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Abstract—Filter Bank Multicarrier (FBMC) is a multitone modulation 
technique that is expected to replace the Orthogonal Frequency Division 
Multiplexing (OFDM) due to its inherent characteristics that makes it immune 
to channel dispersive effect on the transmitted signal in both time and 
frequency. The most effective ingredient in the FBMC is the pulse shaping that 
the OFDM symbol lacks. In this paper, a comparative study is presented 
between different pulse shapes used in the FBMC like the RRC, PHYDIAS, 
IOTA and Hermite function alongside the conventional OFDM. 

Index Terms— FBMC, shaping filter, ambiguity function, Hermite function, PHYDYAS, IOTA, 
RRC, SIR. 

I. INTRODUCTION 

Mobile communications have been under increasing demand for higher data rates for 
different services that are mostly voice communications and data communications. This has 
led to the development of the mobile technologies throughout the different generations of 
mobile communications up to the 4G that is introduced by LTE. In addition to that, future 
communications will support machine-type communication services. This continuous 
demand for the higher data rate has been addressed by the development of the air interface 
of different technologies. So far, the multicarrier modulation (MCM) represented by the 
Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) has proven to be 
the best type of modulation for wireless communication due to its reduced complexity. 
Although the CP-OFDM as a member of the MCM family can mitigate the wireless channel 
impairment namely the multipath fading by subdividing a frequency selective channel into 
N flat subchannels that can be equalized by simple one-tap equalizer, it is still has the 
disadvantages of having the cyclic prefix (CP) that reduces the spectral efficiency in 
addition to the high Out-of-Band (OOB) spectral leakage that necessitates the use of large 
guard bands between different CP-OFDM signals that further degrades the spectral 
efficiency. This OOB spectral leakage is basically because no pulse shaping is used in 
OFDM, which makes the symbol shape a rectangular window. Researchers have shifted 
attention towards the Filter Bank Multicarrier (FBMC) modulation which when used 
alongside with the Offset Quadrature Amplitude modulation (OQAM) results in improved 
spectral efficiency and spectral shape because the CP is dropped, and due to the use of 
specially designed shaping filters that significantly reduce the OOB emission. Moreover, 
research has shown that FBMC is more suitable for time and frequency dispersive channels 
[1] and multiple access schemes [2]. This makes the FBMC one of the main candidates for 
future communication technologies targeting the 5G requirements. In previous works, 
researches are mostly interested in comparing CP-OFDM with FBMC with certain pulse 
shaping filter under wireless channel conditions like [1], [2] and [11] where PHYDYAS 
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filter is used in FBMC. In [3] a study of the pulse shaping filter for windowed OFDM with 
a little emphasis in shaping filtered used in FBMC. In [4] an experimental comparison is 
provided between OFDM and FBMC with RRC filter. In [8] the comparison was between 
CP-OFDM and FBMC based on EGF and half cosine filters. In [10] various shaping is 
considered and the performance is evaluated for frequency and timing offset under fixed 
channel conditions. Works addressing FBMC specific shaping filters are found in [9] for 
PHYDYAS filter, [13] Hermite function filter and [14] IOTA filter. Three main properties 
are considered as requirements upon which the FBMC was developed; (i) Orthogonality, 
which is necessary for the perfect recovery of the transmitted symbols. Orthogonality is 
already satisfied in OFDM. (ii) locality, which is required for the signal to have high OOB 
attenuation and to acquire some immunity against the channel dispersive effects. This is not 
satisfied by OFDM. (iii) ideal spectral efficiency, which is satisfied in the FBMC with the 
aid of OQAM and also satisfied by the OFDM but not in CP-OFDM. The first and second 
points are not exactly satisfied 100% in FBMC but actually very close to the ideal case. The 
situation varies for different pulse shapes and in this paper, the investigation is made to see 
how the different pulse shapes compare among each other. It is worth mentioning here that 
FBMC nomenclature implies two meaning; the FBMC as a multicarrier with shaping filter 
technique and the OQAM, which is the splitting of the real and imaginary parts of the QAM 
symbol and transmitting them at double the QAM rate. The combination of both is called 
FBMC-OQAM but for simplicity, it is often referred to by only FBMC as is the case in this 
paper. 

II. CONSTRUCTION AND RECONSTRUCTION OF FBMC 

In general, the FBMC signal can be expressed as 
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Where an,k is real PAM data symbols and n,k is the basis function given by 
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Where h(t) is a real symmetric pulse shaping filter and n,k is a phase factor given by 
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The values of n,k  can be seen in the manner that when the time index n is even, even,k=1, j, 1, j… 

and when n is odd, odd,k=1, j, 1, j…. The values of 0 and 0 are chosen such that 00=1/2. In the 
OFDM case  
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Here the data symbols xn,k  are complex QAM symbols and the values of 0=T and 0=1/T. The 
shaping filter is the trivial rectangular pulse. The spectral efficiency for both (2) and (4) is given in 

symbols/s/Hz by [5] =1/(00). The OFDM signal in (4) has =1 which is the highest possible value 

of spectral efficiency to keep basis functions n,k orthogonal. The OFDM signal is not suitable for 
mobile wireless channels because it cannot combat the multipath effect. Therefore, the cyclic prefix 

technique is used where 0=T+TCP and 0=1/T in (4), combined with single tap equalizer per subcarrier, 
this is referred to by CP-OFDM. Although CP-OFDM has improved performance against dispersive 

channels, it has a lower spectral efficiency than the conventional OFDM, <1. In FBMC the use of the 
shaping filter eliminates the need for the CP. Unfortunately, the transmission of complex symbols 
cannot be achieved in FBMC because according to Balian-Low theorem [7] that simply states if 
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00=1, then the product of the effective duration and effective bandwidth of the signal, discussed in 
section IV, is infinite which is the case in OFDM. In FBMC, real data are transmitted instead but this 
would make the spectral efficiency of FBMC half of spectral efficiency of the OFDM because the 
transmission of a complex symbol in OFDM is equivalent to transmission of two real symbols. This is 
compensated by making the signaling rate in FBMC twice as fast of that in OFDM with the same 

frequency separation between subcarriers, i.e., 0=T/2 and 0=1/T, i.e., =2. The net spectral efficiency 
in bit/s/Hz will be the same in FBMC and OFDM. The reconstruction of the FBMC data symbols is 
achieved by 
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Here the real operator Re{} is used in the definition of the inner product <·,·>. It can be shown that 

when h(t) is real and symmetric, the expression inside the Re{} operator is purely imaginary in the case 
if both pairs (l,m) and (n,k) have unequal parity, that is (l,m) mod 2 ≠ (n,k) mod 2, therefore, the real 
operator will produce zero value. When (l,m) and (n,k) have the same parity, the expression inside the 
Re{} operator will be real and (5) will be reduced to [5] 
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Where Ah(,) is the auto-ambiguity function of h(t).  
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Perfect recovery of the symbol  an,k is achieved if  
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The condition in (8) is the orthogonality condition mentioned earlier that h(t) needs to satisfy. A 
convenient way to demonstrate the orthogonality condition in FBMC is through the lattice shown in 

Fig. 1 where the basis functions n,k are shown as lattice points distributed along the time and 
frequency axes. The lattice is divided into four sub-lattices according to the values of l and m: EE, 
EO, OE, and OO where E stands for even and O stands for odd. Whenever the values of the pairs 
(l,m) and (n,k) fall in two different sub-lattices, the inner product as in (6) produces imaginary value 
inside the Re{} operator, hence the outcome is zero, and when the pairs (l,m) and (n,k) fall in the same 
sub-lattice, it is up to the design of h(t) to satisfy (8). In practice, the orthogonality is not ideally 
satisfied according to (8) but it is satisfied within acceptable limits. 
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FIG. 1. LATTICE POINTS OF FBMC SIGNAL. 

 
III. THE EFFECT OF THE CHANNEL 

One of the main goals of the FBMC is to reduce the dispersive effect of the channel in time and 
frequency that appears as intersymbol interference (ISI) and intercarrier interference (ICI) and hence 
increasing the signal-to-interference ratio (SIR). When passing the FBMC signal through a time-

varying channel c(t,) the received signal will be 
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By plugging (1) in (9) we get 
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Where xn,k=an,kn,k. Assuming the only a0,0 is transmitted, from (6) the recovered symbol will be 
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Where g(t)=g00(t) 
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Where Ahg(,) is the cross ambiguity function defined by 
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By considering only the points of the lattice that a0,0 belong 
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Where S is the received symbol, I is the interference signal, from which the average 
received signal power 2

S  and average interference power 2
I  can be obtained. 

    2

0,0

22 )0,0(hgS AaESE   

  








 
 )0,0(),(

2

00,

22 )2,2(
kn

hgknI knAaEIE   

In (19), the triangle inequality has been used to account for the worst case of the 
interference signal. From the above equations, we can find the signal-to-interference ratio 

22 / ISSIR   by simply passing the shaping filter through the channel and finding the cross 

ambiguity function between the input and the output of the channel. The channel will have 
a smearing effect on the ambiguity function such that the null points of the ambiguity 
function will no longer be zero, and these nonzero values will add up as an interference 
signal to the recovered data symbol. This cross-ambiguity function is shown in Fig. 2. 



 
FIG. 2. THE CHANNEL EFFECT ON THE AMBIGUITY FUNCTION OF FBMC SIGNAL. 

IV. SIGNAL LOCALIZATION 

It has been mentioned earlier that one of the desired features in FBMC is signal 
locality. This feature helps in overcoming the channel dispersive effect without the need for 
the addition of cyclic prefix as in the CP-OFDM case. Signal locality is defined in terms of 
its effective duration and effective bandwidth, each is defined as [17] 
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Where h(t) is a unit energy signal and H(f) is its Fourier transform. For a Gaussian 
signal given by 

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It has an isotropic Fourier transform given Hg(f)=hg(f). The effective time and 
bandwidth can be obtained as Te=Be=1/2  , the product will be TeBe=1/4π. This is a lower 
bound for the product TeBe which is an indication of the signal good localization. Any other 
signal will have a higher value than 1/4π. If we use 1/4π as a normalization factor, we can 
define the localization factor as 
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The equality holds for the Gaussian signal, which is although ideal in terms of the 

localization factor, it is not orthogonal, hence it is not suitable for FBMC as a shaping filter. 
In some references [10], the localization parameter is defined by 1/4πTeBe and is called the 
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Heisenberg uncertainty parameter, but we prefer the definition as in (22) because it depicts 
how the signal is spread or confined in both time or frequency by how small or large the 
value of  

V. SHAPING FILTERS 

In this section, some of the main types of shaping filters that are suitable for FBMC are 
briefly explained 

A. ROOT RAISED COSINE  

Root Raised Cosine (RRC) is a typical Nyquist filter that is bandlimited and exhibits 
orthogonality in time and frequency; however, it has an infinite time duration. RRC is given 
by [12] 
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Where  is the roll-off factor whose value is chosen =1, and T is the design signaling 
interval. Since RRC has infinite time duration, it should be truncated up to the desired 
duration 

B. PHYDYAS 

PHYsical layer for DYnamic AccesS and cognitive radio abbreviated as PHYDYAS is 
a project that proposes the FBMC as the physical layer for dynamic access spectrum 
management (DASM) and cognitive radio communications. The proposed PHYDYAS filter 
is given by [9] 
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Where 1/T is the subcarrier frequency separation and the coefficients bk satisfy the 
relation 122  kKk bb  so that the filter satisfies Nyquist condition. For K=4 the coefficients are 

b1=0.97196, b2=1/ 2 , and b3= 2
11 b . For other values of K, the reader may refer to [9]. It 

can be seen from (24) that hp(t) is periodic with period KT and this period is sampled to 
L=KM samples. The PHYDYAS filter has a special feature regarding its implementation 
which is that the shaping can be made in the frequency domain i.e., before the IFFT 
operation by convolving the set of coefficients bk with the modulating symbols and then 
applying to the IFFT. However, that would require KM points IFFT [9] instead of M point 
IFFT in case of the polyphase network (PPN) implementation for the shaping filter as is the 
case for the other types of shaping filters [15]. 

C. Hermite Function 

The Hermite function is a family of functions that are invariant under Fourier 
transform, meaning that they preserve the same shape in time and frequency domain just 
like the Gaussian function. In fact, the Gaussian function is considered a zeroth order 
Hermite function. This property makes the Hermite function to have a good localization 
[13]. In addition, the different orders of the Hermite functions are orthogonal to each other. 
These properties make the Hermite functions excellent choice to design a shaping filter. The 
Hermite function is given by 
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Where Hn(x) is the Hermite polynomial of order n and it can be obtained from the 
recursive formula: H0(x)=1, Hn+1(x)=2xHn(x)−Hʹn(x) where Hʹn(x) is the derivative of Hn(x) 
with respect to x. The Fourier transform of the Hermite function is given by 
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Therefore, for orders, multiple of 4 the Hermite function and its Fourier transform are 
exactly the same. The Hermite filter was designed as the linear combination of Hermite 
functions with order multiple of 4. The coefficients are chosen such that the orthogonality is 
satisfied in the lattice points near and around (n,k)=(0,0) only because the far lattice point 
have an insignificant contribution as interference and hence having a near perfect (NP) 
orthogonality  
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A complete analytical discussion is found in [13] 

D. IOTA 

Isotropic Orthogonal Transform Algorithm (IOTA) is an algorithm that initially takes 
the Gaussian function and introduces orthogonality in both time and frequency domain. 
This is achieved by the orthogonality operator [14] 
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The effect of the operator O0 on x(t) is making x(t) orthogonal in  frequency at 

multiples of 1/0, i.e. in terms of the ambiguity function Ay(0,k/0)=0 for k≠0 and Ay(0,0)=1. 
Similarly applying the orthogonality operator to a signal in its frequency domain, 

Y(f)=O0X(f) produces a signal that is orthogonal in time such that Ay(n/0,0)=0 for n≠0 and 
Ay(0,0)=1. Applying both operators as below produces the IOTA filter 
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Where F and F-1 are the Fourier transform and inverse Fourier transform. 

VI. SIMULATION RESULTS 

A comparison of the above 4 types of shaping filters in addition to the conventional 
OFDM has been performed under channel effect. Each filter is realized in discrete time as 
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Where m is the sample time index, L is the filter length in samples and it is chosen to 
be L=1024 samples and ts is the sampling time which is chosen equals to 32.5 ns, the same 
as the sampling time in LTE. The L/2 shift is to make the filter a causal filter. The 
overlapping factor K=4. It is important to note that the time interval T that appears in (23) 
and (24) corresponds to the signaling interval and the symbol duration of the OFDM in 

seconds. While for the FBMC T=20 where 0 is the signaling interval in FBMC and the 
symbol duration is KT=Lts in seconds. The frequency separation between successive 

subcarriers in FBMC 0=1/T which is the same as that in OFDM. Before the evaluation of 

the channel effect, the localization factor  and the interference power 2
I  was evaluated for 

each shaping filter without channel effect using L=4096 points. The results are shown in 
Table I. 
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TABLE I. LOCALIZATION FACTOR AND INTRINSIC INTERFERENCE POWER  

 Rect. RRC PHYDYAS Hermite IOTA 

Te 0.2887 0.2435 0.2745 0.2015 0.2729 

Be 8.4803 0.3612 0.3280 0.4031 0.3242 

 30.7784 1.1053 1.1314 1.0208 1.1118 
2
I  8.88×10-16 1.13×10-5 1.17×10-7 2.35×10-9 2.33 ×10-4 

Table I provides the metrics that are an initial indication about the shaping filter 
performance under a dispersive channel. The filters with low values of localization factor 
and interference power are expected to perform well under the dispersive channel. For the 

rectangular filter, the theoretical value of  is infinite due to the sinc shape of its spectrum 
and the finite value appearing in the table is due to the discretization of the filter but it is 
still much higher than the other filters. On the other hand, the interference power 2

I  is 

ideally zero due to the perfect orthogonality and it is showing the smallest value among the 
other filters.  

The channel model is a Rayleigh fading channel with uncorrelated scattering (US) and 
a tapped-delay profile 
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Where n is the nth delay and these delays are chosen to be fixed and equally spaced 

such that n=30n ns, Nc is the number of taps and is chosen that Nc=21 taps, this gives a 

maximum path delay max=600 ns. The coefficients cn are complex Gaussian samples, each 
has a Jakes Doppler spectrum with an exponential power profile [15] 
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Where  is the root mean square (RMS) delay of the continuous delay profile in (32). 

The actual rms delay rms of the discrete profile in (31) does not equal to  due to the 
discrete and finite nature of (31), so, it is calculated through the simulation. For a detailed 
treatment of the discretized exponential channel profile, the reader may refer to [15]. It is 

well known that the rms has the most impact on the system performance over max and even 
the power profile [18], so, the performance of the shaping filters will be analyzed against 

rms. Another aspect regarding the channel simulation is that the choice of the sampling 
intervals of the signal and the channel, which in many cases are chosen equally for 
performance evaluation purposes. In our case, they are unequal as stated earlier. In order to 
make valid analytical treatment, the channel model should be altered in order to fit the 
sampling interval of the signal, and this is accomplished by the transforming equation [18] 
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Where dk is the new set of channel coefficients and Nd is chosen such that coefficients 
beyond the index Nd become insignificant. The simulation results are presented over a range 

of rms and for different values of Doppler frequency fd as shown in Fig. 3 through Fig. 6. 

The value of rms is varied by varying the value of  in (32) while keeping the same channel 
profile. The comparison shows clearly the difference between different pulse shaping filter 

while the performance is the same against different channel parameters rms and fd. 
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FIG. 3. SIR vs rms FOR DOPPLER FREQUENCY fd=1Hz.  

 

 
FIG. 4. SIR vs rms FOR DOPPLER FREQUENCY fd=10Hz. 
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FIG. 5. SIR vs rms FOR DOPPLER FREQUENCY fd=100Hz. 

 

 

FIG. 6. SIR vs rms FOR DOPPLER FREQUENCY fd=1000Hz. 

VII. CONCLUSION 

In this paper, the main types of pulse shaping filters used in FBMC are analyzed and compared 
for their orthogonality, localization, and performance against time-frequency dispersive channel for 



 40 
 

 

various values of time spreading and Doppler frequency. the filter with the best localization which is 
the Hermite function filter showed the best performance against the dispersive effect of the channel 
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