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تم الحصول عمى زيادة طفيفة نسبياً في تردد الهيكل عند زيادة ضغط المائع  سرعة دخول حرجة لممائع المتدفق.
الداخل. بالاضافة الى ذلك كان هناك سمك مثالي للانبوب و لكل سرعة تدفق لممائع و التي تؤدي الى الحصول 

 عمى اقصى خواص ديناميكية.
 

 ه, عنصر محدد, جريان مائع, السرعة الحرجة, التردد الطبيعي.خط انابيب ذات زاويكلمات رئيسية: 

1. INTRODUCTION 

The dynamics and stability of pipes conveying fluid have been studied extensively 

over the past 60 years, because of its growing importance in aerospace and nuclear 

fields such as vibrations of heat exchangers, liquid-fuel rocket piping, and nuclear 

reactor coolant channels. Generally, fluid flow through a pipe can impose a pressure 

on the internal wall of the pipe causing to deflect it under certain flow conditions. Due 

to this flow, an internal reaction force is produced that leading to curve the pipe and 

conform the fluid at any instant of motion. Due to acceleration of fluid and pipe 

masses, a gyroscopic effect is also presented. The gyroscopic effect always opposes 

the accelerated motion of the structure. The Coriolis force should be taken into 

consideration which resulted from relative motion between the pipe and fluid through 

its motion. These accompanying factors lead to increase the pipeline instability in 

different amounts.     

      Housner (1952) studied the flow induced vibration of a straight pipe by using 

Hamilton’s principle. For a simply supported straight pipe, he found that the pipe may 

buckle, like a column subjected to axial loading, at a critical flow velocity. Benjamin 

(1961) and Gregory and Païdoussis (1966) modeled cantilevered pipe as a branch pipe 

and an elastic continuum pipe, respectively, to investigate the dynamic behaviors. 

Unny et al. (1970) studied the effect of curvature on the dynamic behaviors of curved 

pipes, and Chen (1972, 1973) analyzed curved pipes by investigating in-plane and 

out-of-plane vibrations. The effects of flow velocity and Coriolis force on the natural 

frequency were discussed. Mote (1971) studied the vibration and stability of 

cantilever pipe by finite element method using Ritz method, Hill and Davis (1974) 

investigated the vibration of the pipe with constant curvature by finite element method 

using Galerkin's method. Kohli and Nakva (1984) analyzed the straight and curved 

tubes conveying fluid by means of straight beam finite elements. Koo and Park (1996) 

investigated the vibration analysis of piping system conveying fluid by employing the 

wave approach. The straight pipe elements conveying fluid were formulated using a 

dynamic stiffness matrix in the frequency domain. The curved pipe sections were 

treated with a single curved pipe element utilizing the mixed methodology of the 

dynamic stiffness method and the transfer matrix method. Lee et al. (1996) presented 

a transfer matrix formulation for three dimensional vibration analysis of straight and 

curved piping systems containing fluid flow with small computer core memory usage. 

Nadeem (2001) studied the dynamics behavior of pipelines using finite element 

method taking into consideration the dynamics effects of Coriolis force on a fluid 

filled pipeline. His study was limited to in plane vibration of pipeline. Lee and Chung 

(2002) investigated a new non-linear model of a straight pipe conveying fluid where 

the pipe is fixed at both ends. Jung (2008) analyzed the in-plane and out-of-plane 

motions of a semi-circular pipe conveying fluid. Assuming that the centerline of the 

semi-circular pipe was extensible, nonlinear equations of in-plane and out-of-plane 

motions are derived according to the extended Hamilton's principle. The derived 

equations of motion were discretized by applying the Galerkin method. Linearized 
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equations around the equilibrium position were obtained from the discretized 

equations, and then the dynamic characteristics of the pipe were investigated. Rinaldi 

(2009) investigated the dynamics and stability of cantilevered structures subjected to 

internal, external, or simultaneous internal and external axial flows. This was 

accomplished, in some cases, by deriving the linear equations of motion using a 

Newtonian approach and, in other cases, by making the necessary modifications to 

existing theoretical models. The continuous cantilevered systems were then 

discretized using the Galerkin method in order to determine their complex eigen 

frequencies. Moreover, numerous experiments were performed to compare and 

validate, or otherwise, the theoretical models proposed. Huang et al. (2010) applied 

the eliminated element-Galerkin method to calculate the natural frequency with 

different boundary conditions on the basis of typical transverse vibration model. 

Then, the relationship between simplified natural frequency of the pipeline and that of 

Euler beam was discussed. In a given boundary condition, the four components (mass, 

stiffness, length and flow velocity) which relate to the natural frequency of pipeline 

conveying fluid were studied in detail and the results indicate that the effect of 

Coriolis force on natural frequency was inappreciable. Meng et al. (2011) investigated 

the three-dimensional nonlinear dynamics of a fluid-conveying pipe undergoing 

overall motions. The nonlinear differential equations were solved using Ritz method. 

Ni et al. (2011) analyzed the free vibration problem of pipes conveying fluid with 

several typical boundary conditions using differential transformation method. It is 

demonstrated that the differential transformation method has high precision and 

computational efficiency in the vibration analysis of pipes conveying fluid.   

     In this paper, an angled pipeline composed of two straight pipes connected by an 

elbow are constructed in three-dimensional space and analyzed by finite element 

method. A fixed-fixed pipeline end conditions will be adopted in this study. The mass, 

stiffness, damping (Coriolis) matrices are derived and the eigenvalue analysis is then 

performed. The forces occur due to momentum change and pressure when the fluid 

pass by the elbow part is considered.  

 

2. EQUATION OF MOTION 

The differential equation of motion for three dimensions vibration of a frame pipe 

carrying a moving fluid is given by (Païdoussis, 2004) 
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   Where u, w, and v are the coordinate axes in the directions of x, y, and z 

respectively, θ is the pipe angular displacement, E and G  are the pipe axial and shear 

moduli of elasticity respectively, Iy and Iz are moment of inertia of the pipe in y and z 

directions respectively, J is the pipe polar moment of inertia, m = mass of the pipe per 

unit length, conveying fluid of mass per unit length (M), U is the steady mean flow 

velocity of fluid with respect to pipe, x = coordinate measured along the pipe length, 

Fx is the tension force in the pipe, Ap, Ai, r are the cross section pipe area, internal 

pipe area (fluid area), and pipe radius of gyration respectively. Fig.(1) shows a simple 
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representation, in three dimensional space, of the problem within hand which is 

consist of two pipe joint at their junction by an elbow.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(1): Pipeline Model. 

 

3. FINITE ELEMENTS DISCRETIZATION  

In Fig.(2), i and j represent the node points of finite element of length (l). Each node 

point has 6 degrees of freedom which consist of 3 linear displacements u, w, v and 3 

rotational displacements θx , θy ,θz. Therefore the finite element has the total 12 

degrees of freedom.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(2): Degree of freedom of pipe element. 

 

The element displacement vector for a pipe element in space can be written as 
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For transverse (flexural) pipe vibration, the shape functions are (Rao, 2004) 
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While, for axial and torsional vibrations the shape functions are 
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The displacement models can be expressed as 

 

- For transverse displacements 





4

1

)()()(
k

kk qxNxvxw                                                                                             (5) 

- For axial and torsional displacements 
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The kinetic energy of pipe element is equal to 
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   After finding the individual mass matrices for each term in the above equation, the 

total arranged mass matrix, according to displacement vector [eq. (2)], of pipe 

element in space has the following form 
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While the potential energy is 
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This will lead to the following symmetry pipe stiffness matrix  
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    Leading to symmetry matrix (k2), which contains the force per unit length (stiffness 

unit) that conforms the fluid to the pipe (weakening effect) besides the axial tension 

force (stiffening effect). 
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   Here, we will call the above matrix as a contradictory matrix because it contains 

two opposite component effects. Where Fx  is an axial tension force that caused by 

the change in fluid's momentum and pressure in a pipe bend (elbow). Fig.(3) shows 

the induced axial tension forces in the pipe bend. 

 

 

 

 

 

 

 

 

 

 

Fig.(3): Tension forces in pipe bend. 

 

 

From Fig.(3), the axial tension forces in pipe bend are equal to (Munson et al., 2002): 
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   From the mathematical formulation presented above, it is clear that the overall 

stiffness is composed of two parts, namely the contradictory and pipe structural 

stiffness matrices.  
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Coriolis acceleration arising from the fluid flows with velocity U relative to the pipe. 

This term has a dissipation energy which is equal to  

 

dx
t

v

x

v
MUdx

t

w

x

w
MUDE

ll

)()(2)()(2
0

2
1

0

2
1

















                                                              (15) 

 

α 

U2, A2, p2, Q 

U1, A1, p1,Q 

Fx1 

Fx2 



INSTABILITY OF ANGLED PIPELINE ARISING                                             Nawras Haidar
*
,      

FROM INTERNAL FLUIDS FLOW                                                                    Salwan Obaid
*
                                                                           

                                                                                                                        Mohamed Jawad
*
 

_________________________________________________________________   ________________ 

222 

 

This gives a skew-symmetry damping matrix 
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    It can be seen that the 12 * 12 element matrices given in eqs. (8), (10), (12) and 

(16) are with respect to the local xyz coordinate system. Since the nodal displacements 

for the angled pipe are in different local coordinates, thus it must transform the local 

coordinate to global coordinate system. The transformation matrix, λ, can be 

identified as (Rao, 2004); 
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Here, lox, mox, and nox denote the direction cosines of the x-axis; loy, moy , and noy 

represent the direction cosines of the y-axis; and loz, moz, and noz indicate the direction 

cosines of the z-axis with respect to the global axes. This leads to the following global 

element matrices: 

]][ˆ[][]ˆ[  mm T

Global
                                                                                                   (18) 

]][[][][  overall

T

Globaloverall kk                                                                                        (19) 

]][[][][  CC T

Global
                                                                                                   (20) 

 

4. DYNAMIC ANALYSIS 

The standard equation of motion in the finite element form is 
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}0{}{][}{][}{]ˆ[  qkqCqm GlobaloverallGlobalGlobal
                                                            (21) 

  Where koverall =(k1,overall - k2, overall) 

 

    Since the above equation has a damping term with skew-symmetric characteristic, 

thus the solution of eigenvalues problem should be executed to the characteristic 

matrix [ ] (Meirovitch, 1980), which is equal to 
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   The solution of eigenvalue problem yields complex roots. The imaginary part of 

these roots represents the natural frequencies of damped system. The real part 

indicates the rate of decay of the free vibration. 

 

5. RESULTS AND DISCUSSION  

Fig.(4) shows the effect of frame angle on the critical velocity of fluid. It is clear that 

any increase in frame angle will lead to decrease the critical flow velocity, i.e. 

accelerate the instability of structure. This behavior is mainly caused by decreasing 

the axial tension forces in the pipe bend, which play a stiffening role, with increasing 

the frame angle. The important note is that when the frame angle converges to 90
o
. At 

this angle, the critical flow velocity goes to reach an infinite value where the 

contradictory matrix (k2) is vanished. This behavior was confirmed previously by the 

works that done by (Koo et al., 1996 and Lee et al., 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(4): Effect of frame angle on critical velocity of fluid.  
Pipe lengths L1 and L2 are (2 m), fluid density is (1000 kg/m

3
), pipe density is (8000 kg/m

3
), thicknesses 

of pipes are (0.001 m), outer diameters of the pipes are (0.03 m), elastic modulus of pipe is (207 GPa). 
 

 Fig.(5) presents the effect of pipe lengths ratio on the critical flow velocity with 

different frame angles. Any increase in this ratio leads to decrease the critical velocity 

of flowing. The main reason of this behavior is that the fame structure becomes 

heavier in weight and weaker in its stiffness with increasing frame length ratio. 

Moreover, the curves behave to converge when the value of this ratio reaching one 

and will continue in compactness after this value.   
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Fig.(5): Effect of frame lengths ratio on the critical fluid velocity with different frame 

angles. Pipe length L1 is (2 m), fluid density is (1000 kg/m
3
), pipe density is (8000 kg/m

3
), thicknesses 

of pipes are (0.001 m), outer diameters of the pipes are (0.03 m), elastic modulus of pipe is (207 GPa). 
 

    Figs.(6-a, b and c) show the effect of inlet fluid velocity on the fundamental frame 

frequency with different diameters ratios and different frame angles. In general, 

increasing the inlet fluid velocity leads in turn to weaken the frame frequency. The 

unexpected behavior is executed by the frame with angle equal or larger than 170
o
 for 

all pipe diameter ratios accept unity. Where in   Fig.(6-a) and at relatively low inlet 

fluid velocity about (11 m/s), the frame frequency tends to reduce with increasing the 

inlet fluid velocity and then after this behavior is reversed. Further increasing in inlet 

fluid velocity leads to dramatic drop in frequency. This behavior can be depicted as an 

alternative one. Where, at relatively low inlet velocity, the force conforms fluid 

(weakening effect) seems to be larger than the axial tension forces (stiffening effect) 

generated in the pipe frame. With further increase in flow velocity, the values of these 

effects will be reversed i.e. stiffening effect becomes larger than weakening effect. 

The values of axial tension forces components are very sensitive to frame angle and 

pipes sections (pipe diameters ratio).  
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(c) 

 

Fig.(6): Effect of inlet fluid velocity on the frame frequency with different diameters 

ratio and different frame angles.  
Pipe lengths L1 and L2 are (2 m), fluid density is (1000 kg/m

3
), pipe density is (8000 kg/m

3
), thicknesses 

of pipes are (0.001 m), outer diameter of the inlet pipe is (0.03 m), elastic modulus of pipe is (207 

GPa), Inlet fluid pressure is    (100 kPa).   

 

    In Fig.(7), the relation between diameters ratio and critical inlet velocity at 

different frame angles is shown. In this figure, the critical inlet velocities will rise 

continuously with increasing the diameters ratio and reaching maximum values, then 

after it will drops smoothly. It is well known that increasing the second pipe diameter 

leads to minimize the fluid velocity through this pipe (positive effect on the frame 

dynamic characteristics). At same time, the pipe will be heavier (negative effect on 

frame dynamic characteristics). The combination of these two effects gives a complex 

behavior. Also here, the frame with an angle of 170
o
 exhibits an alternative behavior 

for the reasons that clarified before. 
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Fig.(7): Effect of outer diameters ratio on the critical fluid velocity at different frame 

angles.  
Pipe lengths L1 and L2 are (2 m), fluid density is (1000 kg/m

3
), pipe density is (8000 kg/m

3
), thicknesses 

of pipes are (0.001 m), outer diameter of inlet pipe is (0.03 m), elastic modulus of pipe is (207 GPa), 

inlet fluid pressure is           (100 kPa). 

 

    Fig.(8) shows the effect of inlet fluid velocity on the frame frequency with different 

inlet fluid pressures. Here, at same inlet velocity, the frame frequency will increase by 

little amount when increasing the inlet fluid pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(8): Effect of inlet fluid velocity on the frame frequency with different inlet fluid 

pressures. 
Pipe lengths L1 and L2 are (2 m), fluid density is (1000 kg/m

3
), pipe density is (8000 kg/m

3
), thicknesses 

of pipes are (0.001 m), frame angle (150
o
), outer diameters of pipes are (0.03 m), elastic modulus of 

pipe is (207 GPa). 

 

     Fig.(9) presents the effect of pipe thickness on the frame frequency at different 

inlet fluid velocities. When the pipe thickness is relatively small, the effect of fluid 

velocity on the frame frequency is obvious. Increasing pipe thickness to certain values 

gives the best ever frame frequency for each fluid velocity. After that, the frame 

frequency will converge and drops smoothly. This behavior is mainly caused by 

increasing pipe stiffness and weight with thickness increasing. This means that there 

is an optimum pipe thickness for each flowing velocity that gives best ever frame 

frequency. The combined effects of these two parameters will control the dynamic 

behavior of the angled pipeline structures.  
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Fig.(9): Effect of pipe thickness on the frame frequency at different inlet fluid 

velocities. 
Pipe lengths L1 and L2 are (2 m), fluid density is (1000 kg/m

3
), pipe density is (8000 kg/m

3
), frame 

angle (150
o
), outer diameters of pipes are (0.05 m), elastic modulus of pipe is (207 GPa). 

 

 

5. CONCLUSIONS 

Through the theory and numerical simulations for the fluid conveying angled 

pipelines, the following conclusions are obtained: 

1- Increasing frame angle from 90
o
 up to 180 

o 
will lead to decrease the critical 

flow velocity of fluid. 

2- The pipeline frame is always stable when it constructed with right angle. 

3- In angled pipeline, a contradictory matrix is formed which consist of two 

opposite effects namely weakening and stiffening.  

4- There is an optimum diameters ratio for each frame angle that gives the larger 

inlet critical velocity of fluid. 

5- Increasing the frame inlet fluid pressure leads to relatively slight increase in its 

frequency. 

6- For each fluid flow velocity, there is an optimum pipe thickness that gives the 

best dynamic characteristics.   
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Nomenclatures 

 

Symbol Definition Basic Unit 

Ai Fluid cross-sectional area m
2 

Ap Pipe cross-sectional area m
2 

C Damping matrix  -
 

E Modulus of elasticity of pipe N/m
2 

Fx Tension force in the pipe N 

G Shear modulus of elasticity of pipe N/m
2
 

I Unity matrix - 

Iy, Iz Pipe second moment of area in y and z 

directions 

m
4 

J Polar second moment of area  m
4 

1k  Stiffness matrix of pipe -
 

2k  Contradictory matrix - 

L1 Length of first pipe m 

L2 Length of second pipe m 

l Element length of pipe m
 

M Fluid mass per unit length kg/m
 

m Pipe mass per unit length kg/m 

m̂  Pipe mass matrix - 

Ni Shape function - 

OD Outer diameter of pipe m
 

p Pressure inside the pipe N/m
2 

Q Fluid discharge  m
3
/s 

r Radius of gyration of pipe section  m 

t Time s 

U Fluid velocity relative to the pipe m/s
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q Displacement vector  - 

q  Velocity vector - 

q  Acceleration vector -
 

x,y,z Cartesian axes - 

α Frame angle degree
 

λ Transformation matrix - 

 


