
Engineering and Technology Journal 40 (02) (2022) 311-321

Engineering and Technology Journal
Journal homepage: https://etj.uotechnology.edu.iq

 311
http://doi.org/10.30684/etj.v40i2.2160
Received 08 May 2021; Accepted 18 June 2021; Available online 25 February 2022
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

The Proposition of Three Approaching Ways to Implement Tan-sigmoid
Activation Function in FPGA

Manal T. Ail*, Bassam H. Abed

Electrical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.
*Corresponding author Email: eee.19.36@grad.uotechnology.edu.iq

H I G H L I G H T S A B S T R A C T
• The challenge is building a tan-sigmoid

function in hardware with efficient
performance.

• Proposed three approaches: tan-sigmoid
using the log approximation, the
segmentation, and the polynomial methods.

• These approaches are efficiently
implemented in the Xilinx Spartan-3A
xc3s700a-4fg484 platform.

• The resource utilization is about (1%) for
slices and LUT.

 Hyperbolic tangents and Sigmoid are commonly used for Artificial Neural
Networks as activation functions. The complex equation of the activation function
is one of the most difficult to be implemented in hardware because containing
division and exponential, which gives non-linear behavior. The challenge is
building a tan-sigmoid function in hardware with efficient performance.
Therefore, this work will focus on implementing the activation function in FPGA.
To overcome this challenge, a different approach was proposed in this paper,
efficient hardware-implemented for tan-sigmoid in terms of the number of slices
occupied and the resources utilization are designed. In this work, three approaches
are proposed: tan-sigmoid using the log approximation method, tan-sigmoid using
segmentation method, and tan-sigmoid using the polynomial method. These
approaches are efficiently implemented in the Xilinx Spartan-3A xc3s700a-4fg484
platform. Hardware synthesis and FPGA implementations illustrate that the
proposed tan-sigmoid only takes up to 1% of logic resources in the first and second
proposed approaches. While, 4% showed in the third proposed approach, with the
best efficiency and significantly confirmed the lowest implementation costs than
the traditional approach.

A R T I C L E I N F O

Handling editor: Ivan A. Hashim
Keywords:
Neural Network
 Field programmable gate array (FPGA)
Activation function
Tan- sigmoid

1. Introduction
Neurons in the human brain have side connections with neighbors to know behavior patterns for the neural network [1].

Artificial Neural Networks (ANNs) are influenced by neural biological network architecture. The online training of ANN is
similar to the neuroplasticity function, which is represented as the capacity of the brain to reorganize the neural network through
the reform of neuronal ties. As explained, the biological neural network is educated and developed in our minds by new concepts
[2]. The goal of building intelligent systems, in addition to the developments in high-speed computing, has shown that ANN is
capable of mapping, modeling, and classifying non-linear systems [3,4].

In several fields, artificial neural networks were commonly used. Until now, most work performed in this field involved
software simulations, the investigation of capabilities of ANN models, or new algorithms. ANNs can solve various problems in
pattern recognition, signal processing, control systems, etc. But hardware implementation is also essential for applicability and
neural network [5, 6].

ANNs typically use complex applications for training periods and different training passes in the training operation [7]. Due
to the high latency of host processor preparation, software implementation of the ANNs for those applications is ineffective.
Training operation can be accelerated by developing customized hardware, parallel, pipeline, and versatile bit-width data
trajectories [8]. Analog or digital systems can be used to implement neural networks. Although the analog systems are precise,
they are hard to use and have weight storage issues. Digital implementation is more common because they have greater precision,
better repeatability, lower noise sensitivity, better testing, greater durability, and compatibility with other types of preprocessors
[5,6]. The digital implementations hardware in NN is classification as digital signal processor (DSP)-based, Application Specific
Integrated Chip (ASIC)-based, and Field programmable gate array (FPGA)-based implementations. The DSP-based

https://etj.uotechnology.edu.iq/
http://doi.org/10.30684/etj.v40i2.2160
http://doi.org/10.30684/etj.v40i2.2160
http://creativecommons.org/licenses/by/4.0
mailto:eee.19.36@grad.uotechnology.edu.iq
https://orcid.org/0000-0002-6185-2237

Manal T. Ail & Bassam H. Abed Engineering and Technology Journal 40 (02) (2022) 311-321

312

implementation is sequential and therefore does not maintain the layer of neurons' parallel architecture. Implementations of ASIC
do not enable users to re-configure. Thus, FPGA is the appropriate hardware for implementing neural networks because it
conserves parallel neuron architecture in the layer and provides flexibility for reconfiguration [9].

Since the early 1990s, the hardware implementation of an ANN with field programmable gate arrays has been an important
field of applied research for various domains. At first, the only widely accepted method was the use of Hardware Description
Languages for VLSI circuits, particularly very large integration circuits (VHDL) or Verilog. Today, engineers can build, simulate
and validate a design using modern Electronic Design Automation software and test complex systems easily with high confidence
in the first time proper operation of the final product [10]. In recent years researchers have been trying implementation of an
efficient tan-sigmoid on FPGA. Biradar et al. [8] showed that the hardware implementation of a multi-layer feed-forward neural
network based on creating custom IPs is designed using the system-on-chip design methodology on Virtex 5 XUPV5-LX110T.
Using of System-on-Chip design methodology enables design reuse while improving the performance metrics. Results for
Hyperbolic tangent activation function approximation with ε = 0.04. (As the number of slice LUTs is 2%, the number of Slice
Registers is 2%, the number of Bonded IOBs is 1%, the number of Block RAM/FIFO is 1%, the number of DSP48Es is 4%, and
the number of memory is 1% KB).

The Xilinx Coordinate Rotation Digital Computer (CORDIC) has been used to approximate the Log sigmoid transfer
function on FPGA. The architecture can be used up to 266,429 MHz with a clock rate. FPGA chip statistics and results of the
experimental study for practical use were shown as the number of Slice register = 28%, the number of Slice LUT = 57%, the
number of Fully used LUT-FF pair = 63%, the number of Bonded IOB = 48%, RAM and the number of FIFO block = 0%,
the number of BUFG/ BUFGctrl = 3%, and the number of DSP48E1s is 1%) [11]. Mitra and Chattopadhyay created the Inverse
Definite Minimum Time function (IDMT) and tested it using XILINX Spartan-3AN FPGA with a very simple ANN- model.
The Sigmoid activation has played a vital role in the design and implementation of the ANN .where the result is (the number of
4 input LUT is 1.56%, the number of Slices is 2.54%, the number of I/O Pin is 1.19%, the number of 18x18 Mult is 6.25%,
and the number of 16bit RAMB is 0.00%) [12]. The idea of the proposed work is to mix up the second-order non-linear function
(SONF) and the differential look-up table (d LUT) to reduce the variance between hardware-based and software-based ANN in
sigmoid function outputs a maximum of ‘’0.0022’’. Such accuracy is ten times the one using SONF and two times greater than
that of using traditional LUT with ‘’16kbits’’ ROM [13]. P. Ramachandran et al. suggested replacing rules with a swish, which
improves classification accuracy, which is written as f (x) = x sigmoid (βx) simply replacing ReLUs with Swish units enhances
Image Net’s top-1 rating accuracy by ‘’0.9% ‘’for Mobile NASNet-A and ‘’0.6%’’ for Inception-ResNet-v2. Swish simplicity
and its similitude with the ReLU enable the replacement of ReLUs by Swish units in any neural network by learners.
Ramachandran et al. and Sawaguchi and Nishi [14,15] proposed a deterministic dropout algorithm increase efficiency for the
Neural Network Learning accelerator, a novel implementation on Xilinx Zynq-7020 (the resource utilization in LUT is 66%, in
Register is 47%, in DSP is 51%). Mish has been suggested as a novel activation function [16], which can be: 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 . 𝑡𝑡𝑡𝑡𝑡𝑡ℎ
(soft plus (x)), Experiments show that Mish is more efficient in many deep networks across challenging datasets than both ReLU
and Swish, along with other regular activation functions. For instance, the Top 1 test accuracy of the Mish network was increased
by ‘’0.494%’’ and ‘’1.671%’’, compared to the same CIFAR100 classification network in Squeeze Excite Net- 18. Sarić et al.
presented worked automated system based on a high-precision machine learning algorithm on FPGA chips developing an
automated system for diagnosis of epileptic seizures using MLP ANN with the best data accuracy developed in Tensor Flow
framework and further tested in MATLAB that makes it compact and easily useable in daily diagnostics in healthcare facilities
can successfully be implemented. The high-efficiency automated device has achieved accuracy ‘’95.14’’ percent, which uses the
total hardware footprint of ANN implementation, at ‘’11’’ percent. Cyclone IV E series board tested in FPGA Altera D2-115
[17]. Based on the neural network design, Koyuncu et al. [18] presented the hydrogen energy system for running on VHDL Field
programming gate chips with 32-bit floating-point IEEE-754-1985 and synthesized to use the programming tools of Xilinx ISE
support the Virtx-7 FPGA chip (VC7VX485T, Package FFG 1761 2 speed) Program 14.7. (As usage is reduced number of
registers for slices is 17%, the number of LUTs for Slice is 35%, the number of DSP48EL is 1%, the number for IOBs is 27%,
and the high frequency of the clock 281.702 MHZ). Zhang et al. [19] proposed an efficient hardware implementation system to
identify objects for optical remote sensing. First, we design the hardware CNN-based model, which establishes the basis to map
the network efficiently into FPGA, implemented on a Xilinx ZYNQ xc7z035 FPGA. (The resource utilization in LUT is 48.4%,
FF is 31.7%, Dsp is 21.3%, Bram is 74%). This paper aims to design and implement an efficient tan- sigmoid in a different
approach with the best efficiency and significantly confirmed the lowest implementation costs than the traditional approach.

The paper is organized as follows: the second section explains the theoretical part of the non-linear activation function in
the artificial neural network. The third section describes the approximation method for the log sigmoid function. In the fourth
section, the proposed work is presented. The fifth section presents the results and compares the proposals and previous works.
Finally, section sixth introduces the conclusion.

2. Activation Function
ANN consists of several architectural categories. Many variables must be considered to solve a specific problem in the

application of the ANN since the ANN is only excellent when the selection exactly matches the target problem. Multiple feed-
forward networks consist of the input layer, hidden layer, and output layer, one of the popular ANN classes. Each neuron of the
previous layer is passed to the next layer. Neuron determines the amount of each one it receives. Each neuron's output value is
determined by its activation function. The general structure of the artificial neural multi-layer network is shown in Figure 1 [20].

Manal T. Ail & Bassam H. Abed Engineering and Technology Journal 40 (02) (2022) 311-321

313

The primary neuron structure is shown in Figure 2 that (𝑝𝑝1,𝑝𝑝2𝑝𝑝𝑝𝑝) are inputs , (𝑤𝑤11,𝑤𝑤12𝑤𝑤1𝑅𝑅) are the weight associated
and the bias is b, and f is the transfer function [12].

The challenges during artificial neural network implementation include the non-linear functions used in the models of the
neural networks [12]. The concept of a hardware implementation for neural networks is not as easy to perform sigmoid functions.
Direct implementation is very costly for non-linear Sigmoid functions [21]. because of the unlimited exponential series and
division [22]. A challenging task faced by designers is efficiently implementing the sigmoid feature in the FPGA [23] Several
methods were suggested to solve these problems to simplify implementation [24]. One of these is the approximation log sigmoid
method.

3. Approximation log sigmoid method
The log sigmoid curve is an S-shape curve that varies between 0 and 1. The log sigmoid is shown in Figure 3. In hardware,

log sigmoid cannot simply apply since it contains an infinite sequence of exponentials. Computationally simplified sigmoid
functional alternatives are, in most cases, used approximate sigmoid functions is a practical approach with simple FPGA designs
called Piece-wise linear approximation (PLW). This defines a combination of y = ax + b lines used for approximating log
sigmoid function, a series of shifts, and operations used to perform the sigmoid functions [23]. The PWL approach approximates
the sigmoid function by dividing it into five linear parts, called segments. Table 1 represents the log sigmoid function segments.
The approximation precision can be achieved efficiently by increasing the number of segments. Still, the hardware
implementation will be more complicated, showing the approximation function performance compared with the Log Sigmoid
function [20].

4. The Proposed tan-sigmoid design
Three approaches have been proposed for achieving efficient tan-sigmoid on FPGA. These approaches are tan-sigmoid

design using approximation log-sigmoid method, tan-sigmoid design using look-up table method, and tan-sigmoid design using
the polynomial method.

4.1 Proposed tan-sigmoid design using Approximation log sigmoid method
This approach proposed a solution to the non-linear activation function problem. The practical tan-sigmoid function with

the FPGA design approach has been considered for implementing the Artificial Neural Network model. However, it is
complicated to achieve direct implementation of this function and very costly because containing exponential, which gives non-
linear behavior .They are not included in FPGA library blocks and are challenging to synthesize to suit every form of parallel
neural network. Moreover, this activation function contains a division operation that VHDL can apply, but still far from area
efficient and speed to be successfully incorporated into this design.
Tan- Sigmoid and Log -sigmoid activation functions are widely used in artificial neural networks. That which can be represented
in equations (1) and (2) [18] [25] [22].

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1
1+𝑒𝑒−𝑥𝑥

 (1)

𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
 (2)

 Tan-sigmoid is the S-formed curve that ranges from -1 to 1, whereas the log -Sigmoid is different in the range of 0 to 1.
Therefore, the tan-sigmoid equation in (2) can be rewritten as follows to simplify the equation and reduce the hardware cost and
find a relationship between tan-sigmoid and log sigmoid:

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) = 𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑥𝑥)
𝑐𝑐𝑐𝑐𝑐𝑐ℎ (𝑥𝑥)

= 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
 (3)

= 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥+𝑒𝑒−𝑥𝑥−𝑒𝑒 −𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
 (4)

= 1 − 2𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+1
 (5)

By splitting the numerator and denominator by e-x, (5) becomes:

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1 − 2
𝑒𝑒2𝑥𝑥+1

 (6)

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(2𝑥𝑥) − 1 (7)

Tan-sigmoid can therefore be represented using log-sigmoid. This work used an approximation log sigmoid method for tan-
sigmoid where the tan curve was divided into five parts, as shown in Table 2. The proposed implementation offers high precision
and effective hardware implementation simultaneously. Figure 5 shows the proposed FPGA hardware implementation using the
approximation method.

The significance of this proposal is to substitute multiplication by simple shift operations such as, if X is the input, then X is
shifted one time to the left become (2X). The conditions are added as in Table 2. Two multiplexers were used to choose the

Manal T. Ail & Bassam H. Abed Engineering and Technology Journal 40 (02) (2022) 311-321

314

output according to the conditions set. The selector of the first multiplexer (Mux) is select (00) when the input is less than or
equal -4. While it is select (01) when the input is greater than- 4 and less than or equal to -0.6, select (10) when the absolute
input is less than 0.6, and select (11) when the input is greater than or equal to 0.6 and less than 4. The selector for the second
multiplexer (Mux) chooses (0) when the input is greater than 4. The output is shifted one time to the left, which is multiplied by
the number 2 and subtracted from the one. The shift and add operations can be eliminated and replaced with a simple logic design
by performing a direct transformation from input to sigmoidal output. This technique replaced the multiplication and addition
operations with a simple gate design, resulting in a very small and fast digital approximation of a tan-sigmoid function. Figure 6
shows the result of the proposed tan-sigmoid design using an approximation method. The blue line represents the original tan-
sigmoid function. In contrast, the red line represents the approximate solution for the digital circuit's output. The proposal has
been implemented in MATLAB R2012a and was created that linked with ISE 14.7 Xilinx Spartan-3A and Spartan3AN
xc3s700a-4fg484 FPGA Xilinx, and as shown, the proposed matches the original function.

Figure 1: General artificial neural network multi-
layer structure [20]

Figure 2: General artificial neuron model [12]

Figure 3: Log sigmoid function [20] Figure 4: Output comparison between log sigmoid

function and approximation

Table 1: log sigmoid Approximation

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎
𝑥𝑥 ≤ −8 𝑓𝑓(𝑥𝑥) = 0

−8 < 𝑥𝑥 ≤ −1.6

𝑓𝑓(𝑥𝑥) = �8 − │𝑋𝑋│
64
� − 1

│𝑥𝑥│ < 1.6 𝑓𝑓(𝑥𝑥) = �𝑋𝑋
4

+ 0.5�

1.6 ≤ 𝑥𝑥 < 8 𝑓𝑓(𝑥𝑥) = 1 − �8 −
│𝑥𝑥│
64 �

𝑥𝑥 > 8 𝑓𝑓(𝑥𝑥) = 1

-8 -6 -4 -2 0 2 4 6 8

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
gs

ig
(x

)

Manal T. Ail & Bassam H. Abed Engineering and Technology Journal 40 (02) (2022) 311-321

315

Figure 5: proposed tan-sigmoid implementation on FPGA hardware using an approximation method

Figure 6: The approximant action result on FPGA for the proposed tan-sigmoid

Figure 7: proposed tan-sigmoid implementation on FPGA hardware using the look-up table method

Manal T. Ail & Bassam H. Abed Engineering and Technology Journal 40 (02) (2022) 311-321

316

4.2 Proposed tan-sigmoid design using a look-up table method
Another proposal for tan-sigmoid is to use the look-up table method by dividing the sigmoid function into four linear

segments. From the curve tan sigmoid, notice from the tan that the influencing values are from 0 to 4, after which their value is
stable at 1, and from 0 to -4, they are the same influencing values. Still, they are reversed, and after -4, they are stable at -1.
Therefore, suggest a memory to store the tan-sigmoid magnitude of the values from 0 to 4. Table 3 shows the calculation of the
tan-sigmoid segments. By increasing the number of segments, the exact segmentation can be achieved, and the hardware area
can be further enhanced. The proposed look-up table for a non-linear function is adequate.

The non-linear function outputs for different inputs from (0-4) are stored in the manner of the above table at memory location;
Figure 7 shows proposed FPGA hardware implementation using the look-up table method.

If x is the input, then adding absolute and slicing it only takes 7 bits because the memory address is seven. Then, the
conditions are added as in Table 3. When compared with No. 4, one multiplexer is used to choose the output according to the
conditions set. The selector for multiplexer select (00) when the input is less than or equal -4, select (01) when the input greater
than of 0 and less than or equal 4, select (10) when the input less than 0, and greater than -4 and select (11) when the input greater
than 4. The rounding result of the proposed tan-sigmoid function in FPGA is shown in Figure 8. The proposed design corresponds
to the original function. The original function is represented by the blue line, while the red line represents the look-up table
solution for the digital circuit's output.

Table 2: Tan-sigmoid Approximation

 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

 𝑥𝑥 ≤ −4

 𝑓𝑓(𝑥𝑥) = −1

 −4 < 𝑥𝑥 ≤ −0.6 𝑓𝑓(𝑥𝑥) = �8 −

│2 ∗ 𝑥𝑥│
64 � − 1

 │𝑥𝑥│ < 0.6

𝑓𝑓(𝑥𝑥) = �
2 ∗ 𝑥𝑥

4 + 0.5�

 0.6 ≤ 𝑥𝑥 < 4 𝑓𝑓(𝑥𝑥) = 1 − �8 −

│2 ∗ 𝑥𝑥│
64 �

 𝑥𝑥 > 4

 𝑓𝑓(𝑥𝑥) = 1

Figure 8: The look-up table result on FPGA for the proposed tan-sigmoid

Manal T. Ail & Bassam H. Abed Engineering and Technology Journal 40 (02) (2022) 311-321

317

Figure 9: Curve polynomial for tan-sigmoid

Figure 10: Curve polynomial tan-sigmoid proposed implementation on FPGA hardware

Table 3: Tan- sigmoid look-up table

 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎
 𝑥𝑥 ≤ −4 𝑓𝑓(𝑥𝑥) = −1

 0 < 𝑥𝑥 ≤ 4 𝑓𝑓(𝑥𝑥) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 0 > 𝑥𝑥 > −4 𝑓𝑓(𝑥𝑥) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ −1

 𝑥𝑥 > 4 𝑓𝑓(𝑥𝑥) = 1

Table 4: Tan-Sigmoid Polynomial

 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶

 𝑋𝑋 <= −1.8 𝑓𝑓(𝑥𝑥) = −1

 −1.8 < 𝑋𝑋 <= 1.8 𝑓𝑓(𝑥𝑥) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 𝑥𝑥 > 1.8 𝑓𝑓(𝑥𝑥) = 1

Manal T. Ail & Bassam H. Abed Engineering and Technology Journal 40 (02) (2022) 311-321

318

Table 5: Resources used in the proposed design

Table 6: Resources used in the proposed design

Table 7: Resources used in the proposed design

 Device Utilization Summary
Logic Utilization Used Available Utilization
Number of 4 input LUTs 136 11,776 1%
Number of occupied Slices 99 5,888 1%
Number of Slices containing only related logic 99 99 100%
Number of Slices containing only unrelated logic 0 99 0%
Total Number of 4 input LUTs 185 11,776 1%
Number Used as logic 136
Number Used as route-thru 49
Number of bonded IOBs 35 372 9%
Average Fan out of Non-Clock Nets 2.17

Table 8: Comparison between proposed approaches

 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐋𝐋𝐋𝐋𝐋𝐋 𝐅𝐅𝐅𝐅 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮
Proposed tan-sigmoid design using
approximation log sigmoid method

99 185 0 1%

proposed tan-sigmoid design using the look-
up table method

38 63 0 1%

proposed tan-sigmoid design using the
polynomial method

286 475 0 4%

Device Utilization Summary

Logic Utilization Used Available Utilization
Number of 4 input LUTs 450 11,776 3%
Number of occupied Slices 286 5,888 4%
Number of Slices containing only related logic 286 286 100%
Number of Slices containing only unrelated logic 0 286 0%
Total Number of 4 input LUTs 475 11,776 4%
Number Used as logic 450
Number Used as route-thru 25
Number of bonded IOBs 81 372 21%
Number of MULT 18XS10s 3 20 15%
Average Fan out of Non-Clock Nets 2.18

 Device Utilization Summary

Logic Utilization Used Available Utilization
Number of 4 input LUTs 61 11,776 1%
Number of occupied Slices 38 5,888 1%
Number of Slices containing only related logic 38 38 100%
Number of Slices containing only unrelated logic 0 38 0%
Total Number of 4 input LUTs 63 11,776 1%
Number Used as logic 61
Number Used as route-thru 2
Number of bonded IOBs 40 372 10%
Number of BUFGMUXs 1 24 4%
Number of RAMB168WEs 1 20 5%
Average Fan out of Non-Clock Nets 1.80

Manal T. Ail & Bassam H. Abed Engineering and Technology Journal 40 (02) (2022) 311-321

319

Table 9: Comparison with previous work

 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐋𝐋𝐋𝐋𝐋𝐋 FF Utilization

Proposed tan- sigmoid design using the look-up
table method

Xilinx Spartan-3A and
Spartan3AN xc3s700a-
4fg484 FPGA

38

63

0

1%

R. G. Biradar, et al. [8] approximation
 of tangent

Virtex − 5

1761 1976 2 2%

R. Sarić, et al. [17]

MLP ANN with
dataset developed in
Tensor Flow

Altera D − 115 FPGA

114

12,971

0

LUT 17%

Slice 12%

Figure 11: The Polynomial tan-sigmoid result on FPGA

Figure 12: Power supply summary comparison between the proposed approaches

4.3 Proposed tan-sigmoid design using the polynomial method
Another proposal that can be used to implement the tan-sigmoid function using a polynomial method is by dividing the

sigmoid function into three linear segments. From the tan-sigmoid curve, notice that the influencing values are from 0 to 1.8,
after which their value is stable at 1 and from 0 to -1.8 they are the same influencing values, but they are reversed, and after -
1.8, they are stable at -1. Therefore make work on the influencing value of the curve polynomial (-1.8 to 1.8) as in Figure 9.

Figure10 shows the proposed FPGA hardware implementation using a polynomial method.N If the x input, the conditions
are added in Table 4. Two multiplexers were used to choose the output according to the conditions set. The selector for the first
multiplexer (Mux) select (0) when the input is less than or equal to -1.8 and select (1). and the input greater than -1.8 and less
than or equal 1.8. The selector for the second multiplexer (Mux) select (0) when the input is greater than or equal to 1.8. Figure
11 shows that the proposed design matches the original tan-sigmoid function. The result of designing the original function is
represented by the blue line, while the red line represents the proposed polynomial solution for the digital circuit's output. Table
4 shows the implementation technique to curve polynomial for tan- sigmoid function.

The expression of the polynomial tan-sigmoid can be described as follows:

Manal T. Ail & Bassam H. Abed Engineering and Technology Journal 40 (02) (2022) 311-321

320

𝑦𝑦 = −0.1053𝑥𝑥3 + 0.8675 (8)

5. Results and Discussion
 This section shows the results of the proposed designs and implementation in ISE design suite 14.7 (Xilinx Spartan-3A

xc3s700a-4fg484 FPGA) to execute efficient tan sigmoid as shown in Figure 5, Figure 7, and Figure10. The approaches proposed
in MATLAB 2012a were created linked with ISE 14.7 Xilinx. Table 5 shows the resource utilization of the proposed tan-sigmoid
using an approximation method, which shows the utilization for the number of occupied slices. The total number of 4 input LUTs
is ‘’1%’’.

Table 6 shows the resource utilization of the proposed tan-sigmoid using the look-up table method, which shows the
utilization for the number of occupied slices. The total number of 4 input LUTs is ‘’1%’’. Table 7 shows the resource utilization
of the proposed tan-sigmoid using the polynomial method, which shows the utilization for the number of occupied slices. The
total number of 4 input LUTs is ‘’4%’’. Table 8 shows a post-implementation summary and a comparison of the proposed
designs. It can be seen that the second proposal took the least number of occupied slices and the total number of 4 input LUTs.

In comparison, the third proposal took the highest number of occupied slices and the total number of 4 input LUTs. The
results show that the best proposal among them is the second proposal because it occupies the least space in FPGA. As a result,
the proposed circuits can be applied with higher speed and precision in different applications of ANN-based real-time hardware.

Figure 12 shows a comparison between the proposed approaches in terms of power consumption. It shows that the proposed
tan-sigmoid design using an approximation method is the lowest consumption of total power supply.

The proposed tan-sigmoid design using the look-up table method was compared to the previous studies because it is the best
proposal among the proposed approaches. As illustrated in Table 9, the proposed implementation is efficient tan-sigmoid and
low an area than R.G Biradar et al. [8] and [12]. The architectures proposed are successful and suitable for the large-scale
implementation of the ANN networks.

6. Conclusion
In the development and implementation of the ANNs, The continuous function of activation plays a significant role since

hardware application of this form in its natural shape is difficult. In this research, three proposed tan-sigmoid designs are based
on a different method. These methods are tan-sigmoid based on the log approximation method, tan-sigmoid based on the look-
up table method, and tan-sigmoid the polynomial method. Where these proposed are implemented by using Hard FPGA blocks.
From the performance analysis in terms of resource utilization, it can be concluded that the proposed tan-sigmoid using the look-
up table method that has the best proposal among them is the second proposal because it occupies the least space in FPGA. The
proposed design achieves an efficient tan-sigmoid that requires less hardware and more quickly using FPGA. From this
conclusion, the efficient design of tan-sigmoid in this research. The resource utilization is about (1%) for slices and LUT. While
FF (0%) compared with two other proposed approaches, it is the lowest resource utilization relative to the related works.

Author contribution
All authors contributed equally to this work.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability statement
The data that support the findings of this study are available on request from the corresponding author.

Conflicts of interest
The authors declare that there is no conflict of interest.

References
[1] F. Hashim, A. Ja’afar, K. A. Ahmad, A. J. S. Hi-Fi. Syam2., MLP Based Tan-Sigmoid Activation Function for Cardiac

Activity Monitoring, MATEC, Web. Conf., 255 (2019) 3005. https://doi.org/10.1051/matecconf/201925503005

[2] L. Zhang, Artificial neural network model-based design and fixed-point fpga implementation of hénon map chaotic system
for brain research, 2017 IEEE XXIV, Int. Conf. Electron. Electr. Eng. Comput., (2017) 1–4.
https://doi.org/10.1109/INTERCON.2017.8079643

[3] M. Alas , S. I. Ali, Prediction of the high-temperature performance of a geopolymer modified asphalt binder using artificial
neural networks, Int. J. Technol., 10 (2019) 417–427. https://doi.org/10.14716/ijtech.v10i2.2421

[4] E. Srinivasan , S. Himavathi, Neural network implementation using FPGA: issues and application, Int. J. Inf. Technol., 2
(2008) 86–92.

[5] S. R. Chiluveru , M. Tripathy, Non‐linear activation function approximation using a REMEZ algorithm, IET. Circuits,
Devices .Syst., 15 (2021) 630-640. https://doi.org/10.1049/cds2.12058

[6] A. Savran , S. Ünsal, Hardware implementation of a feed-forward neural network using fpgas, third. Int. Conf. Electr.
Electron. Eng., (2003) 3–7.

https://doi.org/10.1051/matecconf/201925503005
https://doi.org/10.1109/INTERCON.2017.8079643
https://doi.org/10.14716/ijtech.v10i2.2421
https://doi.org/10.1049/cds2.12058

Manal T. Ail & Bassam H. Abed Engineering and Technology Journal 40 (02) (2022) 311-321

321

[7] K. M. Hamdia, X. Zhuang, T. Rabczuk, An efficient optimization approach for designing machine learning models based on
genetic algorithm, Neural. Comput. Appl., 33 (2021) 1923–1933. https://doi.org/10.1007/s00521-020-05035-x

[8] R. G. Biradar, A. Chatterjee, P. Mishra, K. George, FPGA implementation of a multi-layer Artificial Neural Network using
System-on-Chip design methodology , Conf. Cogn. Comput. Inf. Process., (2015) 1–6.

[9] S. Himavathi, D. Anitha, E. Srinivasan, Feedforward neural network implementation in FPGA using layer multiplexing for
effective resource utilization, IEEE, trans. Neural. netw., 183 (2007) 880–888.

[10] A. Tisan , J. Chin, An end-user platform for FPGA-based design and rapid prototyping of feed-forward artificial neural
networks with on-chip backpropagation, IEEE, Trans. Learn. Technol., 123 (2016) 1124–1133.
https://doi.org/10.1109/TII.2016.2555936

[11] M. Alçın, I.Pehlivan, İ. Koyuncu, Hardware design and implementation of a novel ANN-based chaotic generator in FPGA,
Optik., 127 (2016) 5500–5505. https://doi.org/10.1016/j.ijleo.2016.03.042

[12] S. Mitra , P. Chattopadhyay, Challenges in implementation of ANN in embedded system, Int. Conf. Electr. Electron. Optim.
Tech., (2016) 1794–1798 . https://doi.org/10.1109/ICEEOT.2016.7754996

[13] S. Ngah, R. A. Bakar, A. Embong, S. Razali, Two-steps implementation of sigmoid function for artificial neural network in
Field Programmable Gate Array ARPN, J. Eng. Appl. Sci., 11 (2016) 4882–4888.

[14] P. Ramachandran, B. Zoph, Q. V Le, Searching for activation functions, arXiv Prepr. arXiv1710.05941, 1 (2017).
https://doi.org/10.48550/arXiv.1710.05941

[15] S. Sawaguchi , H. Nishi, Slightly-slacked dropout for improving neural network learning on FPGA, ICT Express., 4 (2018)
75–80. https://doi.org/10.1016/j.icte.2018.04.006

[16] D. Misra, Mish: A self regularized non-monotonic neural activation function, arXiv Prepr. arXiv1908.08681, 1 (2019).

https://doi.org/10.48550/arXiv.1908.08681

[17] R. Sarić, D. Jokić, N. Beganović, L. G. Pokvić, A. Badnjević, FPGA-based real-time epileptic seizure classification using
Artificial Neural Network, Biomed. Signal. Process. Control., 62 (2020) 102106. https://doi.org/10.1016/j.bspc.2020.102106

[18] I. Koyuncu, M. Alcin, P. Erdogmus, M. Tuna, Artificial Neural Network-Based 4-D Hyper-Chaotic System on Field
Programmable Gate Array, Int. J. Intell. Syst. Appl. Eng., 82 (2020) 102–108. https://doi.org/10.18201/ijisae.2020261591

[19] N. Zhang, X. Wei, H. Chen, W. Liu, FPGA implementation for CNN-based optical remote sensing object detection,
ELECTR., 10 (2021) 282. https://doi.org/10.3390/electronics10030282

[20] S. Ngah , R. A. Bakar, Sigmoid function implementation using the unequal segmentation of differential look-up table and
second order nonlinear function, J. Telecommun. Electron. Comput. Eng., 9 (2017) 103–108.

[21] I. A. D. Williamson, T. W. Hughes, M. Minkov, B. Bartlett, S. Pai, S. Fan, Reprogrammable electro-optic nonlinear
activation functions for optical neural networks, IEEE, J. Sel. Top. Quantum. Electron., 26 (2019) 1–12.
https://doi.org/10.1109/JSTQE.2019.2930455

[22] H. M. Al-Rikabi, M. A. Al-Ja’afari, A. H. Ali, S. H. Abdulwahed, Generic model implementation of deep neural network
activation functions using GWO-optimized SCPWL model on FPGA, Microprocess. Microsyst., 77 (2020) 103141.
https://doi.org/10.1016/j.micpro.2020.103141

[23] H. K. Ali , E. Z. Mohammed, Design artificial neural network using FPGA, IJCSNS, 10 (2010) 88.

[24] S. Gomar, M. Mirhassani, M. Ahmadi, Precise digital implementations of hyperbolic tanh and sigmoid function, Asilomar
,Conf. Signals. Syst. Comput., (2016) 1586–1589. http://dx.doi.org/10.1109/ACSSC.2016.7869646

[25] L. Moreira, R. Vettor, C. Guedes. Soares, Neural Network Approach for Predicting Ship Speed and Fuel Consumption, J.
Mar. Sci. Eng., 9 (2021) 119. http://dx.doi.org/10.3390/jmse9020119

[26] L. Li, S. Zhang, J. Wu, An efficient hardware architecture for activation function in deep learning processor, 2018 IEEE,
Int. Conf. Image. Vis. Comput., (2018) 911–918 http://dx.doi.org/10.1109/ICIVC.2018.8492754

https://doi.org/10.1007/s00521-020-05035-x
https://doi.org/10.1109/TII.2016.2555936
https://doi.org/10.1016/j.ijleo.2016.03.042
https://doi.org/10.1109/ICEEOT.2016.7754996
https://doi.org/10.48550/arXiv.1710.05941
https://doi.org/10.1016/j.icte.2018.04.006
https://doi.org/10.48550/arXiv.1908.08681
https://doi.org/10.1016/j.bspc.2020.102106
https://doi.org/10.18201/ijisae.2020261591
https://doi.org/10.3390/electronics10030282
https://doi.org/10.1109/JSTQE.2019.2930455
https://doi.org/10.1016/j.micpro.2020.103141
http://dx.doi.org/10.1109/ACSSC.2016.7869646
http://dx.doi.org/10.3390/jmse9020119
http://dx.doi.org/10.1109/ICIVC.2018.8492754

	1. Introduction
	2. Activation Function
	3. Approximation log sigmoid method
	4. The Proposed tan-sigmoid design
	4.1 Proposed tan-sigmoid design using Approximation log sigmoid method
	4.2 Proposed tan-sigmoid design using a look-up table method
	4.3 Proposed tan-sigmoid design using the polynomial method

	5. Results and Discussion
	6. Conclusion
	Author contribution
	Funding
	Data availability statement
	Conflicts of interest
	References

