On Semi-p-Compact Space¹

Nerjis Abdul Jabbar*

Suaad Gedaan*

Received 31, December, 2008 Accepted 28, October, 2009

Abstract:

The purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.

Key words: semi-p-open set, pre-open set and compact space.

Introduction:

Let (X,τ) be a topological space and let A be a subset of X. We denote the closure of A (the interior of A) by cl A (int A) respectively.

A subset A of (X,τ) is called preopen set, see [1], [2] and [3], if A \subseteq int(cl A). The complement of a preopen set is called a pre-closed set; see [1], [2] and [3]. The intersection of all pre-closed sets containing A is called the pre-closure of A and is denoted by pre-clA, [2].

A subset A of (X,τ) is called semi-p-open, [1] if there exists a preopen subset U of X such that $U \subseteq A \subseteq$ pre-clU. The complement of semi-popen set is called semi p-closed set, see [3].

The family of all semi-p-open subsets of X is denoted by S-P-O(X). The intersection of all semi-p-closed sets containing A is called the semi-p-closure of A and is denoted by semi-p-cl A, see [1,3].

We study and define many concepts in this paper in order to give properties and characterizations of semi-p-compact spaces, like cluster and semi-p-cluster points, compact spaces, nets, filters, T₂ and semi-p-T₂ spaces, regular spaces, almost

and semi-p-irrsolute functions. For more details of these concepts see [4], [2], [5], [6], [7] and [8].

Semi-p-Compact Spaces:

In this section, we define and study the concept of semi-p-compactness.

1 Definition

A family A of semi-p-open subsets of a topological space (X,τ) which covers X is called semi-p-open cover of X.

2 Definition

A topological space (X,τ) is said to be semi-p-compact space if and only if every semi-p-open cover of X has a finite semi-p-open subcover.

Notice that every semi-p-compact space is compact, since every open subset of X is semi-p-open, but the converse is not true in general as the following example shows:

3 Example

Let $X = \mathbb{N} \cup \{0\}$ $\tau = \{U \subseteq X \mid U \subseteq \mathbb{N} \text{ or } (0 \in U \wedge U^c \text{ is finite})\}$

^{*}Department of Mathematics-Ibn-Al-Haitham College of Education - University of Baghdad ¹This paper is a part of a M.Sc. thesis by the second author supervised by the first author.

 $\mathcal{F} = \{ F \subseteq X \mid 0 \in F \text{ or } (F \subseteq \mathbb{N} \land F \text{ is finite}) \}$

$$S-P-O(X) = \mathbb{P}(X) \setminus \{\{0\}\}\$$

Then (X,τ) is a compact space but not semi-p-compact space.

Semi-p-compactness is a weak hereditary property, as shown in the following proposition.

4 Proposition

A semi-p-closed subset of a semi-p-compact space is a semi-p-compact subspace.

Proof:

Let A be a semi-p-closed subset of a semi-p-compact space (X,τ) and let $\{G_{\alpha}: G_{\alpha} \text{ is semi-p-open subset of } X, \alpha \in \Lambda \}$ be a semi-p-open cover of A. Since A^c is a semi-p-open set in X, so $\{G_{\alpha}:\alpha \in \Lambda \} \cup \{A^c\}$ forms a semi-p-open cover of X which is a semi-p-compact space, then there exist finitely many members of index set Λ say α_1 ,

$$\alpha_2, \ \dots, \ \alpha_n \ \text{such that} \ \ X = \bigcup_{i=1}^n G_{\alpha_i} \cup A^c \ .$$
 But $A \subseteq X$ and $A \cap A^c = \emptyset$, therefore $A \subseteq \bigcup_{i=1}^n G_{\alpha_i}$. Thus A is semip-compact.

In the following theorem we give a characterization of definition of semi-p-closure of a set.

5 Definition

Let A be a subset of a topological space (X,τ) . The semi-p-closure of A (semi-p-cl A) is the intersection of all semi-p-closed subsets of X which contain A.

We shall call x, where $x \in X$, a semi-p-closure point of A if $x \in \text{semi-p-cl } A$.

6 Theorem

Let (X,τ) be a topological space and let A be a subset of X. A point x in X is a semi-p-closure point of A if and only if every semi-p-open nbd (neighborhood) of *x* intersects A.

Proof:

The "only if"part

Assume that x is a semi-p-closure point of A, then $x \in K = \bigcap \{F \mid F \text{ is a semi-p-closed subset of X containing A}\}$. Suppose that there exists a semi-popen nbd U of x such that $U \cap A = \emptyset$, therefore $A \subseteq U^c$ where U^c is a semi-p-closed subset of X with $x \notin U^c$, that is, $x \notin K$ which is a contradiction. Hence every semi-p-open nbd of x must intersects A.

The "if" part

Assume that every semi-p-open nbd of x intersects A, and suppose that X is not a semi-p-closure point of A, therefore $x \notin K$, that is there exists a semi-p-closed subset F of X with A \subseteq F such that $x \notin F$, it follows that $x \in F^c$ which is a semi-p-open set in X and A $\cap F^c = \emptyset$. That implies a contradiction with our assumption. Hence x must be a semi-p-closure point of A.

7 Definition

Let (X,τ) be a topological space and let (f, X,A,\geq) be a net in X. A point x_0 in X is called a "semi-p-cluster point of f" if for each $a \in A$ and for each semi-p-open nbd U of x_0 there exists $b \in A$ such that $b \geq a$ and $f(b) \in U$.

8 Definition

Let (X,τ) be a topological space and let (f, X,A,\geq) be a net in X, then fis said to be "semi-p-convergent" to a point x_0 in X if for each semi-p-open nbd. N of x_0 there exists an element $a_0 \in A$ such that $f_a \in N$ for each $a \geq a_0$.

9 Theorem

Let (X,τ) be a topological space and let (f, X,A,\geq) be a net in X. For each $a\in A$, let $M_a = \{f(x) : x \geq a \text{ in } A\}$ then a point p of X is a semi-pcluster point of f if and only if $p \in$ semi-p-cl M_a for each $a \in$ A.

Proof:

The "only if"part

Assume that p is a semi-p-cluster point of f and let N be a semi-p-open nbd. of p, then for each $a \in A$, there exists an element $x \ge a$ in A such that $f(x) \in N$.

Hence M $_a \cap N \neq \phi$ for each $a \in A$. Since N is an arbitrary nbd., so by theorem 2.6 $p \in \text{semi-p-}$ cl M $_a$ for each $a \in A$.

The "if" part

Assume that $p \in \text{semi-p-cl M}_a$ for each $a \in A$ and suppose, if possible, p is not a semi-p-cluster point of f, then there exists a semi-p-open nbd. N of p and an element $a \in A$ such that $f(x) \notin N$ for every $x \ge a$ in A. This implies that $N \cap M_a = \emptyset$, it follows that $p \notin \text{semi-p-cl M}_a$ for this a which is a contradiction. Hence p must be a semi-p-cluster point of the net f.

10 Definition

Let (X,τ) be a topological space and let F be a filter on X. A point x in X is called a "semi-p-cluster point of F " if each semi-p-open nbd. of xintersects every member of F.

Notice that, every semi-p-cluster point of a filter is a cluster point.

11 Theorem

Let (X,τ) be a topological space and let F be a filter on X. A point p in X is a semi-p-cluster point of F if and only if $p \in \text{semi-p-cl}$ F for each $F \in$ F.

Proof:

The "only if"part

Let p be a semi-p-cluster point of F, then each semi-p-open nbd. of p intersects every member of F, that is, for each semi-p-open nbd. U of p, $U \cap F \neq \emptyset$ for each $F \in F$. It follows that, p

 \in semi-p-cl F for each F \in F, by theorem 6.

The "if" part

Assume that $p \in \text{semi-p-cl } F$ for each $F \in F$, then by theorem 6 every semi-p-open nbd. of p intersects F for each $F \in F$, that is every semi-p-open nbd. of p intersects every member of F. Hence p is a semi-p-cluster point of F.

In the next theorem we give two characterizations of semi-p-compact spaces.

12 Theorem

Let (X,τ) be a topological space then the following statements are equivalent:

- 1. X is a semi-p-compact space,
- **2.** Every collection of semi-p-closed subsets of X with the FIP (finite intersection property) has a non-empty intersection,
- **3.** Every filter on X has a semi-p-cluster point.

Proof:

 $(1\Rightarrow 2)$ Assume that X is a semi-p-compact space and let $\{F_{\alpha}:\alpha\in\wedge\}$ be a collection of semi-p-closed subsets of X with FIP. Suppose that $\bigcap_{\alpha\in\wedge}F_{\alpha}=\emptyset$,

then by De-Morgan Laws X= $\bigcup_{\alpha \in \wedge} F_{\alpha}^{c}$

where F_{α}^{c} is a semi-p-open set for each $\alpha \in \wedge$. Therefore $\{F_{\alpha}^{c} : \alpha \in \wedge\}$ is a semi-p-open cover of X which is a semi-p-compact space, then there exist finitely many members $\alpha_{1}, \alpha_{2}, ..., \alpha_{n}$ such that

$$X = \bigcup_{i=1}^{n} F_{\alpha_i}^{c}$$
, it follows by De-Morgan

Laws that $\bigcap_{i=1}^{n} F_{\alpha_i} = \emptyset$ which is a contradiction with our assumption that $\{F_{\alpha}: \alpha \in \wedge\}$ has a FIP. Hence $\bigcap_{\alpha \in \wedge} F_{\alpha} \neq \emptyset$.

 $(2 \Rightarrow 3)$

Let F be a filter on X, then F has a FIP. In particular the collection {semi-p-cl $F:F \in F$ } of semi-p-closed subset of X has the FIP, so by 2 there exists at least one point $x \in \cap \{\text{semi-p-cl}\}\$ F: $F \in F$, that is, $x \in \text{semi-p-cl } F$ for each $F \in F$. Hence by theorem 11 x is a semi-p-cluster point of F.

 $(3 \Rightarrow 1)$

Assume that every filter on X has a semi-p-cluster point. To prove X is a semi-p-compact space. Let 3 be a semi-p-open cover of X and suppose, if possible, 3 has no finite subcover. The collection $\wp = \{X - G : G \in \mathfrak{I}\}\$ has the FIP. For if there exists a finite subcollection $\{X - G_i \mid 1 \le i \le n\}$ of \wp such that $\cap \{X - G_i \mid 1 \le i \le n\} = \emptyset$. This implies that $\cup \{G_i \mid 1 \le i \le n\} =$ X which contradicts our supposition that 3 has no finite subcover. Thus \wp must have the FIP. It follows that there exists an ultra filter F on X containing \wp . By 3 F has a semi-pcluster point $x \in X$, then by theorem 11 $x \in \text{semi-p-cl } F \text{ for each } F \in F$. In particular $x \in \text{semi-p-cl}(X - G)$ for each $G \in \mathfrak{F}$. But X - G is a semi-pclosed subset of X for each $G \in \mathfrak{I}$, then semi-pcl(X - G) = X - G for each $G \in \mathfrak{I}$. This implies $x \in \cap \{X - \}$ G: $G \in \mathfrak{I} = X - \cup \{G \mid G \in \mathfrak{I}\}.$ Hence $x \notin \bigcup \{G \mid G \in \mathfrak{I}\}$ which contradicts the fact that 3 is a semi-popen cover of X. Thus 3 must have a finite subcover and consequently X is semi-p-compact space.

13 Proposition

Let (X,τ) be a topological space. If X is a semi-p-compact space then every net in X has a semi-p-cluster point.

Proof:

Let (f, X,A,\geq) be a net in X. For each $a \in A$, let $M_a = \{f(x) : x \ge a\}$ since A is directed by \geq , so the collection $\{M_a: a \in A\}$ has the FIP, in particular

the collection {semi-p-cl M $_a$: $a \in A$ } of semi-p-closed subsets of X is also has the FIP. It follows by theorem 12 that $\cap \{\text{semi-p-cl M } a: a \in A\} \neq \emptyset$, let $p \in \cap \{\text{semi-p-cl } M_a: a \in A\}, \text{ then }$ $p \in \text{semi-p-cl M}_a$ for each $a \in A$, thus by theorem 9 p is a semi-p-cluster point of f.

It seems that the converse of proposition 13 is not true in general, but we could not get a counter example.

14 Definition [3]

Let $f:(X,\tau) \longrightarrow (Y,\tau')$ be any function, then f is said to be "semi-pirresolute function" if the inverse image of any semi-p-open subset of Y is a semi-p-open subset of X.

15 Proposition

The semi-p-irresolute image of a semi-p-compact space is a semi-pcompact.

Proof:

be a semi-p-irresolute function from a semi-p-compact space (X,τ) onto a topological space (Y,τ') . To prove Y is a semi-p-compact space let $\{G_{\alpha}: \alpha \in \wedge\}$ be a semi-p-open cover of Y, then $\{f^{-1}(G_{\alpha}): \alpha \in \wedge\}$ is a semi-popen cover of X which is semi-pcompact space, then there exist finitely many members of \wedge say $\alpha_1, \alpha_2, ..., \alpha_n$ such that $X = \bigcup_{i=1}^{n} f^{-1}(G_{\alpha_i})$, it follows $\mathbf{Y} = \bigcup_{i=1}^n \mathbf{G}_{\alpha_i}$. Thus \mathbf{Y} is a semi-pthat

16 Corollaries

compact space.

- 1. The semi-p-irresolute image of a semi-p-compact space is a compact space.
- **2.** Semi-p-compactness is a topological property.

17 Definition

A topological space (X,τ) is said to be "semi-p-T₂-space" if for each two distant points x and y in X, there exists two semi-p-open subsets U and V of X, such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

18 Proposition

A semi-p-compact subset of a T₂-space is semi-p-closed.

Proof:

Let A be a semi-p-compact subset of the T_2 -space (X,τ) , so A is compact since every semi-p-compact is compact, but X is a T_2 -space (given) so A is closed in X [5,p.156,prop.11] but every closed subset of A is semi-p-closed, so A is semi-p-closed.

Notice that, a semi-p-compact subset of semi-p-T₂-space need not be semi-p-closed as the following example shows:

19 Example

Let
$$X=\{1,2,3\}$$
, $\tau=\{X,\phi,\{2,3\}\}$, $F=\{x,\phi,\{1\}\}$. S-P-O(X) = $\{X,\phi,\{2,3\},\{2\},\{3\},\{1,3\},\{1,2\}\}$ S-P-C(X) = $\{X,\phi,\{1\},\{1,3\},\{1,2\},\{2\},\{3\}\}$ Clear that X is semi-p-T₂ space. If A = $\{2,3\}$ then A is semi-p-compact subset of X, but not semi-p-closed.

20 Definition [3]

A topological space (X,τ) is said to be:

- **1.** 'semi-p-regular space" if and only if for each point $x \in X$ and for each closed subset F of X such that $x \notin F$, there exist two disjoint semi-p-open subsets U and V of X such that $x \in U$ and $F \subseteq V$.
- **2.** "Almost semi-p-regular space" if and only if for each point x in X and for each semi-p-closed subset F of X such that $x \notin F$, there exist two semi-p-

open disjoint subsets U and V of X such that $x \in U$ and $F \subseteq V$.

3. "semi-p-normal space" if and only if for each two disjoint closed subsets F_1 and F_2 of X, there exist two disjoint semi-p-open subsets U and V of X such that $F_1 \subseteq U$ and $F_2 \subseteq V$.

Notice that, every regular space is a semi-p-regular and every normal space is a semi-p-normal.

21 Proposition

A compact T_2 – space is a semi-pregular space.

Proof:

Clear.

22 Corollary

A semi-p-compact T_2 -space is a semi-p-regular.

Proof:

Clear.

23 Proposition

A semi-p-compact T_2 -space is an almost semi-p-regular space.

Proof:

Let (X,τ) be a semi-p-compact T_2 -space and let F be a semi-p-closed subset of X and x be any point in X with $x \notin F$, then $x \neq y$ for each $y \in F$. Since X is a T_2 -space, so there exist two disjoint open subsets U_y and V_y of X such that $x \in U_y$ and $y \in V_y$. Then the family $\{V_y:y \in F\}$ forms an open cover of F, but it is compact set, since every semi-p-compact set is compact and F is semi-p-compact by proposition 4 therefore, we get finitly many elements y_1, \ldots, y_n of F such that

$$F \subseteq \bigcup_{i=1}^{n} V_{y_i}$$
. Now, let $V = \bigcup_{i=1}^{n} V_{y_i}$ and

 $U = \bigcap_{i=1}^{n} U_{y_i}$, then U and V are two disjoint open subset of X such that $x \in U$ and $F \subseteq V$. But every open set is semi-p-open, so X is an almost semi-p-regular space.

24 Proposition

A compact T_2 – space is a semi-p-normal space.

Proof:

Clear.

25 Corollary

A semi-p-compact T_2 -space is a semi-p-normal (normal) space.

Proof:

Clear.

References

- 1. Navalagi, G.B., 1991, Definition Bank in General Topology, Mathematics Subject Classification, 54 G, pp.50.
- 2. Veera Kumar M.K.R.S., 2002, pre-semi-closed sets, Indian J. Math. 44 (2): 165-181.
- 3. Al-Khazaraji, R.B., 2004, On Semi-p-open Sets, M. Sc. Thesis,

- College of Education- Ibn Al-Haitham, University of Baghdad.
- **4.** Bourbaki, N., 1989, Elements of Mathematics, General Springer-Verlage Berlin, Heidelberg, New York, London, Paris, Tokyo, 2nd Edition, pp.437.
- 5. Gemignani, M.C., 1972, Elementary Topology, University of New Yourk, Addison-Wesley Publishing Company, Inc. pp.270.
- 6. Hofman, K.H., 2003, Introduction To General Topology, An Introductory Course for the Fourth Semester in Wahlpflichtbereich, pp.52.
- **7.** Reilly, I.L., 2005, Hacettepe J. Math. St. 345, 27-34.
- 8. Miguel Galdas, 2001, Some Properties of Contra-B-Continuous Functions, Mem. Fac. Sci. (Math.), 22, 19-28.

فضاءات الرص شبه - p

سعاد جدعان*

نرجس عبد الجبار*

*قسم الرياضيات - كلية التربية- ابن الهيثم - جامعة بغداد

لخلاصة:

الغرض من هذا البحث تقديم نوع جديد من فضاءات الرص وهو فضاء الرص شبه p وهو اقوى من فضاءات الرص، وكذلك اعطينا خواصاً ومميزات لفضاء الرص شبه p.