:

•

: -1

-2

-3

-4

·

u u

: 22

: •

•

•

•

```
( ) () ()
5 1
(
              .(
                          10
                                   6-10
                                                  1-5)
                (1-5)
                                                               : a_1b_1c_1
               (6-10)
                                                               : a_1b_1c_2
                10
                                                               : a_1b_1c_3
                (1-5)
                                                               : a_1b_2c_1
               (6-10)
                                                               : a_1b_2c_2
                10
                                                               : a_1b_2c_3
```

: $a_2b_1c_1$

(1-5)

```
(6-10)
                                                                                                                                      : a_2b_1c_2
                                                                                                                                      : a_2b_1c_3
                                             10
                                  (1-5)
                                                                                                                                     : a_2b_2c_1
                                 (6-10)
                                              10
                                                                                                                                      : a_2b_2c_3
                                                                                                                 [ ]
\boldsymbol{A}
В
                                                         a_2
                                                                            a_1
                                                          \begin{array}{ccc} & & & & \\ & & & \\ & & & \\ c_2 & & & \\ & & & \\ \end{array}
                           c<sub>3</sub> 6-10
                                                                                                                                              10
                                                                                              [ ]:
                                                                                                                  \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \\ k = 1, 2, ..., c \end{cases}
y_{ijks} = \mu + R_s + A_i + B_j + C_k + AB_{ij} + AC_{ik} + BC_{jk} + ABC_{ijk} + e_{ijkl}
       k j i
                                                                       S
                                                                                                                                          : y_{ijks}
```

a

. *C B*

b

()

		F
r-1=	$\frac{\sum Y_{\dots s}^2}{abc} - \frac{(Y_{\dots})^2}{abcr}$	

blocks	3	$\frac{\sum Y_{i}^2}{bcr} - \frac{(Y_{})^2}{abcr}$
(A)	a-1= 1	$\frac{\sum Y_{.j}^2}{acr} - \frac{(Y_{})^2}{abcr}$
(B)	b-1=	$\frac{\sum Y_{k.}^2}{abr} - \frac{(Y_{})^2}{abcr}$
(C)	1	$\frac{\sum Y_{ij}^{2}}{cr} - \frac{\sum Y_{i}^{2}}{bcr} - \frac{\sum Y_{.j}^{2}}{acr} + \frac{(Y_{})^{2}}{abcr}$
A imes B	c-1= 2	$\frac{\sum_{i.k.}^{Y_{i.k.}^2} - \sum_{bcr}^{Y_{i.k.}^2} - \sum_{abr}^{Y_{i.k.}^2} + \frac{(Y_{})^2}{abcr}}{abcr}$
$A \wedge B$		
$A \times C$	(a-1)(b-1) = 1	$\frac{\sum Y_{.jk.}^{2}}{ar} - \frac{\sum Y_{.j}^{2}}{acr} - \frac{\sum Y_{.k.}^{2}}{abr} + \frac{(Y_{})^{2}}{abcr}$
$B \times C$	(a-1)(c-1)= 2	$\frac{\sum Y_{ijk}^2}{r} - \frac{\sum Y_{ij.}^2}{cr} - \frac{\sum Y_{ik.}^2}{br} - \frac{\sum Y_{.jk.}^2}{ar} + \frac{\sum Y_{.i}^2}{bcr} + \frac{\sum Y_{.j}^2}{acr} + \frac{\sum Y_{.k.}^2}{abr} - \frac{(Y_{})^2}{abcr}$
$A \times B \times C$	(<i>b</i> -1)(<i>c</i> -1)= 2	
	(a-1)(b-1)(c- 1)=2	
	(abc-1)(r-1)= 33	

$\sum y_{ijkr}^2 - \frac{(Y_{})}{abcr}$			$\sum_{i} y_{iikr}^2 - \frac{\langle \rangle}{1}$		
---	--	--	---	--	--

[]

.

·

(SSR) shortest significant range .

•

$$LSR = \sqrt{\frac{MSE}{r}} SSR$$

. MSE

. r

. LSR

LSR . LSR

: :

п

:

: •

(2)

S.O.V.	D.F.	S.S.	M.S.	F
	3	40.824	13.608	14.970**
()	1	7.245	7.245	7.970**
(A)	1	5.956	5.956	6.552**
(B)	2	20.726	10.363	11.400**
	1	5.923	5.923	6.516**
(C)	2	18.923	9.462	10.409**
$A \times B$	2	25.007	12.504	13.755**
$A \times C$	2	20.781	10.391	11.431**
$B \times C$	33	29.997	0.909	
$A \times B \times C$				
	47			

(%1)

. 0.01

.(3)

t_{i}	\overline{Y}_i	LSR	\overline{Y}_i	\overline{Y}_i	$\overline{Y_i}$	$\overline{Y_i}$	$\overline{Y_i}$	$\overline{Y_i}$	\overline{Y}_i	$\overline{Y_i}$	$\overline{Y_i}$	$\overline{Y_i}$	\overline{Y}_i
		0.05	_	-	_	-	-	-	-	-	-	-	-
			4.	8.	8.	10	12	13.1	14.1	14	14	16	19
			0	1	7	.0	.2			.2	.3	.9	.3

$a_1b_2c_3$	24	1.62	20	16	15	14	12	11.4	10.4	10	10	7.	5.
	.5		.5	.4	.8	.5	.3	*	*	.3	.2	6*	2*
			*	*	*	*	*			*	*		
$a_1b_2c_2$	19	1.61	15	11	10	9.	7.	6.2*	5.2*	5.	5.	2.	
	.3		.3	.2	.6	3*	1*			1*	0*	4*	
			*	*	*								
$a_{2}b_{2}c_{2}$	16	1.61	12	8.	8.	6.	4.	3.8*	2.8*	2.	2.		
	.9		.9	8*	2*	9*	7*			7*	6*		
			*										
$a_2b_1c_3$	14	1.60	13	6.	0.	4.	2.	1.2	0.2	0.			
	.3		.9	2*	6*	3*	1*			1			
			*										
$a_2b_1c_2$	14	1.58	10	6.	5.	4.	2.	1.1	0.1				
	.2		.2	1*	5*	2*	0*						
			*										
$a_{2}b_{2}c_{1}$	14	1.57	10	6.	5.	4.	1.	1					
	.1		.1	0*	4*	1*	9*						
			*										
$a_1b_2c_1$	13	155	9.	5.	4.	3.	0.						
	.1		1*	0*	4*	1*	9						
$a_2b_1c_1$	12	1.53	8.	4.	3.	2.							
	.2		2*	1*	5*	2*							
$a_1b_1c_3$	10	1.49	6.	1.	1.								
	.0		0*	9*	3								
$a_1b_1c_2$	8.	1.45	4.	0.									
	7		7*	6									
$a_1b_1c_1$	8.	1.38	4.										
	1		1*										

10)
$$a_1b_2c_3$$
 (() $a_1b_2c_3$ (() $a_1b_2c_2$. ((6-10)) $a_2b_1c_3$ $a_2b_2c_2$ () 10

 $a_1b_2c_1 \quad a_2b_2c_1 \quad a_2b_1c_2$

•

· (4)

S.O.V.	D.F.	S.S.	M.S.	F
	3	29.215	9.738	14.981**
()	1	13.271	13.271	20.417**
(A)	1	11.302	11.302	17.388**
(B)	2	27.928	13.964	21.483**
(C)	1	1.216	1.216	1.871
$A \times B$	2	28.290	14.145	21.762**
$A \times C$	2	0.911	8.956	0.701
$B \times C$	2	13.173	6.785	10.133**
$A \times B \times C$	33	21.450	0.650	
	47			

. 0.01

. 0.05

) . (

.(5)

	t_{i}	\overline{Y}_{i}	LSR	\overline{Y}_i	$\overline{Y_i}$	\overline{Y}_i	$\overline{Y_i}$	\overline{Y}_i	$\overline{Y_i}$	$\overline{Y_i}$	$\overline{Y_i}$	$\overline{Y_i}$	$\overline{Y_i}$	\overline{Y}_i
			0.05	_	_	_	_	_	-	-	-	-	_	-
				5.	8.	9.	11	12	13.3	13.5	14	14	15	19
				1	5	1	.2	.7			.3	.7	.4	.4
a_1b	$c_{2}c_{2}$	23	1.37	18	15	14	12	10	10.2	10.0	9.	8.	8.	4.

(5)

	.5		.4	.0	.4	.3	.8	*	*	2*	8*	1*	1*
	.5		. -	*	*	*	*			2	0	1	1
$a_1b_2c_3$	19	1.37	14	10	10	8.	6.	6.1*	5.9*	5.	4.	3.	
	.4		.3	.9	.3	2*	7*			1*	7*	98	
			*	*	*							*	
$a_2b_2c_2$	15	1.36	10	6.	6.	4.	2.	2.12	1.92	1.	0.		
	.4		.3	9*	3*	2*	7*	*	*	12	72		
			*										
$a_1b_2c_1$	14	1.35	9.	6.	5.	3.	2.	1.4*	1.2	0.			
	.7		6*	2*	6*	5*	0*			4			
$a_2b_1c_2$	14	1.34	9.	5.	5.	3.	1.	1.0	0.8				
	.3		2*	8*	2*	1*	6*						
$a_1b_1c_2$	13	1.33	8.	5.	4.	2.	0.	0.2					
	.5		4*	0*	4*	3*	8						
$a_2b_1c_3$	13	1.31	8.	4.	4.	2.	0.						
	.3		2*	8*	2*	1*	6						
$a_1b_1c_3$	12	1.29	7.	4.	3.	1.							
	.7		6*	2*	6*	5							
$a_1b_1c_1$	11	1.26	6.	2.	2.								
	.2		1*	7*	1*								
$a_{2}b_{2}c_{1}$	9.	1.23	4.	0.									
	1		0*	6									
$a_2b_1c_1$	8.	1.16	3.										
	5		4*										

6-)
$$a_{1}b_{2}c_{2} \qquad (\qquad (10$$

$$) a_{1}b_{2}c_{3} \qquad . \qquad \\ \qquad (\qquad 10 \qquad \\ \qquad \qquad a_{2}b_{2}c_{2} \qquad . \qquad \qquad a_{1}b_{2}c_{1} \quad a_{2}b_{1}c_{2}$$

; ·

(6)

S.O.V.	D.F.	S.S.	M.S.	F
	3	42.251	14.084	41.181**
()	1	4.197	4.197	12.272**
	1	6.701	6.701	19.594**
(A)	2	8.661	4.331	12.664**
	1	7.921	7.921	23.161**
(B)	2	9.287	4.644	13.579**
	2	12.707	6.354	18.579**
(C)	2	8.251	4.126	12.064**
$A \times B$	33	11.286	0.342	
$A \times C$				
$B \times C$				
$A \times B \times C$				
	47			

0.01

.(7)

t_i	\overline{Y}_i	LSR	\overline{Y}_i	\overline{Y}_{i}	\overline{Y}_i	\overline{Y}_i	\overline{Y}_i	$\overline{Y_i}$	\overline{Y}_i	\overline{Y}_i	\overline{Y}_i	\overline{Y}_i	\overline{Y}_i
		0.05	_	_	_	-	-	-	-	-	-	-	-
			7.	7.	8.	9.	9.	13.2	15.7	17	18	18	19
			0	3	2	1	2			.1	.2	.3	.2
$a_1b_2c_2$	19	1.50	12	18	11	10	10	6.6*	4.1*	2.	1.	1.	0.
	.8		.8	.5	.6	.7	.6			7*	6*	3	6
			*	*	*	*	*						
$a_{1}b_{2}c_{3}$	19	1.49	12	11	11	10	10	6.0*	3.5*	2.	1.	0.	
	.2		.2	.9	.0	.1	.0			1*	0	9	
			*	*	*	*	*						

$a_1b_2c_1$	18	1.49	11	11	10	9.	9.	5.1*	2.6*	1.	0.	
$a_1 b_2 c_1$		1.42						3.1	2.0			
	.3		.3	0.	.1	2*	1*			2	1	
			*	*	*							
$a_2b_2c_2$	18	1.48	11	10	10	9.	9.	5.0*	2.5*	1.		
	.2		.2	.9	.0	1*	0*			1		
			*	*	*							
$a_2b_1c_3$	17	1.46	10	9.	8.	8.	7.	3.9*	1.4			
	.1		.1	8*	9*	0*	9*					
			*									
$a_1b_1c_2$	15	1.45	8.	8.	7.	6.	6.	2.5*				
	.7		7*	4*	5*	6*	5*					
$a_{2}b_{2}c_{1}$	13	1.43	6.	5.	5.	4.	4.					
	.2		2*	9*	0*	1*	0*					
$a_1b_1c_3$	9.	1.41	2.	1.	1.	0.						
	2		2*	9*	0	1						
$a_2b_1c_1$	9.	1.38	2.	1.	0.							
	1		1*	8*	9							
$a_1b_1c_1$	8.	1.34	1.	0.								
	2		2	9								
$a_2b_1c_2$	7.	1.27	0.									
	3		3									

6-)
$$a_1b_2c_2$$
 ((10 $a_1b_2c_3$. $a_1b_2c_1$: • (8)

S.O.V.	S.O.V. D.F.		M.S.	F	
	3				
()	1	0.917	0.917	7.054**	
	1	1.625	1.625	12.500**	
(A)	2	3.296	1.648	12.677**	

	1	0.270	0.270	2.077**
(B)	2	5.266	2.633	20.254**
	2	2.613	1.307	10.054**
(C)	2	2.891	1.446	11.119**
$A \times B$	33	31.209	0.130	
$A \times C$				
$B \times C$				
$A \times B \times C$				
	47			

0.01

.(9) (9)

t_{i}	$\overline{Y_i}$	LSR	\overline{Y}_i	$\overline{Y_i}$	\overline{Y}_i	$\overline{Y_i}$	\overline{Y}_i	$\overline{Y_i}$	$\overline{Y_i}$	$\overline{Y_i}$	$\overline{Y_i}$	$\overline{Y_i}$	$\overline{Y_i}$
		0.05	_	_	_	-	_	-	-	_	-	-	_
			7.	8.	9.	10	10	11.3	13.7	14	14	15	16
			9	2	3	.2	.3			.2	.9	.4	.9
$a_1b_2c_3$	17	0.61	9.	9.	8.	7.	7.	6.0*	3.6*	3.	2.	1.	0.
	.3		4*	1*	0*	1*	0*			1*	4*	9*	4
$a_1b_1c_2$	16	0.61	9.	8.	7.	6.	6.	5.6*	3.2*	2.	2.	1.	
	.9		0*	7*	6*	7*	6*			7*	0*	5*	
$a_{2}b_{2}c_{1}$	15	0.61	7.	7.	6.	5.	5.	4.1*	1.7*	1.	0.		
	.4		5*	2*	1*	2*	1*			2*	5		
$a_2b_1c_3$	14	0.60	7.	6.	5.	4.	4.	3.6*	1.2*	0.			
	.9		0*	7*	6*	7*	6*			7*			
$a_{1}b_{2}c_{2}$	14	0.60	6.	6.	4.	4.	3.	2.9*	0.5				
	.2		3*	0*	9*	0*	9*						
$a_2b_1c_1$	13	0.59	5.	5.	4.	3.	3.	2.4*					
	.7		8*	5*	4*	5*	4*						
$a_1b_2c_1$	11	0.59	3.	3.	2.	1.	1.						
	.3		4*	1*	0*	1*	0*						
$a_1b_1c_1$	10	0.58	2.	2.	1.	0.							
	.3		4	1	0	1							

$a_1b_1c_3$	10	0.56	2.		0.				
	.2		3*	0*	9*				
$a_{2}b_{2}c_{2}$	9.	0.55	1.	1.					
	3		4*	1*					
$a_2b_1c_2$	8.	0.52	0.						
	2		3						

) $a_1b_2c_3$ (10

•

•

" . . . -1 . 1982

2- Cochran , W.G. and G.M.Cox (1957), " Experimental design " Wiley , New York

.1984 – ": . -3 " (1990) – 4

779

-0.3	674565 306087 21996 53001 73737 41521 689470 383041 341946 551061 540528 372041 78529 152278 548931 64052 56602 69546 783194 169922 234720 220374 101604 107461 157532 365421 418001 731571 845795 35777 118769	17 38.5 8.4 140.7 143.1 31.2 16.8 30.6 15.1 26.1 26.1 27.7 5.4 27.4 29.7 27.7 16.9 142.6 17.5 111.5
------	---	--

0.040	40	20.4	700504	40
0.246	10	30.4	789501	10
-0.613	6.2	32.1	2169802	6.2
-0.983	61.7	0.5	36032	61.7
-0.171	249.6	61.5	171254	249.6
0.975	176.3	23.7	122595	176.3
-0.007	235.7	43.6	48084	235.7
-0.006	143.7	88.8	5145472	143.7
-0.256	45.9	71.9	1524565	45.9
0.034	0.9	100.5	2541349	0.9
-0.11	64.2	75.4	3177089	64.2
-0.485	34.9	29.9	1452600	34.9
-0.031	107.9	64	2653809	107.9
0.144	16.5	54	275754	16.5
-0.065	12.6	28.6	386006	12.6
-0.187	71.4	50.8	1690962	71.4
0.169	13.3	32.5	134207	13.3
-0.216	9.7	30.5	153368	9.7
-0.984	5.3	0.1	114098	5.3
5.299	37.5	539.8	4869502	37.5
0.137	52.7	72.4	1028617	52.7
-0.545	40.9	22.5	401114	40.9
0.25	59.3	52.5	394785	59.3
-0.053	50.5	48.3	557731	50.5
0.176	12.3	42	235364	12.3
-0.241	39.5	12.9	284295	39.5
-0.018	302.8	43.9	1153527	302.8
20722307A *13070	eminum a nd a Bye n ano		70 TX000 (P0 7000 (100 0) 0)	