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Abstract 
n this paper , we consider the problem of estimating the regression 

parameters in a multiple linear regression model , when the 

multicollinearity is present under the assumption of normality , we 

present two types , empirical Bayes and Bayes . One of them shrinks the 

least squares (LS) estimator towards the principal  component .The second 

type is a hierarchical Bayesian model . A simulation    example is given .                                                                                       

  

Introduction  -1 
hrinkage estimation in multiple regression has been interested in  a 

topic of  since ridge regression was introduced by Horel and kennard 

(1970) 
[4,2]

 . The first suggestion by James and stein (1961) , 

proposed the so-called ridge regression method which is unaffected by the 

multicollinearity among the many independent variables 
[7,6]

 . There are 

various another for ridge regression , e.g Sclove (1968) and Baranckik 

(1973) , have justified Shrunken estimators over least squares on grounds 

of reduced mean squared error 
[7]

 . A more general method called 

continuum regression has been proposed by Stone and Brooks (1990) 
[7]

 . 

This procedure depend on a parameter , say γ
 ’
 which is recommended to be 

cross validation 
[7]

 . However , except for two special values of γ , (0 and 1) 

. Sundberg (1993) 
[8]

 and Bjorkstrom and Sundberg (1996) 
[1] 

 have shown 

that it is equivalent to ridge regression . The Bayesian Theorem has been 

employed successfully  by Lindley and Smith (1972) 
[6]

 , Novick etal , 

(1972) 
[6]

 , Zellner (1971) 
[10]

 , Box and Tiao (1973) 
[9]

 , and Goldstain and 

Smith (1974) 
[9]

 , to name a few . In most of these treatments , shrinkage is 

towards zero . Tatsuya and Srivastave 
[9]

  has been improved empirical 

Bayes for ridge regression estimation by three methods . 

This article deals with Bayes and empirical Bayes for estimating ridge 

regression coefficients in a normal multiple linear regression model under 

multicollinearity by the simulation for Normality data  . 

The ridge regression estimator and multicollinearity in section 2 with 

normal distribution for error term . In section 3 , the Bayes case is 

 I 

S 
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developed with exchangeable normal prior on the ridge regression 

coefficients  in section 4 , the empirical Bayes treatment is develop in 

section 5 , contain some results of the simulation and the final section 

represents a general discussion .                                                                      
     

 

Ridge regression -2 

 
he ordinary least squares (OLS) method faced problems in 

estimation accuring when there’s a great correlation between 

independent variables which called Multicollinearity problem .           

Horel & Kennard (1970) 
[4]

 suggest a method to treat these problems which 

called Ridge regression (R.R) , which first it subtract the dependant 

variable and independent variables from the arithmetic mean for each 

variable , so Ridge regression estimators will be as following :-                    

                                                                               
 

    

*ˆ
R = ( x

*/
 x

*
 + kI )

-1
 x

*/
 y      ………………...(2.1)  

     
Where (kI) represents  Multiply constant value (K) by unit matrix  

This method briefed of addition of the constant value (k) to the diagonal 

elements of the matrix ( x
*’ 

x
*
 ) and the method named ordinary Ridge 

regression (ORR) , Horel declared the possibility to obtain the most 

accurate estimations by adding different values to the diagonal  elements of 

the matrix ( x
*’ 

x
*
 )  and this method called Generalized Ridge regression 

(GRR). Then 
*ˆ

R estimators will be as following :-                            

                                                                      

 
*ˆ

R  = ( x
*/
 x

*
 + k )

-1
 x

*/
 y        ……………….…...(2.2) 

 

T 
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And some of the method properties are :- 
1- Ridge regression estimators will be biased as following :- 

 
*ˆ

R = ( x
*/
 x

*
 + kI )

-1
 x

*/
 y 

)] u+  β 
*

( x 
*/

x 
1-

+ kI ) 
*

x 
*/

=  [(x         
] u  

*/
x 

1-
+ kI ) 

*
x 

*/
+ ( x β 

*
x 

*/
x 

1-
+ kI ) 

*
x 

*/
=  [(x         

= 0 uE     
….………………..(2.3)            β 

*
x 

*/
x 

1-
+ kI ) 

*
x 

*/
x(  ) = R

^*
βE (        

Let   Z = ( x
*/
 x

*
 + kI )

-1
 x

*/
 x

*
  

 
 βZ ) =  R

^*
βE (  

And through above , we notice that biased value is Z . 
 

2- The variance of Ridge regression estimators calculated from the 

following : 
y ]                                

*/
x 

1-
+ kI ) 

*
x 

*/
) = var [( xR

^*
βvar(    

        = ( x
*/
 x

*
 + kI )

-1
 x

*/
 var(y) x

*/
 ( x

*/
 x

*
 + kI )

-1
       .………….…(2.4) 

 
3- The summation of squared error by Ridge regression (RR) is less 

than (OLS) method and as following :- 
 

2
] ) R

^*
β) ] + [ Bias ( R

^*
βvar(= tr [ ) R

^*
β( eMS   

.…(2.5)  βI)-I)(Z-(Z
/
β+ ]  

1-
+ kI ) 

*
x 

*/
x(  

*
x 

*/
x 

1-
+ kI ) 

*
x 

*/
xtr[(  

2
σ=    
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and from above it is clear that (K) value is an increasing function in (K) 

and about the variance , it is a decreasing function in (K), so we accept with 

one limited value of biased , and when biased value increased , variance 

value will be decreased , so it will be less than the summation of the 

squared errors to (OLS) method .When concerning (k) value ,which will be 

added to the diagonal  elements of the matrix ( X
*/ 

X
*
 ) , must be etermined  

We should depend through this paper on Horel method , which said that 

optimum value of (k) calculated according the following formula , when 

using (ORR) method :                                                                     
 

 
              k  s

2
e 

 K =                                               ….………….……..……(2.6) 
    Ls

^
β   Ls

^/
β              

 
And when applying (GRR) method it is possible to find many optimum 

values for (k) according to the following :                             
 

               S
2

e 

  Ki =                                    i = 1 , 2 , ……, k     …………...(2.7)   
                b

2
i 

Bayes Ridge Regression  -3 

 
f the model in standard form as : 

 
 …………………………………..(3.1)                u+  ß X=  y          

  
Such that: 

on  n,……y2,y1n independent observations y be a vector containing   -: y   

the response variable . 
  X :- n*p matrix of observations on (P) predictor and multicollinearity 

between the variables . 
be the vector of the regression coefficients . 

T
) p, ….., ß 2, ß 1ß( -: ß 

I 
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).
2
σror vector , with each  u~N(0,er 1*is the n -:  u 

 
Note that in this model it is assumed that the data have translated to local 

the origin at the grand mean , so that there will be no intercept among the 

regression coefficients .                                                           
There two stages for estimating Bayes Ridge regression :                      

 
-:The first stage  

 
                          The hierarchical model , we have assumed a priori that 

these are independently and identically normally distribute thus , 
 

             
ß /μ , T

2
~N(μ1 , T

2
Ip )              …….………………..…..….(3.2) 

 
Where:  1 = (1,1,……,1)

T
 and IP is the identity matrix of order (p) . 

To complete the hierarchical Bayesian model . we need for determining the 

prior distributions for μ and T
2
 .At this level , μ and T

2
 are assumed to be 

independent a priori and have priors , respectively , p(μ) and p(T
2
) . The 

matrix (X) , the value σ
2
 , and the forms of p(μ) and p(T

2
) are assumed 

known .                                          
 

The second stage  
The posterior density of β conditional on μ and T

2
 is multivariate normal 

N(β
*
,Ω

*
β) with  

β
 *
 = [ Ip – (x

/
 x )

-1
 φ ] b + (x

/
 x )

-1
 φ 1 μ     …………..…..….(3.3) 

 
   Ω

*
β = σ

2
 [(x

/
 x )

-1
 - (x

/
 x )

-1
 φ (x

/
 x )

-1
 ]     ……………….…(3.4)  

 
Where φ = [(x

/
 x )

-1
 + (T

2
/σ

2
) Ip ]

-1
             ….…………..…..(3.5) 

 
b is the ordinary Ridge regression (ORR) or Generalized Ridge regression 

(GRR) if β is of best variance value . 
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 [9]Empirical Bayes Ridge regression  -4 
Suppose that , the prior distribution  

 

     β~Np ( H
t
2 α , σ

2
 λ Ip )                 ………………….………(4.1) 

Such that : 

  λ is unknown 

  H2 is an orthogonal matrix  

 

 Then posterior distribution  

 

 β / β
^
 ~ Np [β

^
 (λ , α ) , σ

2
 (x

/
 x + λ

-1
 I )

-1
 ]      ……..………..(4.2) 

 Where  β
^β

 (λ , α )  is the Bayes estimator of β given by :- 

 

 

β
^β

 (λ , α ) =  (x
/
 x + λ

-1
 I )

-1
 x

/
 x ( β

^
 - H

/
2 α ) + H

/
2 α 

 

                  = β
^
 - ( I + `λ x

/
 x )

-1
 (β

^
 - H

/
2 α )    ……...……….(4.3) 

Since α and λ are unknown , they need to be estimated . 

First , α may be estimated by the weighted least squares estimator : 

 

         α
^
 = ( H2 x

/
 x H

/
2 ) H2 x

/
 x β

^
             ……..…..………..(4.4) 

 

 Which can be obtained by minimizing the weighted least squares loss (β
^
 - 

H
/
2 α ) x

/
 x (β

^
 - H

/
2 α ) . We see that α

^
 = H2 β .                      

Since the principle component (PC) regression estimator β
^
 
pc

 of β is given 

by :                                                                                                             β
^
 

pc
 = H

/
2 H2 β

^
      ……………………………..………(4.5) 

 We observe that H
/
2 α = β

^
 
pc

 substituting H
/
2 α = β

^
 
pc

  into β
^β

 (λ , α )  , we 

get the estimator : 

  β
^β

 (λ , α
^
 ) = β

^
 - ( I + `λ x

/
 x )

-1
 (β

^
 - β

^
 
pc

 )     ………………….....(4.6) 

 A reasonable method to estimate λ is from the marginal distribution of β
^
 - 

using  the sample moments , we propose an estimator which we call an 

empirical Bayes estimator . Let λ
*
 be a root of the equation 
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  (β
^
 - β

^
 
pc

 )
/
 { ( x

/
 x )

-1
 + λ I }

-1
 (β

^
 - β

^
 
pc

 )  = ( p- q-2 ) * s / (n+2) ...(4.7) 

and λ0 is the root of the equation : 

 











qp

i i

qpi
qp

d

dd

1 0

)8.4...(....................2/)2(


 

Then we propose the estimator  λ
^
EB of λ , given by the maximum of λ

*
 and 

λ0 , that is ,  

 

       λ
^
EB  = max ( λ

*
 , λ )                   …………...……………………(4.9) 

substituting α
^
 and λ

^
EB   into (4.3) , we get the empirical Bayes ridge 

regression estimator EB  

 

β
^EB

 = β
^β

( λ
^
EB , α

^
 ) = β

^
- (I+ λ

^
EB  x

/
 x )

-1
 ( β

^
- β

^
 
pc

 )  ……….….(4.10) 

 

Which shrinks the (LS) estimator β
^
 towards to pc estimator β

^
 

pc
 . It is 

known that the principle component estimator and the ridge regression 

estimation are useful in predicting a response variable in the presence of 

multicollinearity . It is interesting to note that both methods of ridge 

regression and principle components are incorporated in the proposed 

estimator β
^β

( λ
^
EB , α

^
 ) .                         
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study :Simulation -5 
 

Simulation is a numerical technique for conducting experiments on a 

digital computer , which involve certain types of mathematical and logical 

models that describe the system behavior .                                         

It is often viewed as a "Method of lost resort " to be used when     

everything else has failed , software building and technical     developments 

have made simulation one of the most widely used and accepted tools for 

designer in system analysis and operational   research .                                 

                                                                     

In this paper (20) observations had been generated for all of  Y , X1 and X2 

with noticing that there is a relationship between the independent   

variables , where :                                                                                            

  

          Y ~ N(0,1) 

X1~N(0,1)                   

          X2~N(0,1) + 2X1 

 

  And the results will be as following : 

Ordinary Least squares  -5.1 

 

(OLS) method had been applied without estimation the constant parameter 

and the results of the estimation will be as follow:                     

y = -0.4957 x1 + 0.4354x2                                                                 

           s.d     0.4857154                0.23847   

            t       -1.021                       1.826 

s
2

e = 1.1071  ,  R
2
 = 60.8 %  , F = 0.3326             

             

By noticing the above results , it is clear that the variance for high 

parameter and for a general sample  through (variance errors ,R
2
,F)        

It is not significant although that the significant parameter (β1,β2) which 

estimated by t value , because there is a relationship between the  

independent variables , which is called the multicollinearity  and the 

researcher used Ridge regression method in two cases :                               
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Ordinary Ridge regression -A 

In order to identify on the type of the functional relationship , one value of 

(k) had been added to the main diagonal of the matrix  )( ** xx


  

according to equation number (2 .1)  , where the added value was ( k = 0.5 

) , and according to that it was possible to determine the estimated value for 

the function after adding (k) value where it became in the following shape : 

                                                       

                                      

          y = - 0.1213 x1 + 0.0737 x2 

s.d     0.14257       0.006999            

t      0.8508       10.5300               

s
2

e = 1.078                   

we notice from the above estimation equation that (t) values is not 

significant for (x1) and significant for(x2) . and error variance value 

becomes  s
2
 = 1.078 , and by comparing with the estimation by (OLS) 

method , we realize a noticeable  improvement in model by using Ridge 

approach by increasing the significance of the parameters and decreasing 

the variance despite the bias value which  included in this model .                

                                                              

 

Generalized Ridge Regression -B  

 Generalized Ridge Regression had been applied on the data of this 

research , where different values of k had been added to the main diagonal 

of the matrix  
 

)( ** xx


according to equation (2.2) as shown in the following  

matrix :- 

 

   by using the above values of (K) it   

 
 was possible to estimate the function by using (GRR) and it was as    

following : 
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y
^
 =  0.107 X1+0.0521 X2 

s.d     0.2768          0.2372 

  t      0.3865           0.2196 

s
2
 = 1.0794 

 

We notice from the estimated model above , there is convergence in the 

results between (GRR) and (ORR) , where we notice that the values of ( s
2

e 

, t , s.d ) are very convergent by both methods except the value of 

variable(X2) has been height its value ,despite the decrement of variance in 

both cases by (OLS) method , but depending on variance , we notice that 

(ORR) is better than (GRR) , because it’s variance is lower than (GRR). 

 

Bayes Ridge regression : -5.2 

Bayes approach had been applied according to equations (3.1)-(3.2) and the 

results were at two stages :- 

First stage : through this stage the prior distribution had been determined 

for every parameters , where it had been obtained by partitionate the 

observations into equal groups and through these groups the parameters 

and the variance of the model  will be estimate in both (GRR , ORR) 

methods according to the following table : 

 

 

 

 

 

Table no.(1) shows parameters and variance estimation by 

(GRR) and (ORR) 

 

β1            GRR           β2 β1            ORR            β2 Observations 
-0.0397               0.0459 

 0.1541                0.1418 

1.0273 

-0.0485                 0.0621 

0.23856                0.129098 

1.0271 

β i 

s.d 

s
2
e  

1-5 

-0.2095        -0.2373 

 0.1747          0.1571 

1.4693 

-0.2150             -0.2616 

 0.3500              0.201 

1.4481 

β i 

s.d 

s
2
e 

6-11 

-0.3343              -0.3928 -0.3468                 -0.4343 β i 11-15 
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0.3527                 0.3041 

0.8933 

0.29215                  0.22316 

0.8263 

s.d 

s
2
e 

0.2636                 2.1465 

0.1998               0.1762 

1.6889 

0.2827                   0.1438 

0.32798                 0.1140445 

1.669 

β i 

s.d 

s
2
e 

16-20 

 
 

And through the above table, best model had been selected according to 

minimum of maximum variance to the models which through it the prior 

distribution had been selected. And test had been done according minimum 

maximum (minimax) variance which is the observations 11-

15accordingto(GRR)approach:                                                                       

                                              

β1            ORR            β2 Observations 
-0.3343              -0.3928 

0.3527                 0.3041 

0.8933 

β i 

s.d 

s
2
e 

11-15 

 
and after the prior distribution , we depend the formula no. (3.3)-(3.5)  to 

determine the posterior distribution and the results were as follows :            

      

 

Y= -0.4023X1 – 0.0823X2 

 s.d          0.01132       0.000245                 S
2
e = 0.8933   

 

By noticing the above results , it is shown that the parameters variance is 

low and in general we notice an improvement in the next model for the 

values and the parameters variance .                                                              

                                                              

                                                            EmpiricalBayesRidgeregression -5.3 

 Empirical Bayes had been applied according to equation (4.10) and the 

results were as follows :                                                                               

 
y = 0.411018 X1 – 0.147097 X2 

s.d      25.3174         99.3893     ,    s
2

e = 1.16518 
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Through the above results , we notice an increasing in the parameters 

variance value and also the errors variance , compare to Bayes approach we 

notice that the results we obtain is better than Empirical Bayes results and 

through the variance and errors variance , so Bayes approach is better than 

Empirical Bayes , because the determination the prior distribution i.e, the 

prior information on the phenomena before determine the posterior 

distribution for the phenomena and it could not control on phenomena 

through sets of data in a certain moment .                                                       

                   

 

 

 

 

 

 

 

 

 

                                                                         

                                                                 

Conclusions :-6 

 

Through the empirical study it shows the following : 

 

1- (OLS) method , displayed not significant results , because the model 

suffer from the problem of multicollinearity , and (GRR,ORR) had been 

applied and from the results depend on errors variance in both methods , 

(ORR) is better than (GRR) , because of (ORR) variance decrement 

compare to (GRR) .                                                                        

                                                                      

2 – Bayes approach for Ridge regression (ORR) and (GRR) showed better 

results than the ordinary method , because it depends on prior distribution 

to the phenomena and then the posterior distribution , and showed that 

(GRR) Bayes is better than (ORR) Bayes in the stage of  

determining the posterior distribution . 
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3- Empirical Bayes didn’t showed good results , because increasing the 

value of parameters variance and errors variance .[ and by iterative   

empirical Bayes approach it is possible to obtain results near than Bayes 

approach ] 
3
 so , (GRR) Bayes approach is the best in estimation . 
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