
Engineering and Technology Journal 40 (01) (2022) 267-274 

 

 

Engineering and Technology Journal  
Journal homepage: https://etj.uotechnology.edu.iq 

 

 
 

 

 

267 
http://doi.org/10.30684/etj.v40i1.2082 

Received 07 December 2020; Accepted 24 April 2021; Available online 25 January 2022 

2412-0758/©Publishing rights belongs to University of Technology’s Press, Baghdad, Iraq. 

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 

A Modified Kalman Filter-Based Mobile Robot Position Measurement 

using an Accelerometer and Wheels Encoder 

Ali A. Madhloom*, Firas A. Raheem , Azad R. Kareem   

Control and Systems Engineering Dept., University of Technology-Iraq, Alsina’a street,10066 Baghdad, Iraq. 

*Corresponding author Email: cse.18.02@grad.uotechnology.edu.iq 

H I G H L I G H T S  
 

A B S T R A C T  

• Position Measurement is a key process in 

the navigation system of a mobile robot. In 

this research paper, wheel encoders and 

accelerometer sensors were used with a 

Kalman filter to estimate the mobile robot 

position. 

• This research uses a modified Kalman filter 

to find the mobile robot position depending 

on the error between the predicted position 

produced by sensors measurement and the 

position produced by a reference path.  

• The modification of the Kalman filter 

consists of choosing a variable process 

covariance matrix to produce a better 

Kalman gain value that will reduce the 

estimation error.     

 position measurement is an essential process of mobile robot navigation. In this 

research, a Kalman Filter is applied to locating a mobile robot furnisher  with an 

encoder and accelerometer. The accelerometer updates its position off-hand. It 

has an acceptable short period of stability. However, this stability will be 

decreased over time. The odometry model is utilized to measure the mobile 

robot's position and heading angle using encoders equipped with the wheels of 

the mobile robot. Moreover, the odometry model's errors exist because of the 

wheel rotating speed's integrative nature and non-systematic errors. In this work, 

the mobile robot position estimation in closed environments was studied. In 

order to obtain the optimal estimation, a Kalman filter was used to estimate 

mobile robots' position and velocity, where the Kalman filter has been designed 

for better assessment of the mobile robot position. The suggested configuration 

collects accelerometer and odometry reading to assure more delicate position 

knowledge than stand-alone odometry or accelerometer. The proposed method's 

position error has an acceptable level that is less than (0.2 m) for both easy and 

difficult paths. 

A R T I C L E  I N F O  

Handling editor: Muhsin J. Jweeg 

Keywords:  

Kalman filter  

Odometry 

Accelerometer 

Position estimation 

1. Introduction 

Recently, artificial intelligence has had a wide range of applications particularly in the functionality of robotic machines. A 

mobile robot is an automated machine that crosses in a specific medium and identifies its perimeter with the help of multiple 

sensors. The researches that investigate mobile robots has progressed quickly in a variety of domains, including smart-home 

assistance, senior care, teaching, medical attendance, military domains, and so on [1]. The position measurement system of an 

ambulant robot is one of the mobile robot navigation system processes. It is used to find the accurate position of the mobile 

robot to control its movement in the work environment. The positioning system provides the mobile robot the ability to know 

its position by using specific types of sensors. The positioning system plays a huge role in achieving autonomous movement, 

so it is currently an important research field. The position measurement systems are possible to split into two categories. 

Absolute positioning and Relative positioning. Relative positioning evaluates the mobile robot's position by using its wheels' 

angular position weighted by encoders connected to the robot's wheels or by using inertial measurement sensors such as 

acceleration and gyroscope. Absolute positioning evaluates the mobile robot's position by using an exterior distance measuring 

system such as GPS and compass [2]. From the starting point acquaintance, the relative positioning system calculates the 
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position. It does not rely on external signals and instead uses an inertial measurement unit (IMU) or an encoder. Therefore, the 

Relative positioning systems have the advantages of being fast, low-cost, and easier to evaluate real-time position than absolute 

positioning systems. The absolute positioning method employs ultrasonic local positioning systems, an infrared network 

system, a global positioning system (GPS), as well as other technologies to determine position. In the Indoors area, GPS is 

ineffective and has a delayed time rate. Ultrasonic local positioning systems and IR (infrared) network systems are both 

inexpensive, small in size, and simple to use. These techniques, on the other hand, are unable to measure long distances, 

necessitate extra assembly, and have trouble measuring accuracy because of signal intervention. RFID necessitates the 

purchase of additional equipment and comes at a high price. [9]. this paper discusses mobile robots' position estimation in an 

indoor environment, such as closed premises or factories. Wheel encoders installed on the mobile robot's wheels can evaluate 

the mobile robot's position and heading angle while it is traveling. The terminology for this technique is odometry [2-4]. The 

angle change is measured by the wheel encoders. The rotary angle, the wheel diameter, and the mobile robot's body width are 

used in the odometry model to find the mobile robot's position and heading angle [5]. Volplane, a misfit in the system data, 

measurement inexactness, and disturbance in the encoder readings all-cause unbounded errors when using odometry [6-8]. The 

mobile robot's position can be calculated using an accelerometer sensor. If the initial information about the position of the 

mobile robot is available, then the mobile robot's position can be calculated. The accelerometer is used for position estimation 

by double integrating its measurements. Depressed-frequency noise and sensor offset, on the other hand, are amplified by the 

system's integrative nature [10-13]. That is, the Short-term stability is excellent with the accelerometer position measurement 

system, but long-term stability is very inferior. Standalone odometry and accelerometer are not suitable for the Relative 

positioning system because of the accumulation of errors over extended time intervals.  In this paper, the odometry and the 

accelerometer are combined to reduce the dead reckoning accumulation errors. Although accumulation errors exist in both the 

accelerometer and the odometry, by combining the two systems, these errors can be reduced to a manageable level. A Kalman 

filter will be implemented and utilized to achieve the best-integrated system possible [22]. This paper's general structure will 

be as follows: Section 2 will explain related work, while Section 3 will clarify the proposed method. Section 4 will contain the 

mathematical modeling of the accelerometer sensor and the odometry. Section 5 will explain the implementation of the 

Kalman filter-based positioning system. Section 7 will contain results, and finally, the conclusion of the presented work will be 

written in Section 8. 

2. Related Work 

Many techniques were introduced in this field; one of these techniques is relative positioning (dead reckoning). In [15], An 

indoor mobile robot navigation technique using odometry and an electronic compass was presented. The system combines the 

measurement of the odometry and the compass to estimate the mobile robot position and heading angle by using an extended 

Kalman filter, two calibration methods were used for the wheel encoder sensor and the compass. A fuzzy system was used to 

adapt the extended Kalman filter, the presented system provides a good measurement for the robot motion but the drawback of 

the presented system is the compass sensor is only valid for heading angle estimation and position estimation was dependent 

on the odometry model and that is not suitable for long-distance measurements even if the wheel encoders was calibrated 

correctly. An indoor position system using an anemometer ultrasonic sensor and inertial measurement unit (IMU) has been 

introduced [16]. the IMU provides position and heading angle measurement for the mobile robot for a short distance and the 

ultrasonic sensor provides the distance measurement between the mobile robot and an object by calculating the flight time for 

the transmitter and the receiver. A Kalman filter was utilized to fuse the measurement of both sensors to provide a position 

estimation for the mobile robot. The system proposed to provide a good measurement but the problem with this type of work is 

the ultrasonic need an object to detect to measure the distance so if the robot was moving in an open area and there is no object 

in the ultrasonic range so the mobile robot will depend on the IMU measurements for the position estimation and the rages of 

ultrasonic are consider to be small (4-6) meters. Another way of enhancing relative position errors in navigation uses the 

Kinect sensor. In [17], the Kinect sensor was used with an encoder to aid in the position estimation, an extended Kalman filter 

was used to combine the sensor reading. As a landmark is detected the system provides a good position estimation, but this 

type of system may fail in position estimation when there is no landmark to detect by the Kinect sensor, so it needs more 

sensors to provide the alternative measurement to update the estimation. GPS has been used to emend position valuation. In 

[18], the GPS measurements were fused with inertial navigation system (INS) and odometer using Kalman filter and assigning 

weights filter, the Kalman filter combines the measurement of the INS and the odometer, the assigning weights combine the 

Kalman filter output with the GPS output. The problem with this work is the assigning weights filter is not suitable because the 

weight factor is constant and the position estimation needs a variable weight factor. In [12], Inertial navigation techniques for 

mobile robots were developed. An extended Kalman filter was appointed to assess position and orientation using a series of 

solid-state gyros, accelerometers, and tilt sensors. However, using accelerometers to calculate position and orientation has 

many disadvantages, including a 1-8 cm/s rate of drift. Furthermore, the minimum discoverable acceleration may be too large 

to discover small motion in some cases. Inertial methods can be time-consuming, costly, and difficult to implement.[9] 

developed a combination of the inertial measurement system and encoder fused the reading using Kalman filter to estimate the 

position. This method improved the position determination and reduced the error in system measurement.  In [19], The mobile 

robot's position was determined using an RFID network and Particle Swarm Optimization Artificial Neural Network, the 

estimated position result was acceptable, but the deficiency of this approach is that the Particle Swarm Optimization Artificial 

Neural Network requires a lot of computing power and the RFID network require complex implementation. In [20], an 

Extended Kalman Filter (EKF) is utilized to locate the mobile robot prepared with an IMU, GPS, wheel encoder, and 

electronic compass. Approach 1 used an encoder, compass, and GPS combination. Approach 2 used GPS and IMU. Approach 
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three used the two approaches combined. Although many sensors were used, the result was minor to the system that only uses 

IMU and GPS. 

3. Proposed Method 

This paper proposes a position measurement method using the accelerometer sensor and wheel encoder combined to 

measure the robot position. Using the odometry model to estimate the mobile robot's location in X-axis and Y-axis, and 

heading angle from the wheel encoders measurement, and the position estimated from accelerometer measurement [9]. The 

proposed method uses the Kalman filter to fuse both systems' measurements to find the final estimated position and heading 

angle of the mobile robot. Using the Kalman filter reduces the error of both systems since the odometry and the accelerometer 

are not suitable for the Relative positioning system over long periods independently because of the accumulation errors. The 

Kalman provides minimization of the accumulation errors for each system. The Kalman filter uses the prediction update 

algorithm when the accelerometer model will be used to predict the system position and velocity. The odometry model will be 

used to correct the measurement of the prediction model. This work proposes using a varying value for the measurement 

covariance matrix (R) instead of using a constant value in order enhance the performance of the Kalman filter. The Kalman 

filter will provide the optimal estimation for the position from both systems measurements and estimate the system's error. The 

block diagram in Figure 1 depicts the work of the proposed system. 

 

 Proposed method block diagram 

4.  Theory of mobile robot positioning system 

In this section, the detailed measurement model of the accelerometer sensor for the positioning system. The model of the 

accelerometer sensor will be described. The wheel encoder modeling will be presented for the odometry model.  

4.1 Accelerometer Measurement Model 

The accelerometer will be utilized to estimate the mobile position in the X-axis and Y-axis. The accelerometer provides 

acceleration measurement. The mobile robot's motion is presumed to be on a horizontal surface, the mobile robot does not face 

any slipping, and the wheels are tied to the surface. For the mobile robot's position estimation, the mobile robot's acceleration 

will be calculated using equation (1).  

[
𝑎𝑘,𝑥

𝑎𝑘,𝑦
] = ([

𝑎𝑘,𝑥𝑟𝑎𝑤

𝑎𝑘,𝑦𝑟𝑎𝑤
] − [

𝐵𝑎𝑥

𝐵𝑎𝑦
]) ∗ [

𝑆𝑎𝑥 0
0 𝑆𝑎𝑦

]   (1) 

Where 𝑎𝑘,𝑥 and 𝑎𝑘,𝑦 are the mobile robot acceleration in X and Y axis respectively, 𝑎𝑘,𝑥𝑟𝑎𝑤 and 𝑎𝑘,𝑦𝑟𝑎𝑤 are the 

acceleration obtained from sensors in X and Y axis respectively, 𝐵𝑎𝑥 and 𝐵𝑎𝑦 Are the bias of accelerometer for X and Y axis 

respectively, 𝑆𝑎𝑥 and 𝑆𝑎𝑦 are the scale factor of the accelerometer for the X and Y axis respectively, and k is the system sample 

time. The mobile robot's velocity in the X and Y axes is computed using Newton's law of motion and a single integration of the 

acceleration. The velocity at sample time k  [
𝑣𝑘,𝑥

𝑣𝑘,𝑦
] will be equal to the velocity a sample time k-1 [

𝑣𝑘−1,𝑥

𝑣𝑘−1,𝑦
] add to acceleration 

reading multiplied by the measurement period (Ts). 

[
𝑣𝑘,𝑥

𝑣𝑘,𝑦
] = [

𝑣𝑘−1,𝑥

𝑣𝑘−1,𝑦
] + 𝑇𝑠 ∗ [

𝑎𝑘,𝑥

𝑎𝑘,𝑦
]   (2) 
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the position of the mobile robot is at sample time k [
𝑝𝑘,𝑥

𝑝𝑘,𝑦
] is calculated by integrating the acceleration twice [9].     

[
𝑝𝑘,𝑥

𝑝𝑘,𝑦
] = [

𝑝𝑘−1,𝑥

𝑝𝑘−1,𝑦
] + [

𝑣𝑘−1,𝑥

𝑣𝑘−1,𝑦
] ∗ 𝑇𝑠 +

1

2
∗ 𝑇𝑠2 ∗ [

𝑎𝑘,𝑥

𝑎𝑘,𝑦
]   (3) 

Where [
𝑝𝑘−1,𝑥

𝑝𝑘−1,𝑦
]  is the position of the mobile robot at sample time k-1. 

4.2 Odometry Measurement Model 

The odometry state vector is 𝑋𝑘 = [𝑃𝑥𝑘 𝑃𝑦𝑘 𝜑𝑘] describe the position of the mobile robot at the kth time step where 

𝑃𝑥𝑘 and 𝑃𝑦𝑘 represent the position in x and y Axis and 𝜑𝑘 Represent the heading angle. The counts N are generated by the 

wheel encoder while the wheel rotates 360 degrees. If the measured pulses are M counts, each wheel's rotary angle becomes: 

𝜂𝑘,𝑙 =
𝑀𝑙

𝑁
∗ 2𝜋 , 𝜂𝑘,𝑟 =

𝑀𝑟

𝑁
∗ 2𝜋   (4) 

Where 𝜂𝑘,𝑟 , and 𝜂𝑘,𝑙, are the right and left wheel's angles in radians, respectively. Ml and Mr are the measured counts on 

the left and right encoders. N is the counts per revolution for the wheel encoder. Figure 2 shows the mobile robot's motion 

based on the rotary angles of its wheels. The mobile robot's travel distance 𝑎𝑘 can be calculated using the radius of its wheels 

(R wheel) and the rotary angle of each wheel, as shown in the equation below. 

𝑎𝑘,𝑙 = 𝑅𝑤ℎ𝑒𝑒𝑙 ∗ 𝜂𝑘,𝑙   (5) 

𝑎𝑘,𝑟 = 𝑅𝑤ℎ𝑒𝑒𝑙 ∗ 𝜂𝑘,𝑟   (6) 

𝑎𝑘 =
𝑎𝑘𝑙+𝑎𝑘𝑟

2
   (7) 

The heading angle rate of the mobile robot (〖"∆φ" 〗_k) is determined by the robot's base width (d) and the distance 

traveled by each wheel [9]. 

〖"∆φ" 〗_k=("a" _kl-"a" _kr)/d   (8) 

The radius of rotation for the mobile robot can be calculated according to follows: 

r_k=a_k/∆φ   (9) 
As shown in Figure 2, we can calculate the position rate by using cosine low.  

〖∆λ〗_k=r_k √(2(1-cos∆φ))   (10) 
The position and the heading angle mobile robot at the kth time step can be determined by 

〖Px〗_k=x_(k-1) +〖"∆λ" 〗_k   cos(φ_(k-1)+〖"∆φ" 〗_k/2)  (11) 

Py_k=y_(k-1) +〖"∆λ" 〗_k  sin(φ_(k-1)+〖"∆φ" 〗_k/2)  (12) 

φ_k=φ_(k-1) +〖"∆" φ〗_k                           (13) 

The mobile robot's velocity can be calculated using the tonometry model using the following equation [9]. 

  

 mobile robot motion [9] 
  proposed method position   

        measurements 

Table 1: Parameters 

Parameter Value Unit 

𝑩𝒂𝒙 0.1 m/s2 

Bay 0.15 m/s2 

Sax 0.598*10-3 (m/s2)/LSB 

Say 0.598*10-3 (m/s2)/LSB 

       Ts 0.01 s 

     Rwheel 0.06 m 

      d 0.32 m 

      N 4200 Pulse per revlution 

σa 4*10-4 m/s2 
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𝑥𝑣𝑘 =
𝑥𝑘−𝑥𝑘−1

𝑇𝑠
  (14) 

𝑦𝑣𝑘 =
𝑦𝑘−𝑦𝑘−1

𝑇𝑠
   (15) 

Where xvk and yvk are the velocity of the mobile robot on the X and Y-axis, respectively.  

5. Implementation of proposed Kalman filter-based positioning system 

[14] Kalman filter is a technique for estimating unknown variables based on measurements collected over time. The 

Kalman filter has proven to be useful in a variety of applications. Kalman filters are simple in design and require little 

computational power. The Kalman filter is used to estimate states in a state-space format based on linear dynamical systems. 

The progress of the state from time k-1 to time k is defined by the process model as follows: 

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘−1   (16) 

Were 𝑥𝑘 = [𝑝𝑥,𝑘  𝑝𝑦,𝑘    𝑣𝑥,𝑘   𝑣𝑦,𝑘]
𝑇
 Which presents the positioning system state. 𝑢𝑘 = [𝑎𝑥,𝑘   𝑎𝑦,𝑘   ]

𝑇
 is the input control 

vector where 𝑎𝑥,𝑘 , 𝑎𝑦,𝑘  are the output of the accelerometer sensor in the X-axis and Y-axis obtained from equation(1). F is the 

state transition matrix that can be found from the accelerometer measurement model. 

𝐹 = [

1 0 𝑇𝑠 0
0 1 0 𝑇𝑠
0 0 1 0
0 0 0 1

]   (17) 

Were 𝑇𝑠 is the sampling time of the system. B is the control-input vector 𝒖𝒌 Moreover, B can be calculated as: 

𝐵 = [

0.5 ∗ 𝑇𝑠2 0
0 0.5 ∗ 𝑇𝑠2

𝑇𝑠 0
0 𝑇𝑠

]   (18) 

The process model is fused with the measurement model 𝒛𝒌, which defines the relationship between the system state and 

the measurement at the kth as follows:  
𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘   (19) 

For this system 𝒛𝒌 the output of odometry measurement that will be used to correct the prediction of the Kalman filter so  

𝑧𝑘 = [𝑃𝑥𝑘   𝑃𝑦𝑘   𝑥𝑣𝑘    𝑦𝑣𝑘  ]
𝑇   (20) 

and the measurement matrix H, in that case, will equal to:  

𝐻 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]   (21) 

The random variables wk and k vk represent the process and measurement noise, respectively. 

Kalman filter algorithm is divided into two stages prediction and update. The equations of the prediction stage are 

illustrated in the following equations [14]. 

�̂�𝑘
− = 𝐹𝑥𝑘−1

+ + 𝐵𝑢𝑘−1   (22) 

�̂�𝑘
− = 𝐹𝐺𝑘−1

+ 𝐹𝑇 + 𝑄   (23) 

Were �̂�𝑘
− is the predicted state of the system and �̂�𝑘

− is the predicted error covariance matrix. in the update stage, the 

Kalman gain 𝐾𝑘 is calculated. 

𝐾𝑘 = �̂�𝑘
−𝐻𝑇(𝐻�̂�𝑘

−𝐻𝑇 + 𝑅)−1   (24) 

Furthermore, the updated state of the system and the update error covariance matrix is calculated using the following 

equations: 

𝑥𝑘
+ = �̂�𝑘

− + 𝐾𝑘𝑦𝑘  (25) 
𝐺𝑘

+ = (𝐼 − 𝐾𝑘)�̂�𝑘
−           (26) 

𝑥𝑘
+ represent the final estimated position and velocity of the mobile robot in the kth sample time. 𝐺𝑘

+ is the estimated error 

covariance matrix. 

The Q and R represent the process model covariance matrix and measurement covariance matrix; these matrices represent 

the Noise in sensors measurement.  

The process noise covariance is the error covariance that is measured from the accelerometer sensor. The position Noise is 

calculated from the acceleration Noise by double integration. The acceleration Noise assumed to be gaussian disturbed with a 

mean of zero and standard deviation of (𝜎𝑎 ) so 𝑄𝑝 will be equal to: 

𝑄𝑝 = (𝜎𝑎 ∗ 𝑇𝑠2)2   (27) 

For the velocity, the Noise will be integrated and 𝑄𝑣 will be 

𝑄𝑣 = (𝜎𝑎 ∗ 𝑇𝑠)2   (28) 
So, the Q matrix will be equal to 
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𝑄𝑘 =

[
 
 
 
𝑄𝑝 0 0 0

0 𝑄𝑝 0 0

0 0 𝑄𝑣 0
0 0 0 𝑄𝑣]

 
 
 
   (29) 

         For the measurement covariance matrix R, its value can be determined from the odometry measurement by taking the 

average of the error between the reference path and the measurement of the odometry and calculating the mean value, then 

calculate the variance as follows [22]: 

𝑅𝑘 = 𝑉𝑎𝑟 {[𝑥𝑘,𝑟𝑒𝑓. − 𝑧𝑘] ∗ [𝑥𝑘,𝑟𝑒𝑓. − 𝑧𝑘]
𝑇
}   (30) 

𝑅𝑘 =

[
 
 
 
𝑅𝑘,𝑥 0 0 0

0 𝑅𝑘,𝑦 0 0

0 0 𝑅𝑘,𝑣𝑥 0

0 0 0 𝑅𝑘,𝑣𝑦]
 
 
 

   (31) 

Were  𝑅𝑥, 𝑅𝑦 are the variance of the encoder position respectively and 𝑅𝑣𝑥, 𝑅𝑣𝑦 are the variance of the encoder velocity, 

respectively. The Kalman filter needs to be initialized. The following are the parameters that must be set up the error 

covariance matrix(G) and system state vector (x). 

6. Results 

To verify the performance of the proposed work, a MATLAB© implementation of the method was executed offline. The 

test was done using the circular path with a diameter of (5 meters) as reference paths. The accelerometer measurements and 

encoder measurements were collected using the navigation toolbox in MATLAB© with a 100 Hz sampling frequency. Several 

assumptions are made since the Kalman filter is used in this simulation. 
• All noises (process and measurement noise) are assumed to be Gaussian, and the positioning system is assumed to be a 

linear system. 

• The encoder is assumed that no slipping situations or uneven roads occurred.  

Table 1 shows information about the parameter used in the test. As mentioned Kalman filter needs to be initialized, so the 

system states vector initial value.  

𝑥0
+ = [0   0   0  0  ]𝑇   (31) 

Because the reference path was initialized from zero position and zero velocity. the error covariance matrix was initialized 

as: 

𝐺0
+ = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]   (32) 

Figure 3 show the result of the proposed method for the circular reference path. From the figure, we see that the odometry 

path fails in estimating the reference path value. On the other hand, the Kalman filter's estimated path was very close to the 

reference path. The reason behind that is the odometry suffers from accumulated errors. Errors can be minimized with the 

accelerometer sensor's help which is good for short period measurements. The use of the Kalman filter is to perform an optimal 

estimation for the mobile robot positioning system. The positioning system using only an accelerometer sensor had an 

unbounded position error because of double integration, even though the result was not included in this paper. In Figure 4, the 

error of estimated position in the X-axis and Y-axis. Whereas the error of the estimated X-axis position was  Ranges from 

(0.0573) to (- 0.1629) and the error of the estimated Y-axis position was  Ranges from (0.1826) to (- 4*10-4). the proposed 

method error is considered acceptable for indoor paths. Table 2 shows the error in each waypoint of the reference path of the 

mobile robot. The error of odometry was compared to the error of the Kalman filter at each reference path waypoint. We notice 

that the Kalman filter enhanced the error at each waypoint to an acceptable value. The result of the proposed method was 

compared to the work of approach 1 in[20]. The mean error value was used as a comparison. The proposed method mean error 

was (0.1207)  compared with (0.27739) for [20].althought a Kalman filter with only an encoder and accelerometer was used its 

error against an extended Kalman filter with encoder, compass, and GPS  the result was was better and error is smaller than the 

error in [20] work.  



Ali A. Madhloom et al. Engineering and Technology Journal 40 (01) (2022) 267-274 

 

273 

 

 Proposed method errors 

Table 2: Waypoint error 

Waypoint 

(X, Y) 

method Error (X, Y) 

(5,2.5) Odo. (0, -0.0015) 

Kal. (0,0) 

(2.5,5) Odo. (-0.6247, -0.0261) 

Kal. (-0.054,0.0649) 

(0,2.5) Odo. (-0.7466,0.19) 

Kal. (0.0513,0.1796) 

(2.5,0) Odo. (-0.6266,0.4042) 

Kal. (-0.1637,0.0682) 

(5,2.5) Odo. (-0.008,0.3780) 

Kal. (-0.1326,0.0125) 

7. Conclusion 

This paper proposed a position measurement system of the mobile robot using an encoder sensor and accelerometer 

sensors. a Kalman filter combines the sensor's measurement to estimate position and velocity for the mobile robot. The 

accelerometer was utilized to estimate the mobile robot's position, but its accuracy was very low because of the accumulated 

errors due to the double integration of the acceleration readings. The encoder was utilized to estimate the mobile robot's 

position and heading angle using the odometry model. The position estimation using encoders suffers from negative bias and 

unbounded position errors. Negative bias error caused by the systematic and non-systematic errors and the unbounded position 

errors is a result of the rotating speed's integrative nature. In an attempt to correct the flaws discovered in each system, a 

Kalman filter was implemented. The Kalman filter predicts the mobile robot's position using the accelerometer reading, then 

compares it to the measurement provided by the odometry and assigns a gain value to the predicting measurements to update 

the estimation. The presented method shows a reliable level of position estimation and a remarkable reduction in the error of 

mobile robot position error. The proposed method in this paper was provided only for mobile robot navigation in general and 

especially for the indoor environment, and without any outward position data from an absolute position measuring system, the 

position estimation was done. For both simple and difficult paths, the suggested method's position error is less than (0.2 m), 

which is an appropriate level. For future improvement to the proposed method, a gyroscope sensor will be used to improve the 

heading angle estimation, and the position error will be decreased. 
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