
College of Adminstration and Economics Tanmyat AL-Rafidain 91(30) 2008
 P.P [9-17]

٢٦/٨/٢٠٠٧ تأريخ قبول النشر ١٩/٢/٢٠٠٧تأريخ استلام البحث

Controlling APIs Function Call Using Code Overwriting
Technique

Rawaa Putros Polos

Assistant Lecturer
Department of Computers Sciences

College of Computers and Mathematics Sciences
University of Mosul

ABSTRACT
Through API, Windows application can request the aid of the operating system. So,

controlling API's call allows getting access and controlling other programs.
The idea of this research relies upon the technique of directly manipulating and

modifying API code in memory at run time.
The research presents software that injects a DLL using Windows hook technique into

processes address space. The injected DLL replaces each desired API function with a new
function. So, any call made by those processes to the controlled API will cause to call the
new replacement function.

This technique had been applied on a number of API functions and dealt with files in
order to control file manipulation operations which uses programs in the system.

Microsoft visual C++ version 6.0 is used by the researcher to develop the software.

 باستخدام تقنیة كتابة الشفرةAPIالسیطرة على عملیة استدعاء الدالة

 صلتخسلما
من الممكن لتطبیقات نظام التشغیل ویندوز طلب م ساعدة النظ ام م ن خ لال اس تدعاء دوال

APIن التحكم باستدعاء تلك الدوال تمنح إمكانیة الوصول والتحكم ببقیة البرامجإ وبھذا ف.
 مباش رة ف ي ال ذاكرة APIد فك رة ھ ذا البح ث عل ى تقنی ة معالج ة وتغیی ر ش فرة دوال تعتم

 .أثناء وقت التنفیذ
ًیقدم البحث برنامجا یقوم بحقن مكتبة ربط دینامیكیة باستخدام تقنی ة خط اف الوین دوز ف ي

. ی دة المخت ارة ب دوال جدAPIحیث تقوم مكتبة الربط بتبدیل جمیع دوال . فراغ عناوین المعالجات
 س یؤدي إل ى اس تدعاء الدال ة الجدی دة APIن أي اس تدعاء م ن قب ل تل ك المعالج ة لدال ة إوبھ ذا ف

 .البدیلة
 الت ي تتعام ل م ع الملف ات لغ رض ال سیطرة APIتم تطبیق ھذه التقنیة على عدد م ن دوال

 .على العملیات المتعلقة بالملفات والمستخدمة من قبل بقیة البرامج في النظام
 م ن قب ل الباح ث لتط ویر 6.0الإص دار ++ لغ ة مایكروس وفت فیج وال س ي اس تخدمت

 .البرنامج

Controlling APIs Function Call Using Code… [10]

1. Introduction

Several modern systems are attracting the attention to their ability to
utilize existing Windows application by employing hooking techniques.
Also, the development for system monitoring and the analysis tools depends
heavily upon API hooking techniques.

Code overwriting is one of these techniques. It represents a fundamental
approach of getting control over a particular piece of code execution. It
provides a straight forward mechanism that can easily alter the execute flow
of these programs, and eventually affecting the operating system behavior
without having their source code available [Chien, 2005, 3; Pietrek, 1994,
2].

A key motivation for code overwriting approach is to inject user -
supplied code to offer an easy way to use interface and ability to capture
different APIs, which are called by other programs. This approach provides
many advantages [Rauen, 2006]:

• The ability to control APIs functions called which are extremely
helpful and enables developers to track down specific invisible
action that occur during the API call.

• It is quite useful technique for knowing OS in depth.
• It can provide an easy way to change and extend existing module

functionality.
• Monitoring calls to functions using code overwriting can be applied

to identify the action of the programs as a whole. It enables the
recognition of, when and how the functions are called. This will
bring a better understanding of the programs.

The power of this technique is that it is a convenient way to modify
program’s behavior without the need to program source code.

2. Windows API Functions:
Windows applications use a rich set of system defined functions called

Application Program Interface (API).
Microsoft Windows comprises a well documented set of APIs, through

these APIs, a process can request the aid of the operating system, and the
operating system is defined by its APIs.

They encompasses all the functions call that the application program
can make of the OS and provide all system services, as well as definitions
of associative data types and structures. In Windows, the APIs also implies
particular program architecture [Petzold, 1998, 25].

These functions are contained in Dynamic Link Libraries (DLL), in
which each program can be accessed it when it is executed. These
functions are added only when the application is loaded into memory for
execution [M. Johnson, 2004, 120].

Polos [11]

Therefore, the attempt to monitor API functions will give a chance for
controlling Windows applications that called these functions.

3. Windows System-Wide Hooking:

Windows message hooking can be considered one of the most
powerful features of windows. A hook is a mechanism by which a function
can traps events (messages, mouse actions, keystrokes) before they reach
an application. By hooking, windows will be informed about a callback
function named hook procedure; that will be called every time an event
(message) to be interested to occurs, i.e. it receives events. There are two
types of message hooking depending on the affected scope [Marsh, 1994;
Iczelion, 2002]:
1. Local hook: It traps events, this will occur in user own process only.
2. Global hook: It traps events, this will occur in other process either

known as thread hook when affect only one process or as System - Wide
hook which affect all processes in the system.

In system - wide hooking, all related events will routed through user
supported hook procedure. The procedure will be called whenever the
event associated with that type of hook occurs.

When the hook is created by a program, Windows creates data
structure in memory, containing information on the hook. When an event
occurs, if global hook type had been installed, the system must inject the
Code for the hook procedure into the address space (s) of the other process
(s) in the system. The system can perform the injection process if the hook
procedure resides in a DLL [Iczelion, 2002; MSDN, 2005].

Windows provides functions and declarations to install and manipulate
different type of hooking depending on message type associated with the
hook.

There are 14 different types of hooks each of which related and
manipulated different type of messages:

1. WH_CALLWNDPROC
2. WH_CBT
3. WH_DEBUG
4. WH_FOREGROUNDIDLE
5. WH_GETMESSAGE
6. WH_JOURNALPLAYBACK
7. WH_JOURNALRECORD
8. WH_KEYBOARD
9. WH_MOUSE
10. WH_MSGFILTER
11. WH_SHELL
12. WH_SYSMSGFILTER
13. WH_MOUSE_LL

Controlling APIs Function Call Using Code… [12]

14. WH_KEYBOARD_LL

In the research, WH_GetMessage hook type is used. Windows calls
this hook when the GetMessage() or the PeekMessage() function is about to
return a message. Therefore, all messages processed by windows in the
system can be monitored using this type of hook.

4. DLL Injection into other Processes :
A Dynamic Link Library (DLL) is simply a set of source code

modules with each module containing a set of functions that an
application (executable) or another DLL will call.

A dynamic link library is a kind of common pool of functions. The
code for the functions are dynamically linked will be stored in a DLL
file, which is separate from the rest of the program. Windows will not
load several copies of a DLL into memory so even if there are many
instances of program running at the same time. There will be only one
copy of the DLL that program uses in memory. Therefore, in physical
memory, there is only one copy of DLL code and the program links to a
DLL at run - time [Malware, 2006, 15-18; Iczelion, 2002].

Certainly a very popular technique for injecting DLL into a target
process relies on one provided by Windows hook. Notice that,
Microsoft was forced to devise a mechanism that allows a DLL to be
injected into the address space of another process [Ritcher J., 2000,
215]

The basic concept as described in previous section is that the hook
callback procedure must be a part of the DLL. Once the application
installs a system-wide hook, the operating system maps the DLL into
address space in each of its client process [Chien, 2005, 6-7; Maleware,
2006, 20].

If a process installs WH_GetMessage hook, injection scenario will
be as follows [Ritcher, 1994, 6]:

1. Other processes prepare to dispatch a message to windows.
2. The system checks to see whether a WH_GetMessage hook is

install on these processes.
3. The system checks to see whether the DLL containing the hook

procedure is mapped into these processes address space.
4. If the DLL has not been mapped, the system forces the DLL to

be mapped into processes address space.
5. The system calls the hook procedure in the processes address

space.
Note that all variable that containing sharing data among the

processes that have loaded the DLL must be placed in a shared data
section within the DLL.

Polos [13]

The diagram in figure (1) shows an example of a hook installed in
the system and injected into the address spaces named “Application
one” and “Application two”.

Therefore, briefly the operating system injects the DLL
automatically into all processes that meet requirements for this
particular hook. A system-wide hook is loaded by multiple processes
that don’t share the same address space. So, when the DLL is executed,
it is executed in the context of the process whose events are being
caught. This means that the address it sees even for its own variable is
the address of the target process [Richer, 1994, 8].

Figure 1

DLL injection using Windows Hook

5. API Code Overwriting:
Briefly, the concept behind this approach is to modify the API itself by

allocating the address of a desired API function in memory. A control
transfer instruction is inserted at the beginning of the API function by
changing the first few bytes of that function with the call instruction that
redirect the call to a custom supplied function [Hunt, 2003, 3; C. Stevens,
2005, 12].

Code overwriting is applied dynamically at run-time. It benefits from
the fact that processes in Windows has the ability to access the memory
space of other running processes. A process can read and write to the
memory space of other processes as well as to execute the code in those

Controlling APIs Function Call Using Code… [14]

processes. So, after applying the overwriting operation, when the execution
reaches the changed API function, control jumps directly to the user
supplied function. In some cases user function can return control to the
original API [Rauen, 2006; Chien, 2005, 17].

Typically, the implementation of this technique is accomplished by
saving the first five bytes of the API function that must be overwritten in
order to preserve the same functional behavior. After that, an immediate call
usually placed in these bytes. The call leads to the user provided function.
The replacement function can call the original API using the saving bytes
[Bltur, 2005; Pietrek, 1994, 4].

The call instruction on the x86 architecture will usually required five
bytes. The first byte is allocated for instruction opcode and the remaining
four bytes are for the address of the user function.

6. API Code Overwriting Workflow :

The overall workflow of API code overwriting implemented in a DLL
is described in the following steps:

- Install system-wide hook using WH_GetMessage hook type,
which its hook procedure exists in a DLL.

- DLL injection, when the other processes call either GetMessage
or PeekMessage, it loads the DLL that contains the replacement
steps in their address spaces.

- Target function modification: when the DLL attaches to the
process, it modifies the API function in the target process space
so it directly jumps to the replacement function in the DLL.

- Calling the new function every time the changed API has been
called.

- New function either calls the original API or discards the calling
request.

7. Software implementation:

Visual C++ had been used for developing different parts of the
software.

The software consists of two parts: main part that install system-
wide hook, and the DLL that contains the essential steps for
overwriting selected API functions.

System wide hook installed using SetWindowsHookEx() API
function which has the following declaration:

HHook SetWindowsHookEx (Hooktype, pHookProc, hInstance,
ThreadID)

-HookType: is an integer code describing the hook to which to attach hook
procedure, WH-GetMessage used which Windows calls it

Polos [15]

when the GetMessage() or PeekMessage() function is about to
return a meesage.

-pHookProc: is the address of hook procedure that will be called to process
the message for the specified hook.

-hInstance: is the instance handle of the DLL in which the hook procedure
resides.

-ThreadID: is the ID of the thread to be hooked its message. For system
wide hook, this parameter must be NULL.

The hook procedure has the following form:
LRESULT CALLBACK HookProc(nCode, wParam, lParam)

-nCode: known as hook code is an integer code that informs the hook
procedure of any additional data it should know.

-wParam & lParam: pass information needed by the hook procedure.
After the system wide hooking installed by the main part, each process

that call GetMessage() or PeekMessage() will load the DLL in its address
space then the DLL will be executed in the context of that process. This is
the injection or mapping operation.

When the DLL’s injection done, the whole DLL is mapped, not just
the hook procedure. DLL contains necessary steps for performing
overwrites operation on a number of selected API functions; it contains
new replacement function for each of the selected API. These steps are
described below:
1. A new function that has the same declaration as the API function is

prepared. It will be called instead of the original API. For example, the
new replacement function of DeleteFile API function is:

 BOOL CALLBACK New_DeleteFile(LPCTSTR lpFileName)
Instead of the original API:

BOOL CALLBACK DeleteFile(LPCTSTR lpFileName).
2. Locating the address of the API function in the memory using

GetProcAddress() and LoadLibrary() API functions:
• LoadLibrary() used to obtain the handle of the system DLL that

contains the API.
• GetProcAddress() used to get the actual address of the API. This

function accept as parameters the DLL handle obtained from
the LoadLibrary() and API function name:

typedef BOOL (CALLBACK *Temp_DeleteFile) (LPCTSTR);
Temp_Delete File Original_Delete File = GetProcAddress
(LoadLibrary(“kernel.dll”),”DeleteFile”);

3. Prepare A structure to be used for holding the first bytes of the
original API to be overwritten & the new five bytes.

4. Save the first five bytes of the API using ReadProcessMemory API
function that accept as parameters the address of that API obtained

Controlling APIs Function Call Using Code… [16]

from step 2 and a variable of structure type defined in step 3 to
store these bytes.

5. Overwrite the bytes with CALL instruction to the new function
defined in step 1. This step is accomplished using
WriteProcessMemory API function that accepts as parameters the
address of the same API obtained from step 2 and a variable of
structure type defined in step 3 contains the values of new bytes.

When the execution reaches the new function, it displays a
message box asking the user to choose either calling the original API
functions via the saved bytes or discards the call.

The software applies code overwriting technique upon the
following API functions:

• DeleteFile Lib "kernel32"
• CopyFile Lib "kernel32"
• MoveFile Lib "kernel32"
• OpenFile Lib "kernel32"
• ReadFile Lib "kernel32"
• WriteFile Lib "kernel32"

So, when other running applications program attempt to call any of
the above functions while the code overwriting software is running, the
decision of continue API call or stopping it will be under user control.

8. Conclusion

Code overwriting technique for controlling APIs call is a suitable and
strongest method for modifying program logic, because the source code for
the target application is not available most of times, and it is relatively
simple to implement by building a DLL that contains the replacement
function, separating it from the rest of the software. Also, injection a DLL
into a process’s address space is a good way to determine what’s going on
within a process.

This method is quite effective, but it has disadvantage. It degrades the
entire performance of the system because it effects the processing of the
whole system.

References:
1. Charles Petzold, “Programming Windows”, 1998, Microsoft Press, 5th edition.
2. Eric Chien, “Techniques of Adware and Spyware”, 2005, Semantic Security

response.
3. Galen Hunt and Doug Brubacher, “Detours: Binary Interception of Win32

Functions”, 2003, Microsoft Research.
4. Iczelion, “Iczelion’s Tutorials for Win32ASM, Tutorial 24: Windows Hooks”, 2002,

http://win32assembly.online.fr/tut24.html.
5. James Bulter and Sherri Sparks, “Windows RootKits of 2005 part one”, 2005,

http://www.securityfocus.com/infocus/850.

http://win32assembly.online.fr/tut24.html
http://www.securityfocus.com/infocus/850

Polos [17]

6. Jeffery Richter, “Load your 32 DLL into Another Process’s address space using
INJLIB”, 1994, Microsoft systems Journal/9 No. 5.

7. Jeffery Richter, “Programming Application for Microsoft Windows”, Microsoft
press, 2000, 4th edition.

8. Johnson M. Hart, “Windows System Programming”, 2004, Addison Wesley
Professional, 3rd edition.

9. Kyle Marsh, “Win32 Hooks”, 1994, Microsoft Developer Network Technology
Group, MSDN 2005.

10. Malware-Test, “Rootkit Internals Workshop”, 2006, www.malware-
test.com/smf/.

11. Mathias Rauen, “API Hooking Methods”, 2006,
http://www.madshi.net/apihooking.htm.

12. Matt Pietrek, “Learn System-Level win32 Coding techniques by writing an API
Spy Program”, 1994, Microsoft Systems Journal Vol. 9, No. 12.

13. MSDN 2005, “Monitoring System events”, 1999, Microsoft corporation SDK.
14. Stevens C., “Windows Rootkit Overview”, 2005, Symantec Security Response.

http://www.madshi.net/apihooking.htm

