Quasi-posinormal operators

Sadiq Naji Nassir*

Received 17, March, 2009 Acceptance 26, July, 2009

Abstract:

In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M-hyponormal operators, dominant operators and posinormal operators. We study some basic properties of these operators also we are looking at the relationship between invertibility operator and quasi-posinormal operator .

Key words: posinormal operators , Hyponormal operators ,M- hyponormal operators, dominant operators.

Introduction:

B(H) denote the set of all bounded linear operators on a Hilbert space H., an operator T is said to be posinormal operator if there exists a positive operator $P \in B(H)$, such that $TT^* = T^*PT$. Also, T is posinormal operator if and only $Range(T) \subseteq Range(T^*)$, [1,2].An operator T is called hyponormal $T^*T - TT^* \ge 0$, or operator if equivalently $||T^*x|| \le ||Tx||$ for all x in H [3] ,and T is called dominant operator if for each $\lambda \in \mathfrak{c}$ there exists a number $M_{\lambda} > 0$ $||(T - \lambda)^* x|| \le M_{\lambda} ||(T - \lambda)x||$ for all $x \in$ H. Furthermore, if the set of constants M_{λ} are bounded by a positive number M then T is called M-hyponormal operator [4,5,6,p480]. $\sigma(T)$, $\sigma_{_{p}}(T)$, $\sigma_{_{ap}}(T)$ and $r(T) = \sup\{|\lambda|, \lambda \in \sigma(T)\}$ denote the spectrum, the point spectrum, the approximate point spectrum of T and

the spectral radius of T, [6,p196,502]. An operator is said to be normaloid if ||T|| = r(T), [7,8], p267]. In this paper, we give some types of operators namely quasi-posinormal operators.

1- Some basic properties of quasi- posinormal operator.

We start this section by giving the definition of quasi-posinormal operator ,and we give some basic properties of these operators

Definition 1.1

Let $T \in B(H)$. We call T is a quasiposinormal operator if $Range(T^2) \subseteq Range(T^*)$.

Example 1.2

Let $H = \ell_2(\mathfrak{c}) = \{x: x = (x_1, x_2, x_3, ..., x_n, ...):$ $\sum_{i=l}^{\infty} |x_i|^2 < \infty \} , \text{ the Unilateral shift}$ operator on H is defined by $U(x_1, x_2, x_3, ...) = (0, x_1, x_2, x_3, ...)$. It is known that $U^*(x_1, x_2, x_3, ...) = (x_2, x_3, x_4,) \text{ and}$

^{*}Department of Mathematics-College of Science-University of Baghdad

 U^{2} (x₁, x₂, x₃,...) =U(0,x₁, x₂, x₃,...) =(0,0,x₁, x₂, x₃,...).

Now let $y \in \text{Range}(U^2)$ then $y = (0,0,x_1, x_2, x_3,...)$ for some x in H .If we assume $x = (0,0,0,x_1, x_2, x_3,...)$ then $U^*(x) = (0,0,x_1, x_2, x_3,...) = y$, and $y \in \text{Range}(U^*)$. Hence U is quasi-posinormal operator .

Now we give an operator that is not quasi-posinormal operator.

Example 1.3

Let $H = \ell_2(\mathfrak{q}) = \{x : x = (x_1, x_2, x_3..., x_n...):$ $\sum_{i=l}^{\infty} |x_i|^2 < \infty \} , \text{ the Bilateral shift}$ operator on H is defined by $B(x_1, x_2, x_3,...) = (x_2, x_3, x_4,....)$. It is known that $B^*(x_1, x_2, x_3,...) = (0, x_1, x_2, x_3,...)$. Now let y = (1,0,0,0,...,0,...) then $y \in \text{Range}(B^2)$ and $B^*(x) \neq y$ for all x in H .Hence $y \notin \text{Range}(B^*)$ and therefore B is not

The above example also shows that if T is quasi-posinormal operator then T^* is not quasi-posinormal operator.

In [9]. Douglas proved the following theorem

Theorem 1.4 [9]

For $A,B \in B(H)$ the following statements are equivalent:

1-Range (A) \subseteq Range (B)

quasi-posinormal operator.

 $2-AA \le \lambda^2 BB^*$ for some $\lambda \ge 0$

3-there exists a $T \in B(H)$ such that A=BT.

Moreover if one of 1, 2, and 3 holds then there is a unique operator T such that

 $a-||T||^2 = \inf \{ \mu : \mu \ge 0 \text{ and } AA^* \le \mu BB^* \}$

b-KerA = KerT; and

c-Rnage(T) $\subseteq \overline{Range(B^*)}$.

If we put $A = T^2$ and $B = T^*$ we get a special case from Douglas theorem

Which gives a characterization of totally quasi-posinormal operator.

Theorem 1.5

Let $T \in B(H)$, the following statement are equivalent;

1- $Range(T^2) \subseteq Range(T^*)$, i.e. T is quasi-posinormal operator.

2- $T^2T^{*2} \le \lambda^2T^*T$ for some $\lambda \ge 0$;

3- there exists an operator $C_T \in B(H)$, such that $T^2 = T^* C_T$

Moreover if 1,2,and 3 hold then there is a unique operator $C_T \in B(H)$ such that

a- $\|C_T\|^2 = \inf\{\mu, T^2 T^{*2} \le \mu T^* T \}$.

b-Ker T^2 =ker C_T ; and

 $\operatorname{c-}Range(C_T) \subseteq \overline{Range(T)}.$

Let $[T]=\{AT: A\in B(H)\}$ the left ideals in B(H) generated by T. We have the following corollary.

Corollary 1.6

T is quasi-posinormal operator if and only if $T^{*^2} \in [T]$.

Proof:

Let T be a quasi-posinormal operator then $T^2 = T^*C$ for some bounded operator $C \in B(H)$ and $T^{*^2} = C^*T$ implies $T^{*^2} \in [T]$. Conversely, if $T^{*^2} \in [T]$ then $T^{*^2} = KT$ for some $K \in B(H)$, and hence $T^2 = T^*K^*$ so T is quasi-posinormal operator .

Proposition 1.7

Let $T \in B(H)$,then T is quasi-posinormal operator if and only if for each x in H , there exists a constant

 $M \ge 0$ such that $\left\| T^{*2} x \right\| \le M \left\| T x \right\|$.

Proof:

Let T be a quasi-posinormal then

$$\left\|T^{*2}x\right\|^2 = \langle T^*T^*x, T^*T^*x \rangle = \langle T^2T^{*2}x, x \rangle$$

 $\leq M < T^*Tx, x >= M < Tx, Tx >= M ||Tx||^2$.for some $M \geq 0$.

Conversely ,let
$$||T|^2 x || \le M ||Tx||$$

 $< T^2 T^{*2} x, x > = < T^{*2} x, T^{*2} x > = ||T|^{*2} x ||^2$
 $\le M^2 ||Tx||^2 = M^2 < Tx, Tx > = M^2 < T^* Tx, x >$
,this implies for each x in H , then $T^2 T^{*2} \le M^2 T^* T$, hence T is quasiposinormal operator .

Proposition 1.8

Let $T \in B(H)$, if T is posinormal operator then T is quasi-posinormal. Proof:

Since

 $Range(T^2) \subseteq Range(T) \subseteq Range(T^*)$ then T is quasi-posinormal.

Corollary 1.9

Every Dominant operator in particular every M-hyponormal operator, hyponormal operator are quasi-posinormal operators.

The converse of the above Proposition is not true, see the following example.

Example 1.10

Let

H=
$$\ell_2(\phi)$$
={x:x=(x₁,x₂,x₃,...x_n,...):

$$\sum_{i=l}^{\infty} |x_i|^2 < \infty$$
 ,we define T by
T(x₁, x₂, x₃,...) =(x₂,0,0,0,...).
It is easy to check that

 $T^*(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3,...) = (0,\mathbf{x}_1,0,0,0,0,...)$ but $T^2(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3,...) = T(\mathbf{x}_2,0,0,0,.....)$ = (0,0,0,0,0,0,...) and $Range(T^2) \subseteq Range(T^3)$, hence T is quasi-posinormal operator.

Easily we see that $Range(T) \not\subset Range(T^*)$. Therefore T is not posinormal operator.

2- Invertibility, translates and quasiposinormal operator

In this section we are looking at the relationship between invertibilty operators and quasi -posinormal operator .A quasi- posinormal operator need not be an invertible operator (see example 1.2) ,we start this section by the following theorem

Theorem 2.1

Let $T \in B(H)$, be an invertible operator then

- 1- T is quasi-posinormal operator
- 2- T^{-1} is quasi-posinormal operator.

Proof:

1-
$$\|T^{*2}x\| \le \|T^{*2}\| \|x\| \le \|T^{*2}\| \|T^{-1}\| \|Tx\|$$

for all x in H ,we take $M = \|T^{*2}\| \|T^{-1}\|$,

hence T is quasi-posinormal operator 2-

$$\left\| \left(T^{-1} \right)^{*^{2}} x \right\| \leq \left\| \left(T^{-1} \right)^{*^{2}} \right\| \left\| x \right\| \leq \left\| \left(T^{-1} \right)^{*^{2}} \right\| \left\| T \right\| \left\| T^{-1} x \right\|$$

for all x in H, we take $M = \|(T^{-1})^{*2}\| \|T\|$,

hence T^{-1} is quasi-posinormal operator.

Corollary 2.2

Let $T \in B(H)$, and $\lambda \notin \sigma(T)$ then $T - \lambda I$ is quasi-posinormal operator.

Before we state the next theorem we need the following lemma which appeared in [10].

Lemma 2.3

Let $\{a_n\}$ be a sequence of positive numbers , which satisfy the relation $a_1^2 \le a_2$ and $a_n^2 \le a_{n-1}a_{n+1}$

for n=2,3,... then $a_1^n \le a_n$ for n=1,2,3,4,5,...

Theorem 2.4

Let T be an invertible operator and $||T^{-1}|| \le 1$ then

1-
$$||T|^2 x||^{n+1} \le M^{n(n+1)/2} ||T|^{n+2} x||$$
 for $||x|| = 1$ and $n=1,2,...$, there exists a constant M>0 such that

2- if $T^{n+1}x = 0$ then $T^2x = 0$ for all x in H.

Proof:

1-Let k=n+1. We want to show that $\|T^2x\|^k \le M^{k(k-1)/2} \|T^{k+1}x\|$

Let
$$a_1 = ||T|^2 x||$$
, and $a_k = M^{k(k-1)/2} ||T|^{k+1} x||$ $k=2,3,...$

Since

$$||T|^2 x||^2 = \langle T|^2 x, T|^2 x \rangle = \langle x, T|^{*^2} T|^2 x \rangle$$

 $\leq ||T|^{*^2} T|^2 x |||x|| \leq M ||T|^3 x ||$ then
$$a_1^2 \leq a_2.$$

Now

$$a_{k}^{2} = M^{k(k-1)} \| T^{k+1}x \|^{2} = M^{k(k-1)} < T^{k+1}x, T^{k+1}x >$$

$$= M^{k(k-1)} < T^{*2}T^{k+1}x, T^{k-1}x >$$

$$\leq M^{k(k-1)} \| T^{*2}T^{k+1}x \| \| T^{k-1}x \|$$

$$\leq M^{k(k-1)}M \| T^{k+2}x \| \| T^{k-1}x \|$$

$$\leq M^{k^{2}-k+1} \| T^{-1} \| \| T^{k+2}x \| \| T^{k}x \|$$

$$\leq a_{k+1}a_{k-1} \quad \text{then by Lemma 2.3}$$

$$a_{k}^{1} \leq a_{k} \quad \text{and} \quad \| T^{2}x \|^{k} \leq M^{k(k-1)/2} \| T^{k+1}x \|$$

$$\|T^{2}x\|^{n} = \|x\|^{n} \|T^{2}\frac{x}{\|x\|}^{n}$$

$$\leq \|x\|^{n} M^{n(n-1)/2} \|T^{n+1}\frac{x}{\|x\|}\| \leq 0 \quad , \text{ hence}$$

 T^2 x=0 for all x in H.

Theorem 2.5

Let T be a quasi-posinormal operator and then

 $1-\lambda T$ is a quasi-posinormal operator for $\lambda \in \mathfrak{c}$

2- the translate $T+\lambda I$ need not be a quasi-posinormal operator

Proof:

1-

$$\left\| \left(\lambda T \right)^{*^2} x \right\| = \left| \lambda \right|^2 \left\| T^{*^2} x \right\| \le M \left| \lambda \right|^2 \left\| T x \right\| \le M \left| \lambda \right| \left\| \lambda T x \right\|$$
 for all x in H.

2- consider the case T=B-5I (where B is the operator defined in

example 1.3). Since $5 \notin \sigma(B)$, then T is an invertible operator by theorem 2.1 T is quasi-posinormal operator. But T+5I=B is not quasi posinormal operator

Definition 2.6

Let $T \in B(H)$, the quasi-spectrum of T, denoted Q(T) is the set $\{\lambda \colon T - \lambda I \text{ is not quasi-posinormal operator }\}$ Proposition 2.7

let $T \in B(H)$,be a quasi- posinormal operator then

- 1- Q(T) $\subseteq \sigma(T)$.
- 2- If $\lambda \in \sigma_p(T)$ and $(T \lambda)^{*^2} x \neq 0$ for all $x \neq 0 \in H$ then $\lambda \in Q(T)$.
- 3- If $\lambda \in \sigma_{ap}(T)$ and $(T \lambda)^{*^2} x \neq 0$ for all $x \neq 0 \in H$ then $\lambda \in Q(T)$. Proof:
- (1) By corollary 2.2 makes that Q(T) is a subset of $\sigma(T)$.
- (2) Suppose $\lambda \notin Q(T)$ then T- λI is quasi-posinormal operator and $\|(T \lambda I)^{*^2} x\| \le M \|(T \lambda)x\|$ for all x in H. Now $\lambda \in \sigma_{ap}(T)$ then there exists $x \ne 0$ such that $(T \lambda)x = 0$ and $(T \lambda)^{*^2} x = 0$ contradiction , hence $\lambda \in Q(T)$
- (3) by the same way we can prove it.

Remark 2.8

The sum and the product of two quasi-posinormal operators need not be quasi-posinormal operator. We can see that by the following examples

1- Let $H = \ell_2(\mathfrak{q})$, Let $T_1 = U$ the unilateral shift operator and T_2 is the operator defined on H by

operator defined on T_1 by $T_2(x_1,x_2,x_3,...) = (0,0,0,-x_3,-x_4,-x_5,......)$ it is clear that T_2 is hyponormal operator hence T_2 quasi-posinormal operator .Now (T_1+T_2) ($x_1, x_2, x_3,...$)= $T_1(x_1, x_2, x_3,...) + T_2(x_1, x_2, x_3,...) =$

1285

 $(0, x_1, x_2, 0, 0, 0, 0, 0, \dots)$, and $(T_1 + T_2)^*$ $x_1, x_2, x_3,...$)=($x_2, x_3, 0, 0, 0,$). If we take $x=(0,0, x_3, x_4, x_5...)$ such that $x_{3} \neq 0$, then $\|(T_{1} + T_{2})x\|^{2} = \|0\|^{2}$ which $||(T_1 + T_2)x|| = 0,$ $||(T_1 + T_2)^{*2}x||^2 = ||(T_1 + T_2)^*(0, x_3, 0, 0, 0, 0)||^2 =$ $||(x_3,0,0,0,0,...)||^2 = |x_3|^2$ then for all $M > 0 \ \ \text{that} \ \ \|_{(T_1 + T_2)^{*^2} x} \|_{\, \geq \, M} \, \|_{(T_1 + T_2) x} \| \quad \text{ and } \quad$ is not quasi-posinormal (T_1+T_2) operator. 2- Let $H = \ell_2(\mathfrak{c})$, $T_1 = U$ the unilateral shift operator and T_2 be the operator defined on H by $T_2(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3,...) = (\mathbf{x}_1, \mathbf{x}_2,0,0,0,...)$ then T_2 is self-adjoint operator hence is quasi-posinormal operator but $T_1T_2(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots) =$ T_1

 $x_2,0,0,0,\ldots$)= $(0,x_1, x_2,0,0,0,0,\ldots)$ and

 T_1T_2 is not quasi-posinormal operator

Remark 2.9

by above example (1).

Let $T \in B(H)$ be a quasi-posinormal operator then T is not normaloid operator. i.e. the spectral radius of T is not necessarily equal to $\|T\|$, for example let $\{e_n\}_{n=1}^{\infty}$ be an orthogonal basis of a Hilbert space H and T be the a weighted shift defined by $Te_1 = e_2$, $Te_2 = 2e_3$ and $Te_i = e_{i+1}$ for $i \ge 3$, in [11]. Wadhwa.B.L proved that T is Mhyponormal operator, and not normaloid operator but by Corollary 1.9 T is quasi posinormal operator and not normaloid operator.

References:

1- Amelia Bucur 2003." Posinormality versus hyponormality for cesaro

- oerators" General math. Vol11, no1-2,pp33-46.
- 2-B.P. Duggal and C.Kubrusly . 2006." Weyls theorem for posinormal operators ",J Korean Math.Soc.No.3,pp.529-541.
- 3- S.Mecheri 2005 " ON normality of operators " Revista Colomiona de Math. Vol.39, pp.1-9.
- 4-Ahmed Bachir 2004 "Generalized Derivation" SUT Journal of Math. Vol.40,No.2, pp111-116.
- 5- Stampfli J.G., and Wadhwa B.L..1976. " An asymmetric Putnam-Fuglede theorem for dominant operators" . Indiana Univ.math.,J 25.359-365.
- 6- Balmohan V.Limaye, 2006. "functional analysis" second E ditor , New age international LTD.Delhi
- 7- Raul.E. Curto and Young Min Han 2003 " Weyls theorem for algebraically paranormal operators" Integral Equations and operator theory vol.47,pp.307-314.
- 8- Istratesca, V. 1981. "introduction to linear operator theory" Marcel Dekke, ing, New York
- 9- Douglas, R.G. 1966. "On majorization, Factorization and range Inclusion of Operators on Hilbert Space", Proc Amer.Soc. 17,pp.413-416.
- 10- Stampfli, JG .1976. "Alocal spectral Theory for operators V:spectral subspaces for hyponormal operators ,Trans. Amer.Math.Soc.Vol.217:pp.285-298.
- 11-Wadhwa. B.L. 1974 . "M-hyponormal operators ".Duke, Math. J vol.41:pp.655-660.

المؤثرات الشبه السوية الموجبة

صادق ناجی ناصر *

*قسم الرياضيات كلية العلوم- جامعة بغداد

الخلاصة:

في هذا البحث سندرس صنفاً من المؤثرات المعرفة على فضاء هلبرت سوف نطلق على عناصره اسم المؤثر شبه السوي الموجب ويضم كلا من صنف المؤثرات السوية، المؤثرات فوق السوية و المؤثرات فوق السوية من النمط M ،المؤثرات المهيمنة والمؤثرات السوية الموجبة و سوف ندرس بعض الصفات الاساسية لهذا الصنف من المؤثرات وكذلك البحث عن العلاقة التي تربط هذا الصنف بالمؤثرات التي لها نظير.