
Engineering and Technology Journal 40 (01) (2022) 172-180

Engineering and Technology Journal
Journal homepage: https://etj.uotechnology.edu.iq

172
http://doi.org/10.30684/etj.v40i1.2153

Received 03 May 2021; Accepted 02 june 2021; Available online 25 January 2022

2412-0758/©Publishing rights belongs to University of Technology’s Press, Baghdad, Iraq.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Solving Mixed-Model Assembly Lines Using a Hybrid of Ant Colony

Optimization and Greedy Algorithm

Huthaifa Al-Khazraji a*, Sohaib Khlilb, Zina Alabacy c

a,c Control and System Engineering Dept.,University of Technology-Iraq, Alsina’a street, P.O Box 10066 Baghdad, Iraq.
bDepartment of Applied Mechanics, University of Technology-Iraq, Alsina’a street, P.O. Box 10066 Baghdad, Iraq.

*Corresponding author Email: 60141@uotechnology.edu.iq

H I G H L I G H T S

A B S T R A C T

• Mixed-model assembly line problem is a

type of assembly line balancing problem at

which two or more models of the same

product are assembled sequentially at the

same line.

• A hybrid of an Ant Colony Optimization

and a Greedy Algorithm (Ant-Greedy) is

presented for mixed-model assembly line

balancing problem.

• The proposed approach is compared with

the performance of the Merging Shortest

and Longest Operation (MMSLO) method.

 The assembly line balancing problem deals with the assignment of tasks to work

stations. Mixed-model assembly line problem is a type of assembly line

balancing problem at which two or more models of the same product are

assembled sequentially at the same line. To achieve optimality and efficiency of

solving this problem, tasks at each work station have to be well balanced

satisfying all constraints. This paper deals with the mixed-model assembly line

balancing problem (MALBP) in which the objective is to minimize the cycle

time for a given number of work stations. The problem is solved by using a

hybrid of an ant colony optimization and a greedy algorithm (Ant-Greedy).

MATLAB Software is used to perform the proposed method. Then, the proposed

method is applied to a real case problem found in the literature for the assembly

line of automatic changeover in the Electronic Industries Company in Iraq. The

results of the proposed method are compared with the performance of the

Merging Shortest and Longest Operation (MMSLO) method. The comparison

shows that the Ant-Greedy optimization method is more efficient, where the

efficiency increased from 93.53% for MMSLO method to 97.26% for the Ant-

Greedy method.

A R T I C L E I N F O

Handling editor: Muhsin J. Jweeg

Keywords:

Mixed-Model Assembly Line

Ant Colony Optimization

Greedy Algorithm

Automatic Changeover

1. Introduction

The line balancing (LP) problem is one of the considerable importance problems in many industrial applications. To

assembly a product, the assembly process is divided into a number of tasks where a set of task among all the tasks are grouped

into work stations. These work stations are connected together by a material handling system (i.e. conveyor). The sequence of

work stations is designed same for every product based on the precedence diagram. A precedence diagram is a diagram

illustrating the precedence relations between the tasks of a product. The line balancing problem concerns with the assignment

of these tasks to the successive work stations efficiently in the line, without violating any precedence relations [1].

Assembly lines balancing (ALB) problem can be classified based on the variety of models into Single-Model Assembly

Line Balance (SMALB) and Mixed-Model Assembly Line Balance (MMALB). In the SMALB, only one model of a product is

assembled, whereas more than one model of a product is assembled in the MMALB [2]. A MMALB is more complicated to

balance than a single-model line because of the difference in time between models. The advantages of using MMALB against

SMALB are to get more flexible product design and reduction in capital expenditure [3]. In some cars industries, for example,

most of the cars have a different number of models with different features. Therefore, car producers produce several models of

the same car in the assembly line [4].

There are mainly two methods used to transform MMALB into SMALB: Combined Precedence Diagram (CPD) and

Adjusted Task Times (ATT) [5]. The MMALB can be classified based on objectives into two different types [6]:

MMALB-I: minimizes the number of workstations, for given cycle time.

https://etj.uotechnology.edu.iq/
http://doi.org/10.30684/etj.v40i1.2153
http://doi.org/10.30684/etj.v40i1.2153
http://creativecommons.org/licenses/by/4.0
file:///C:/Users/dell/Downloads/60141@uotechnology.edu.iq
https://orcid.org/0000-0002-6290-3382
https://orcid.org/0000-0003-3002-0355

Huthaifa Al-Khazraji et al. Engineering and Technology Journal 40 (01) (2022) 172-180

173

MMALB-II: minimizes the cycle time, for a given number of workstations.

The concept of the assembly line was started in 1901 when Mr. Ransom Olds register the production system of the Olds

Motor car company by a patent as "assembly line". A significant innovation in the industrial assembly line was done in 1913

by Henry Ford's and the famous model-T [3]. The first mathematical model of the assembly line problem was established by

Salveson [7]. Later, several extensions of the problem have been developed. In order to respond to the diversity of customer

needs, Thomopoulos [8] studied the MMALB problem at which two or more models of the same product are assembled

sequentially at the same line. The MMALB can be divided into two groups, named MMALB-I and MMALB-II, depending on

the objective function. The MMALB-I class of problem minimizes the number of workstations, for given cycle time, whereas

the MMALB-II class of problem minimizes the cycle time, for a given number of workstations. Several approaches have been

presented in the literature to both types of the MMALB problems. These approaches can be classified into three categories:

tradition approaches, heuristics and meta-heuristics, and hybrid approaches. A summary of different approaches that applies to

solve MMALB is summarized in Table 1. The summary is classified according to the objectives, solution technique and line

configuration of the study. For solving MMALB-I problem, Vilarinho and Simaria [9] proposed an ant colony optimization to

parallel workstations line configuration. Hwang and Katayama [10] proposed genetic algorithms for a U-shaped assembly line

system. Simulated annealing was proposed by Özcan et al. [11] of the parallel assembly line balancing. Yagmahan [12]

developed an ant colony optimization for a straight line configuration.

A hybrid approaches for parallel line were presented by Akpınar and Bayhan [4] and Akpınar et al. [13]. On other hand, a

MMALB-II problem with parallel workstations have been solved with different approaches such as mathematical

programming and iterative genetic algorithm [14], genetic algorithm [15], and Linear programming [3]. Besides, Çil et al. [16]

developed a heuristic algorithm based on beam search robotic MMALB-II problem. Later, Çil et al. [17] implemented bee

algorithm (BA) and artificial bee colony (ABC) algorithm for MMALB-II problem that human workers and robots are

collaborated in the assembly line. Finally, Zhang et al. [18] proposed an improved particle swarm optimization (PSO) with

simulated annealing (SA) for a parallel model of MMALB with three objectives. The objectives are load balance between

stations, dynamic balance in different working states and station’s internal balance.

The objective of this study is to solve MMALB-II by using hybrid ant colony optimization and greedy algorithm (ACG).

The new optimization is examined by a practical problem taken from the assembly line of automatic changeover in the

Electronic Industries Company in Iraq.

2. Problem Description
In this section the definition of the MMALB is presented. The MMALB is to determine a possible assignment of tasks to

assemble a product has different models to a sequence of work stations such that the precedence relations of each model are

satisfied and objectives are optimized. A set of 𝑀 models (𝑚 = 1, 2, … , 𝑀) for similar product with set of 𝑁𝑚 tasks related to

each model (𝑖𝑚 = 1, 2, … , 𝑁𝑚) are given. Each task (𝑖𝑚) has an operation times (𝑡𝑖𝑚
) related to each model (𝑚). Compared to

SMALB, MMALB is more complicated since each model has its own precedence diagram. However, one way of transforming

MMALB into SMALB can be done by combining all the precedence diagrams of all models into only one precedence diagram

[12]. After combining all the precedence diagrams, the result combined model has only one precedence diagram with one

number of 𝑁 tasks (𝑖 = 1, … , 𝑁) and an operation times (𝑡𝑖). The operation times (𝑡𝑖) in the joint precedence diagram are

calculated as follows:

𝑡𝑖 = ∑ 𝑞𝑚 × 𝑡𝑖𝑚
𝑀
𝑚=1 (1)

where q_m is the number of units of model m being assembled. The objective here in this paper is to minimize cycle time

needed to assemble a product in a line given the number of stations (NS). The solution procedure now is the same as SMALB

as follows:
Table 1: Summary of researchers on the mixed-model assembly line balance problem

Publications Objectives Solution Technique Line configuration

Simaria and Vilarinho (2004) MMALB-II Mathematical programming,

Genetic algorithm

Parallel

Vilarinho and Simaria (2006) MMALB-I Ant colony optimization Parallel

Hwang and Katayama (2009) MMALB-I Genetic algorithms U-shaped

Özcan et al (2010) MMALB-I Simulated annealing Parallel

Yagmahan (2011) MMALB-I Ant colony optimization Straight

Akpınar and Bayhan (2011) MMALB-I Hybrid genetic algorithm Parallel

Akpınar et al (2013) MMALB-I Genetic algorithms, Ant

colony optimization

Parallel

Raj et al (2016) MMALB-II Genetic algorithms Parallel

Çil et al (2017) MMALB-II Beam search Straight

Ashraf and Abbas (2017) MMALB-II Linear programming Parallel

Zhang et al (2019) Multiple

Objectives

particle swarm optimization,

simulated annealing

Parallel

Çil et al (2020) MMALB-II Bee algorithm, Artificial Bee

Colony

Straight

Proposed work MMALB-II Ant colony optimization,

greedy algorithm

Straight

Huthaifa Al-Khazraji et al. Engineering and Technology Journal 40 (01) (2022) 172-180

174

The process time of each workstation (𝑝𝑤𝑗) is the time needed to finish all the tasks within a workstation (𝑊𝑗), it is

determined by:

𝑝𝑤𝑗 = ∑ 𝑡𝑖𝑖∈𝑊𝑗
 (2)

The cycle time (𝑐) is the highest time among all the process time of each workstation, it is calculated by:

c = Max{pwj}, j = 1, . . , NS (3)

The idle time (𝐼𝑇) is the difference time between processing time among workstations (unproductive time). It is used as an

index to measure the performance of line and can be calculated as:

IT = (NS × c) − ∑ ti
N
i=1 (4)

Another index is line efficiency, line efficiency (𝜂) is compute by dividing the ratio between total processing time in all

workstations to the result of the cycle time (𝑐) multiply by the number of workstation (𝑁𝑆) as follows:

𝜂 =
∑ 𝑡𝑖

𝑁
𝑖=1

𝑐×𝑁𝑆
 (5)

For solving MMABL, these assumptions are considered:

1. The demand of each model is known.

2. The operation time of all tasks is fixed.

3. The changeover time between models is neglected.

4. The number of work station is given.

3. Methodology

The methodology to find the best solution of the MMALB problem can be summarized as follows:

 A characteristic table of each model is constructed. In this table. a description of each task associated with

the processing time of each task are illustrated.

 A precedence diagram of each model is constructed. This diagram illustrates the relationships between

tasks.

 The MMABL problem is converted into the SMALB problem using joint precedence diagram as shown in

Figure 1.

 The theoretical cycle time (𝑐𝑡ℎ) is determined. The 𝑐𝑡ℎ is obtained by dividing the total task time by the

predefined number of workstations (𝑁𝑆). It is calculated as follows:

cth =
∑ ti

n
i=1

NS
 (6)

 Each task is assigned to a workstation using ACG optimization approach. The optimization is explained in

next section. The optimization is used to find the most appropriate set of tasks among all which are

compatible with tasks that are already assigned. The process continues until the station is filled.

 After calculating all the workstation process times (𝑝𝑤𝑗) as given in Eq. (2), the cycle time is determined

as given in Eq. 3 (the highest 𝑝𝑤𝑗 among all workstations).

 Finally, the idle time and line efficiency are computed based on Eq. (3) and Eq. (4).

4. ACG Optimization Approach

In this work, a hybrid of an ant colony optimization and a greedy algorithm (ACG) is proposed to solve MMALB-II

problem. The structure of the proposed method is given in Figure 2. The problem is divided into two sub-problems. The first

one is how to generate a different sequence of tasks without violating the precedence relations. This sub-problem is performed

by using ant colony optimization. ACO algorithm is an algorithm inspired based on the behavior of real ant colonies. It is a

population-based algorithm. As known that ants are being able to find the shortest path between their nest and a food source by

chase pheromone trails exposed by other ants. For the trail that has more intense pheromone, the probability that an ant will

follow it becomes higher [9]. However, in this work, ACO is used to perform the sequence of the task taking into account the

precedence constraints. Here, the producer of applying ACO is slightly different form the usual use of this algorithm. The

algorithm begins by generating 𝑛 of ants equal to the number of tasks. As a result, each ant in the proposed algorithm

represents a task. Instead of design route for each ant, here in this work, the goal is to sequence these ants based on the state

transition rule given by Eq. (7) without violating the precedence relations.

Huthaifa Al-Khazraji et al. Engineering and Technology Journal 40 (01) (2022) 172-180

175

 𝑝𝑖
𝑡 = {

τ𝑖

∑ τ𝑖𝑖𝜖𝑁𝑡
 𝑖𝑓 𝑖 ∈ 𝑁𝑡

0 𝑖𝑓 𝑖 ∉ 𝑁𝑡
 (7)

For each iteration t, the probability 𝑝 of selecting the task 𝑖 in the candidate sequence 𝑆 is based on its pheromone trail 𝜏𝑖.

All the ant are initialized with the same amount of pheromone. The second sub-problem is how to group tasks for each

sequence into workstation taking into account the objective to reduce the cycle time in order to improve the efficiency of the

solution. This sub-problem is performed by using greedy algorithm. After receiving the candidate sequence 𝑆 from ACO. The

Greedy algorithm starts by assigning each task 𝑖 to workstation 𝑊𝑗. For each workstation, the accumulated process time (𝑝𝑤𝑗)

is computed. If the accumulated process time of the assigned workstation 𝑝𝑤𝑗 becomes more than 𝑐𝑡ℎ, the algorithm find shift

time (ST). The ST is the deviation time between 𝑐𝑡ℎ and 𝑝𝑤𝑗 in two cases: the first case (𝑆𝑇1) is the case when the

accumulated process time of the workstation 𝑝𝑤𝑗 is less than theoretical cycle time which associated with task 𝑖 − 1. The

second case (𝑆𝑇2), is the case when the accumulated process time of the workstation 𝑝𝑤𝑗 is more than theoretical cycle time

which associated with task 𝑖. If 𝑆𝑇1 ≤ 𝑆𝑇2 then add just task 𝑖 − 1 to the workstation 𝑊𝑗 and remove task 𝑖 from 𝑊𝑗; otherwise

add the task 𝑖 to the workstation 𝑊𝑗. The optimization process is stopped if the entire task is assigned to workstation. For more

explanation about this algorithm see [19].

(a)

(b)

(c)

Figure 1: Precedence diagram of model (a), model (b) and joint model (c)

Huthaifa Al-Khazraji et al. Engineering and Technology Journal 40 (01) (2022) 172-180

176

Figure 2: Structure of the Ant-Greedy optimization

5. Practical Application

The proposed algorithm is evaluated by using a real case study that was published by Al-Zubaidy et al. [5]. Their work

was applied at the Electronic Industries Company (EIC) in Iraq for assembling varies models of changeover work

automatically. Three different models of the changeover were assembled manually. The three models differ from each other as

follows:

a. Model A which is an Automatic Changeover (80 A) with Timer.

b. Model B which is Automatic Changeover (30 A) without Timer.

c. Model C which is Automatic Changeover (30 A) with Timer.

The description, technological rout and task time of all models are shown in Table 2. Each model differs from the other in

the task time for the same task and whether the task is required or not. As a result of that, each model has different assembly

time. However, the total number of tasks for all models is 21 tasks. Model A has more parts than other models; therefore it

required more time to assemble than other models. Figure 4 show the precedence diagram with the times of each task (minute)

of this model. For model B, Figure 5 shows the precedence diagram of this model. Figure 6 shows the precedence diagram of

this model C. The demand requested by the customer for each model has been observed as (2 of model A), (7 of model B) and

(13 of model C). Using Eq. (1), Table 3 shows the combined model process time and Figure 7 shows the combined model

diagram of all models.

Huthaifa Al-Khazraji et al. Engineering and Technology Journal 40 (01) (2022) 172-180

177

Table 2: Total assembly tasks required for the Automatic Changeover assembly line [5]

Tas

kNo.

Description of task 𝐓𝐀

(min)

𝐓𝐁

(min)

𝐓𝐂

(min)

1 Soldering diodes on the circuit board 1.86 1.86 1.86

2 Soldering resistors on the circuit board 1.33 0.26 1.33

3 Soldering thermal resistors on the circuit board 0.33 0.33 0.33

4 Soldering transistors on the circuit board 0.73 - 0.73

5 Soldering wires on the circuit board 0.83 0.83 0.83

6 Soldering LED wires on the circuit board 2.26 1.7 1.41

7 Soldering electrical capacitors on the circuit board 0.46 0.35 0.58

8 Preparing and soldering LED to wires - - 0.83

9 Soldering ceramic capacitors on the circuit board 0.66 0.66 0.66

10 Soldering the relay (30A) on the circuit board 0.9 0.6 1.2

11 Soldering the relay (10A) on the circuit board 0.26 0.3 0.26

12 Connecting the neon lamps wires on the circuit board 1.33 1 1

13 Soldering the relay (120A) on the circuit board 16 - -

14 Soldering pieces of wire to the circuit board - 0.33 0.33

15 Making the circuit board robust for the relay (120A) area 4 - -

16 Adjusting the circuit board on the base part of plastic box 3.33 0.25 0.25

17 Joined the terminal block (100A) to the plastic box 1.66 0.05 0.05

18 Adjusting the terminal block (60A) on the lower plastic box - 0.05 0.05

19 Joined wires on the terminal block (100A) 1.33 1.16 1.16

20 Joined welded wires of relay (10A) on the terminal block (60A) - 0.5 0.5

21 Joined the upper and lower plastic box 1 0.5 0.5

Table 3: Combined task time required for the Automatic Changeover assembly line

𝐓𝐚𝐬𝐤

𝐍𝐨.
𝐭𝐢𝐀

 𝐭𝐢𝐁
 𝐭𝐢𝐂

 𝐭𝐢𝐀
× 𝟐 𝐭𝐢𝐁

× 𝟕 𝐭𝐢𝐂

× 𝟏𝟑

𝐭𝐢

1 1.86 1.86 1.86 3.72 13.02 14.18 40.92

2 1.33 0.26 1.33 2.66 1.82 17.29 21.77

3 0.33 0.33 0.33 0.66 2.31 4.29 7.26

4 0.73 - 0.73 1.46 - 9.49 10.95

5 0.83 0.83 0.83 1.66 5.81 10.79 18.26

6 2.26 1.7 1.41 4.52 11.9 18.33 34.75

7 0.46 0.35 0.58 0.92 2.45 7.54 10.91

8 - - 0.83 - - 10.79 10.79

9 0.66 0.66 0.66 1.32 4.62 8.58 14.52

10 0.9 0.6 1.2 1.8 4.2 15.6 21.6

11 0.26 0.3 0.26 0.52 2.1 3.38 6

12 1.33 1 1 2.66 7 13 22.66

13 16 - - 32 - - 32

14 - 0.33 0.33 - 2.31 4.29 6.6

15 4 - - 8 - - 8

16 3.33 0.25 0.25 6.66 1.75 3.25 11.66

17 1.66 0.05 0.05 3.32 0.35 0.65 4.32

18 - 0.05 0.05 - 0.35 0.65 1

19 1.33 1.16 1.16 2.66 8.12 15.08 25.86

20 - 0.5 0.5 - 3.5 6.5 10

21 1 0.5 0.5 2 3.5 6.5 12

Figure 3: Models of the Automatic

Changeover [5]

Figure 4: Precedence diagram of model

Huthaifa Al-Khazraji et al. Engineering and Technology Journal 40 (01) (2022) 172-180

178

Figure 5: Precedence diagram of model B Figure 6: Precedence diagram of model C

Figure 7: Precedence diagram of combined

models

Figure 8: Distributing of tasks among the

workstations in the line based on the

MSLO method

Figure 9: Distributing of tasks among the workstations in the line based on the

Ant-Greedy optimization method

6. Results and Discussion

Zubaidy et al. [5] solve the mix-model of the Automatic Changeover at the Electronic Industries Company using a method

named Merging Shortest and Longest Operation (MSLO). In this section, the results of using the proposed ACG optimization

approach is compared with the results obtained from the MSLO method. Figure 8 shows the distributing of tasks among the

workstations in the line based on the MSLO method.

On other hand, Figure 9 shows the distributing of tasks among the workstations in the line based on the ACG optimization.

It can be noticed that the ACG algorithm achieves better performance in comparison with the MSLO method when the number

of workstation same is equal to 6 (𝑁𝑆 = 6) for both algorithms. Table 4 shows the performance comparison between the two

methods. It can be seen that the cycle time is reduced to 56.86 min by using ACG in comparison with the cycle time of MSLO

which is 59.13 min. As a result, the idle time is reduced to 9.33 min/cycle for the ACG in comparison with the idle time of

MSLO which is 22.95 min/cycle. Besides the reduction in the idle time, the efficiency of the line is improved to become 97.26

% in comparison with the efficiency of the line by using MSLO which is 93.53%.

Huthaifa Al-Khazraji et al. Engineering and Technology Journal 40 (01) (2022) 172-180

179

Table 4: Comparison between MSLO method and ACG optimization

Performance MSLO [5] ACG Optimization

(proposed algorithm)

No. Workstations 6 6

Cycle time 59.13 min 56.86 min

Idle time 22.95 min/cycle 9.33 min/cycle

Efficiency 93.53% 97.26%

7. Conclusion

Designing a balanced assembly line is a critical step in the early stage when introducing new product lines. In this study,

an approach based on a hybrid of an ant colony optimization and a greedy algorithm is developed. The developed approach is

designed to obtain a good solution for the mixed-model assembly line when the objective is to minimize the cycle time, for a

fixed number of workstations and improve the efficiency of the assembly line. The mixed-model assembly line problem is

transferred into a single model assembly line problem using joint precedence diagram. The structure of the proposed method is

divided into two sub-problems. The first sub-problem is performed by ant colony optimization to generate a different sequence

of tasks without violating the precedence relations. The second sub-problem is performed by a greedy algorithm to group tasks

into workstation taking into the account the objective is to reduce the cycle time in order to improve efficiency of the assemble

line balance.

The new method is examined by a practical problem taken from the assembly line of automatic changeover in the

Electronic Industries Company in Iraq. The outcomes of the new method are compared with the Merging Shortest and Longest

Operation (MMSLO) method. The comparison shows the efficiency of the line increased from 93.53% for MMSLO method to

97.26% for the ACG method.

Acknowledgment

We would like to sincerely thank the reviewers for their constructive comments on our paper.

Author contribution

All authors contributed equally to this work.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability statement

The data that support the findings of this study are available on request from the corresponding author.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

[1] J. I. Van Zante-de Fokkert and de T. G. Kok. The mixed and multi model line balancing problem: a comparison. European

Journal of Operational Research, 100 (1997) 399-412.

[2] H. Güden and S. Meral. An adaptive simulated annealing algorithm-based approach for assembly line balancing and a real-

life case study. The International Journal of Advanced Manufacturing Technology, 84 (2016) 1539-1559.

[3] S. R. Ashraf and S. N. Abbas. Mixed Model Assembly Line Balancing by Using of Sub-Assembly Parallel Shop.

Proceedings of the First International Conference on Industrial Engineering and Management Applications, (2017) 93-97.

[4] S. Akpınar and G. M. Bayhan. A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel

workstations and zoning constraints. Engineering Applications of Artificial Intelligence, 24 (2011) 449-457.

[5] S. S. Al-Zubaidy, M. A. Mahmoud and I. D. Khalaf. Balancing Mixed-Model Assembly line in Electronic Industries

Company. Engineering and Technology Journal, 34 (2016) 233-244.

[6] A. Scholl. Balancing and sequencing of assembly lines (No. 10881). Darmstadt Technical University, Department of

Business Administration, Economics and Law, Institute for Business Studies (BWL), 1999.

[7] M. E. Salveson. The Assembly Line Balancing Problem. Journal of Industrial Engineering, 6 (1955) 18–25.

[8] N. T. Thomopoulos. Line balancing-sequencing for mixed-model assembly. Management Science, 14 (1967) 59.

[9] P. M. Vilarinho and A. S. Simaria. ANTBAL: an ant colony optimization algorithm for balancing mixed-model assembly

lines with parallel workstations. International journal of production research, 44 (2006) 291-303.

[10] R. Hwang and H. Katayama. A multi-decision genetic approach for workload balancing of mixed-model U-shaped

assembly line systems. International Journal of Production Research, 47 (2009) 3797-3822.

[11] U. Özcan, H. Çerçioğlu, H. Gökçen and B. Toklu. Balancing and sequencing of parallel mixed-model assembly

lines. International Journal of Production Research, 48 (2010) 5089-5113.

Huthaifa Al-Khazraji et al. Engineering and Technology Journal 40 (01) (2022) 172-180

180

[12] B. Yagmahan. Mixed-model assembly line balancing using a multi-objective ant colony optimization approach. Expert

Systems with Applications, 38 (2011) 12453-12461.

[13] S. AkpıNar, G. M. Bayhan and A. Baykasoglu. Hybridizing ant colony optimization via genetic algorithm for mixed-

model assembly line balancing problem with sequence dependent setup times between tasks. Applied Soft Computing, 13

(2013) 574-589.

[14] A. S. Simaria and P. M. Vilarinho. A genetic algorithm based approach to the mixed-model assembly line balancing

problem of type II. Computers & Industrial Engineering, 47 (2004) 391-407.

[15] A. V. Raj, J. Mathew, P. Jose and G. Sivan. Optimization of cycle time in an assembly line balancing problem. Procedia

Technology, 25 (2016) 1146-1153.

[16] Z. A. Çil, S. Mete and K. Ağpak. Analysis of the type II robotic mixed-model assembly line balancing

problem. Engineering Optimization, 49 (2017) 990-1009.

[17] Z. A. Çil, Z. Li, S. Mete, and E. Özceylan. Mathematical model and bee algorithms for mixed-model assembly line

balancing problem with physical human–robot collaboration. Applied Soft Computing, 39 (2020) 106394.

[18] W. Zhang, L. Hou, Y.Gan, C. Xu, X. Bu, and H. Lin. Parallel Optimization of the Balancing and Sequencing for Mixed-

model Assembly Lines. Manufacturing Technology, 19 (2019) 537-544.

[19] S. Khlil, H. Al-Khazraji, and Z. Alabacy, Solving Assembly Production Line Balancing Problem Using Greedy Heuristic

Method. MS&E, 745 (2020) 012068.

