ON M- Hollow modules

Layla H. Al Omairy*

Received 1, March, 2009 Accepted 10, November, 2009

Abstract:

Let R be associative ring with identity and M is a non-zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.

Key words: Maximal Submodule, Small Submodule, Hallow Module, Projective Module and Lifting Module.

Introduction:

Let R be an associative ring with identity and M be a non-zero unitary left module over R. A submodule N of a module M is called small submodule of M denoted by N << M, if $N+L \neq M$ for any proper submodule L of M [1]. M is called hollow module if every proper submodule of M is small submodule [2]. A proper submodule N of a module M is called a maximal submodule in M if whenever K is a submodule of M with N< K then K= M .

A module P is called projective R-module if for every epimorphism $\beta: B \rightarrow C$ and every homomorphism $\psi: P \rightarrow C$ there is a homomorphism $\lambda: P \rightarrow B$ with $\psi = \beta \lambda [1]$.

Note that if P is local projective module then every maximal submodule in P is a small submodule of P [3] .

In this paper we introduce the notation of M-hollow module that is a module in which every maximal submodule is small submodule. And we discuss some basic properties of this concept

Further more we introduce in section 3 the notation of M-lifting module and

study the main properties of this modules.

1- M - hollow module

In this Section we introduce the concept of M-hollow modules and study the basic Properties of this type of modules

Definition 1.1

A non -zero module M is called M-hollow module, if every maximal submodule of M is small submodule of M.

It is clear that every hollow module is M-hollow.

In the following proposition we give some of the basic properties of Mhollow modules

Proposition 1.2

Let M be a finitely generated module, then M is M-hollow iff M is hollow.

Proposition 1.3

Epimorphic image of M-hollow module is M-hollow .

<u>Proof</u>: Let M be M-hollow and let $f: M \rightarrow M^{\setminus}$ an epimorphism with M^{\setminus} . Suppose N^{\setminus} be a maximal Submodule of M^{\setminus} , Now $f^{-1}(N^{\setminus})$ is maximal

^{*}Civil Eng. Dept / College of Eng. / Baghdad Univ. Iraq

Submodule of M Since other wise $f^{-1}(N^{\setminus})=M$ and hence $f(\ f^{-1}(N^{\setminus}))=M^{\setminus}$ then $N^{\setminus}=M^{\setminus}$ which is contradiction with $N^{\setminus}< M^{\setminus}$ thus $\ f^{-1}(N^{\setminus})$ is Proper submodule therefore $\ f^{-1}(N^{\setminus})<< M$ and hence $f\ (f^{-1}(N^{\setminus}))<< f(M)$ this means $N^{\setminus}<< M^{\setminus}$.

Corollary 1.4

Let M be a module . If M is M-hollow module then M/N is M-hollow for every proper submodule N of M .

Proof: Let N be a proper submodule of M-hollow module M. Let $\pi: M \to M/N$ be a natural epimorphism then M/N is M-hollow module.

Proposition 1.5

Let K be a small submodule of a module M. If M /K is M-hollow module then M is M-hollow.

<u>Proof</u>: _Suppose M / K is M-hollow with K << M and Let N a maximal submodule of M with M=N+L where L ≤ M then M /K = (N+K) / K implies M /K=((N+K) / K)+(L+K) / K), N+K/K is proper submodule of M/K to show N+K/K is maximal in M/K. Suppose N+K/K< J/K ≤ M/K thus J/K = M/K(since N is maximal in M which is means J=M). Then N+K/K is small in M/K and hence L+K/K =M/K then L+K=M but K << M then L=M.

Let M be a module . If M is M-hollow module then M/N is M-hollow for every proper Submodule N of M .

<u>Proof</u>: Let N be a proper submodule of M-hollow module M . Let $\pi: M \to M/N$ be a natural epimorphism then M/N is M-hollow module .

Proposition 1.6

Let M be a module then M is M-hollow and finitely generated module If and only if M is cyclic and has unique maximal submodule.

Proof: Let M be finitely generated M-hollow then $M = Rx_1 + Rx_2 + \cdots + Rx_n$, $x_i \in M$, $i=1,2,\cdots,n$.

If $M \neq Rx_1$ then Rx_1 is proper submodule of M thus by [1,prop.2.3.11,p.28] $\exists N$ maximal submodule of M s.t $Rx_1 < N$ but M is hollow so N << M then $Rx_1 << M$ then $M = Rx_2 + Rx_3 + \cdots + Rx_n$

So we delete the Summand one by one until we have $M=Rx_i$ for Some i, then M is cyclic module.

Suppose M_1 , M_2 are two distinct maximal submodules then $M=M_1+M_2$ but M is M-hollow Thus $M=M_1$ or $M=M_2$ which is contradiction . The Converse is clear .

Lemma 1.7

Let M be M-hollow module which has a maximal submodule K then RadM=K.

Proof: Let L be a nother maximal submodule in M ,then K+L =M, But M is M-hollow

then K=M which is contradiction with maximality of K, therefore RadM = K

An R- module M is called local module if M has a unique maximal submodule N which contains all proper submodule of M [2].

Proposition 1.8

Let M be a local module then M is M-hollow and cyclic .

Proof: Suppose that M is a local module, then it has a unique maximal N which contain all other submodule of M. Let $w \in M$ with $w \notin N$ then Rw submodule of M. If $M \neq Rw$ then $Rw \leq N$ then $w \in N$ this is a contradiction, then Rw = M and hence M is cyclic, Now if N+K=M for some K < M then $K \leq N$ then $M=N+K \leq N$ then M=N which is a contradiction, then K=M, then N < M hence M is M-hollow.

Proposition 1.9

Let M be a module, M is M-hollow and RadM \neq M if and only if M is M-hollow and cyclic

Proof: Let M be a M-hollow module with Rad M≠ M, then M has a maximal submodule and by (Lemma 1.7) RadM is the unique maximal of M and M is M-hollow therefor RadM<<M and M\RadM is a simple module thus cyclic then $M\RadM=(m+RadM)$ for some $m\in M$ (we claim that M=Rm). Let $w \in M$ then $w + RadM \in M \setminus RadM$ hence there is $r \in R$ such that w+RadM=r (m+RadM) $= r m + RadM i.e w - r m \in RadM thus$ w-r m = y for some $y \in Rad M$ thus $w= y + rm \in Rm + Rad M$, hence M=Rm+RadM . But RadM<<M then M=Rm.

Conversely, since M is cyclic then M is finitely generated and thus Rad $M \neq M$.

Proposition 1.10

Let M be a module, M is M-hollow if and only if RadM is a small and maximal in M.

Proof: Let RadM be a small and maximal submodule of in M. To proof M is M-hollow, let L be a maximal submodule of M, therefore M=L+RadM. But RadM is small thus L=M which is contradiction, this imply Rad M is the unique maximal submodule of M & small thus M is M-hollow module. The converse is clear by (1.6)

Definition 1.11 [3]

A pair (p,f) is a projection cover of a module M in case P is a Projective module $f:P \rightarrow M$ where f is an epimorphism and ker f << P. (we call P itself a projective cover of M)

Proposition 1.12

Let $f:P \rightarrow M$ be aprojective cover of M, if M is a M-hollow module then P is a M-hollow.

<u>Proof</u>: Let M be a M-hollow module and since $f:P \rightarrow M$ is epimorphism then P/kerf is isomorphic to M and hence it

is M-hollow and kerf << P, thus P is a M-hollow module(by prop. 1.3 & 1.4).

We need the following Lemmas.

Lemma 1.13 [4]

If P is a projective module, then P is a local module if and only if End(P) is a local ring.

Lemma 1.14 [4]

Let M be a module, M is a local module if and only if RadM is a small and maximall in M.

Now we can prove the following proposition .

Proposition 1.15

Let P be a projective module then the following is equivalent:

- (1) P has a small and maximal submodule.
- (2) Rad P is a small and maximal submodule in P.
- (3) P is a local module.
- (4) End (P) is a local ring.
- (5) P is M-hollow
- (6) P is a projective cover for a simple module.

Proof:

 $(1)\rightarrow(2)$

Let N be a maximal and small submodule in P, then Rad $P \le N$. Moreover $N \le P$ then $N \le P$ and hence N = Rad P.

 $(2) \to (3)$

P is a local module (1.14)

 $(3)\rightarrow (4)$

Since P is a local projective module then End (P) is a local ring

 $(4) \to (5)$

Let N be a maximal submodule in P. We must show that N<P.

Now, since P is a projective module and End (P) is a local ring then P is a local module (1.12) and hence P is a hollow module. Thus N<<P.

 $(5) \to (6)$

Since P is a projective module then Rad P \neq P, i.e., P has a maximal submodule, say N. Now, P/N is a simple module.

Let $\pi: P \rightarrow P/N$ be the natural epimorphism. We have ker $\pi = N$ and

N<<P by (4) then π is a projective cover for P/N.

 $(6) \rightarrow (1)$

Let P be a projective cover for a simple module , say M. So there exists an epimorphism $g:P \rightarrow M$ such that kerg<<P. We only have to show that kerg is a maximal submodule in P. By first isomorphism theorem P/kerg \cong M and M is a simple module then P/kerg is also a simple module and this implies that kerg is a maximal submodule in P.

2- M-lifting module:

Recall that a module M is called lifting if for any submodule N of M, there exist submodules A,B of M such that $M=A\oplus B$, $A\leq N$ and $N\cap B\leq S$

In the following we introduce M-lifting modules and give some properties of this kind of modules.

Definition 2.1

An R-module M is called M-lifting if for any maximal submodule N of M , there exist submodules A , B such that $M=A\oplus B$ with $A\leq N$ and $N\cap B<< B$.

We easily prove the following **Remark 2.2**

An R-module M is M-lifting If and only if for any maximal $N \le M$ there exist A, $B \le M$ such that $M = A \oplus B$ with $A \le N$ and $N \cap B << M$.

It is clear that lifting module is M-lifting. The following proposition is give characterization of M- lifting modules.

Proposition 2.3

Let M be an R-module the following statements are equivalent.

1- M is M-Lifting

2- Every maximal Submodule N of M , N can be written as $N=A\oplus B$ and A is a direct summand of M and B << M

3- For every maximal submodule N of M there exists a direct summand K of M such that $K \le N$ and N/K << M/K .

Proof: (1) \Rightarrow (2) Let N be maximal submodule of M. By condition (1) there exist submodules K, H of M such that M= K \oplus H with K \leq N and N \cap H<< M. Since N=N \cap M So, N=N \cap (K \oplus H) = K \oplus (N \cap H). Assume A=K, B=N \cap H then N=A \oplus B where A is direct summand of M and B<< M.

Assume K=A, so K is a direct summand of M.

To prove N / K << M / K Let Π : M \rightarrow M/K be the natural Projection . Since B<< M then $\Pi(B)$ << M / K [1]

We claim that $\Pi(B) = N/K$. To show that let $x \in \Pi(B)$. so $x = \Pi(b)$ for some $b \in B$, Hence $x = b + k \in N / K$ because $B \subseteq N$, thus $\Pi(B) \subseteq N / K$.

Now if $x\in N/K$, then x=a+b+k, where $a\in A$, $b\in B$. But A=K, hence $x=b+k\in \Pi(B)$, then $N/K\subseteq \Pi(B)$, thus $N/K=\Pi(B)$ and hence N/K<< M/K

(3)⇒(1) Let N be a maximal submodule of M, by (3) There exists a direct summand K of M such that K⊆N and N/K<< M/K . This implies that M = K⊕H for some submodule H of M . To show N∩H << M, since N=N∩M, then N = N∩(K⊕H) = K ⊕ (N∩H) (moduler Low) . But M= K ⊕ H then M / K \cong H. Let g be an isomorphism, g: M / K \rightarrow H which is defined by g

g. W/ $K \rightarrow H$ which is defined by g (m + K) = h, if m = k + h where $k \in K$, $h \in H$. We claim that $g(N/K) = N \cap H$, let $x \in N / K$ then

where $n \in \mathbb{N}$, since x = n+k $n \in N \subset M = K \oplus H$, $n=k_1+h_1$ where $k_1 \in K$, $h_1 \in H$ and so g(n+K) = $g(k_{1+}h_1+K) = h_1$ but $h_1= n-k_1$ and $k_1 \in$ hence $h_1 \in N \cap H$, then $K \subset N$ g (N / K) \subseteq N \cap H . Now , Let d \in $N \cap H$, then $d \in H$ and g(d + K) = g(0 + d + K) = d then $d = g(d+K) \in g$ then $N \cap H \subset g(N/K)$ thus g (N/K) $(N / K) = N \cap H$, but N / K < M / Ktherefore $g(N/K) \ll H$ i.e $N \cap H \ll H$ hence $N \cap H \ll M$.

It is known that every hollow module is lifting module [6]. To generalize this statement we give the following proposition.

Proposition 2.4

Every M-hollow module is Mlifting

Proof

 $N \leq M$ be maximal, if Let $N \neq M$, then $N \ll M$ and since $N=\{0\} \oplus N$ thus by definition 3.1, We get the result.

The converse of proposition 2.4 is not true in general as in the following example.

Example

Z-module, Let M be $M=Z_2\oplus Q$, $N = \{0\}\oplus Q$ is a unique maximal submodule of M, then it clear that M is M-lifting but not M-hollow.

References:

- 1.Kasch F.1982. Modules and Rings, Academic Press Inc. London. No.(17), P.208.
- 2. Felury P.1974. Hollow Modules and local Endomorphism Rings, Pac. J .Math., 53, 379-385.
- 3. wisbauer R., 1991, Foundations of Module and Ring theory, Gordon and Brtach Reading. Vol.(3). P. 351.
- **4.**Ali K. M., 2005, Hollow Modules And Semi Hollow Modules, Thesies College of science ,University of Baghdad.
- **5.**keskin D., 2000 , On Lifting Modules ,Comm. In Algebra, 28(7), 4327-4340.
- 6.Keskin D. and Tribak R. On lifting Modules and weak Lifting modules, Kyungpook Math. J 45 (3), 445-453.2005.

حول المقاسات المجوفة من النوع M ليلى هاشم هلال العميري*

*جامعة بغداد / كلية الهندسة / قسم الهندسة المدنية

الخلاصة:

لتكن R حلقة تجميعية ذات عنصر محايد وليكن M مقاسا احاديا غير صفري ايسر معرف على R . يقال ان المقاس M مجوف من النوع M اذا كان كل مقاس جزئي اعظم من M يكون مقاسا جزئيا صغيرا في M. في هذا البحث سندرس خواص هذا النوع من المقاسات.