');Z uj‘

1<j<Z

Theorem 3.. Let 4, be defined in equation (19), and e, be defined in equation
(2+),if m,,>0, i=jand m =0, i=; thenall schemes satisfy the DMP.
Proof: We have
m,;>0 (i=j) and m ;=0. (i#))

Now matrix M is nonnegative because the basis functions are nonnegative [4].
Thus M >0,
we get

4 4

¢M =Y ¢ém, =¢Y m,20and ém, =0 , (i#))

= =

and for the ith coordinate of the vector K we have

(K), =2k, =20 @8)=0 (Q4,.0)=d ()= Q| gradl grad¢ dx=0,

also
k..<0 , @#j) weget
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4 4

Y g,=% GN4.4)=(GY Vh.4) . 1<isN
since (see [4]) | |
¢j20 and z ¢j51 n ﬁj (Z;Vi ¢j,¢i):([;_ V1,4, )=0,

then

It is easy to see that
4 4

> D=) [M+0t@K+G+éM)|>
.':] .':]
] ] 4 4 4

Y E=)[M-(1-0)t(aK+G+eM)=>m, >0,

j=1 j=1 j1
hence, the condition (i) in Lemma 3 holds. Now we prove the condition (i 1),

E=(¢,)=[M-(1-0)t(aK+G+éM)]20 1<i<N ,1<;<Z

also
D=(d,)=[M+0t(aK+G+cM)]<0 , i#j

because
m,>0 , m, =0 (G#j), k,>0 , k,;<0 (i=j),we have

G = (b.Vu,v) = (l;.Vigoj(bj,qﬁi )=0,

then the conditions (1), (i 1) and (ii1) in Lemma 3 are satisfied. Hence

max
1<j<N

, max
N+l<j<Z

u

uj‘Smax max j‘

1<j<Z

w.|+7max
J 1<j<Z

8j
6 Numerical Example

This chapter presents a simple test case to see the behaviour of the Galerkin-NSs
(NSs-Galerkin ) and Galerkin-MPs-NSs (MPs-NSs-Galerkin) methods. The
problem (1) was run with the data as follows: the domain Q where the problem is
to be solved in the unit square, Q =[0,1]x[0,1] , discretized using a uniform mesh
of 21x21 bilinear elements (yielding 441 nodal points) and the diffusion
coefficient a =10"*,the absorption coefficient is ¢=10"*. The velocity vector has
been taken as b=|b| (cos(z/3), sin (7/3)) with |5|=1, and 7 = 0.5+A* [9].
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Figure 4.1: exact solution t=0.1

(b)
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Figure 4.2: solution of Galrkin-NS1,Galerkin-Mps-NSs, NS1-Galerkin, MPs-
NS1-Galeki, MPs-NS2-Galerkin and MPs-NS3-Galerkin methods at t=0.1
from (a) to (f).

Conclution:

After theoretical and practical study to the convection —diffusion problem, we
may make a number of remarks to the theoretical analysis and numerical result in
this work.
1-The stability coefficient on the diffusion term removed the oscillation on
standard Galerkin method
2- The numerical results consistent with the exact solution see fig.4.1 and 4.2
3- The numerical results which we got it from the test problem are consistent with
the theorem of DMP.
4-All schemes are convergent , in the semi-discrete with O(h") and in the full
discrete converge with error of O(h", 1)

5- For our study we show that if any scheme satisfies the DMP the then this will
give us a guaranty that the approximate solution converges to the exact solution.
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