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Abstract: 
In this paper, constrained non-linear programming  

problems are solved  by  using  the   Sequential  

Unconstrained Minimization Technique ( SUMT). The 

most popular formulas (DFP& BFGS ) are used with 

SUMT in minimization of constrained problems. 

Numerical  comparison  shows  that  the  Number  of 

Constrained evaluations (NOC) must  be used  instead of 

Number of Function evaluations  (NOF)  as  a main  

factor  in  the   measurement    of algorithm performance. 
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Notations: 
n : Dimension of the problem; 
m : Number of the constraints; 

SUMT: Sequential Unconstrained Minimization 

Technique; 

DFP: Davidon- Fletcher- Powell formula; 

BFGS: Broyden- Fletcher- Goldfarb- Shanno formula; 

NOC: Number of constraint evaluations; 

NOF: Number of function evaluations; 
 

NOI: Number of iterations; 

λ:  Step size obtained by the line search procedure; 

K: K
th

 iteration; 

g: n x 1 gradient of f(x); 

S: n x 1 difference vector between two successive points; 

P: n x 1 search direction vector; 

y: n x 1 difference vector between two successive 

gradients; 

H: n x n Hessian matrix; 

QN: Quasi- Newton method. 
 

Introduction: 
Consider the constrained mathematical problem 

Minimize f(x)    Subject to    Cj (x) ≥0; j= 1, 2,…, m   

Where x= (x1, x2, …., xn ) is an n-dimensional Vector. 

The function f(x) is termed the objective or criterion 

function. The restrictions are stated as nonlinear 

constraints Cj (x).This problem can be performed with 

respect to any optimization procedure
[1]

. Since the 

constraints Cj (x) are nonlinear it is often particularly 

advantageous to transform the constrained problem into 

an unconstrained problem 
[2]

. 
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This transformed problem is called the inverse barrier 

function, which is only suitable for inequality constraints. 

This problem then can be optimized by the most popular 

approach in the sequential method, referred to by Fiacco 

and McCormick in 1968
[3]

 as Sequential Unconstrained 

Minimization Technique and commonly abbreviated to 

SUMT. 

The defining function Ф(x,r) becomes infinite at the 

boundary of the feasible region R, i.e. barriers are 

constructed on each constraint, and the solution xmin( r ) 

Є R ; then x
*
, is approached from the interior of R in a 

sequence defined by the controlling parameter r, where a 

sequence of  r values tending to zero is used. The growth 

of ( Cj
-1

( x ) ) can be controlled or " canceled " by 

decreasing r. Each constraint has its inverse barrier 

function, which has the necessary property that Cj
-1

(x)→ 

∞ as Cj (x) → 0. In addition, as r→ 0 the effect of barrier 

term is steadily reduced to take effect nearer to the 

boundary of the feasible region. The SUMT algorithm  

basically consists of the following steps. 

Step 1: Select an initial value for r [rk; where k=0 ] 

which tends the decreasing sequence of rk→ 0 as  k → ∞.  

Select x0 Є R0 . 

Step2:Minimize Ф(x,rk) =f(x) + rk )x(
mj

1j
Cj
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Step 3: From xk , xk+1 , gk , gk+1 , and Hk ,the new matrix 

Hk+1 is calculated. 

Step 4: Increment k =k+1 and return to step 2 if 

convergence is not satisfied. 

The initial value given to r [i.e. r0] is important in 

reducing the number of iterations to minimize Ф(x,r ). In 

many problems the value r0=1 is acceptable; however, an 

initial value for r, suggested by Fiacco and McCormick 

in 1968 which appears to give good results in general, 
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The usual method of reducing r is simply to define 

rk+1=rk/c, where c=10, though many other sequences 

have been explored. It should be noted that the current 

point must remain feasible throughout the calculations. If 

a non-feasible point is reached at any time, then the 

calculations continue with a suitably reduced step length 

from the last feasible point. 

Many variants of the Quasi-Newton (QN) methods have 

been written to solve the problem of minimizing an 

unconstrained function Ф(x,r ) whose gradient is 

available. The DFP technique was originally proposed by 

Davidon (1959) and subsequently improved by Fletcher 

and Powell (1963)
[8]

. Later BFGS technique has been 

devised by Broyden (1970), Fletcher (1970), Goldfarb 

(1970), and Shanno (1970)
[5,6,7,and 8]

. The central feature 

of all QN implementations in the use of successive 

approximations to the inverse Hessian matrix H of Ф(x,r 

). If at the point xk the gradient is gk and the inverse 

Hessian matrix is Hk then a new point xk+1 is given by 

xk+sk=xk+λk Pk  where (λk is a scalar chosen to ensure that 

Фk+1 < Фk , and the search direction Pk=-Hk gk ). The 

inverse Hessian approximation is tend revised by 

considering the change in gradient ( yk=gk+1-gk ) caused 

by the move ( sk=xk+1-xk ). Several formulas for obtaining 

Hk+1 from Hk have been used, DFP & BFGS are the most 

important formulas. 

DFP formula was expressed as
[4]

 : 
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BFGS formula is superior in almost all cases
[4]

 was 

expressed as: 
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Each of these formulas can be used with SUMT in 

minimization of constrained problems. 

Measurement of Algorithm Performance:  
Usually NOF was used as a main factor in the 

measurement of algorithm performance in minimization 

of unconstrained problems
[4,9]

. In minimization of 

constrained problems many authors used to adopt NOF 

to measure the algorithm performance
[10,11]

.
 
While SUMT 

is used in minimization of constrained problems, it is 

based on the strategy of calling objective function (NOF) 

and constraint functions (NOC) in different stages of 

computations ( see Bunday)
[12]

. It calls the objective 

function and constraint functions together in three stages 

while it calls additionally the constraint functions in the 

fourth stage. These stages are: 

A-To find the current point P, the obj. fun. (NOF) and 

the constraint fun. (NOC) are called together; 

B-To find the value of λk so that no constraint is violated, 

only the constraint fun. (NOC) is called; 

C-To find the next point Q, the obj. fun. (NOF) and the 

constraint fun. (NOC) are called together; 

D-To investigate that no minimum between P & Q, and 

replace P by Q, (NOF) and (NOC) are called together. 

Since the value of λ is founded in stage (B), NOC of this 

stage can be replaced by NOL. Then the total number of 

constraint function evaluations given through all stages 

must be equal to: 

NOC= NOL + NOF 

From this equation we conclude that (NOF), which was 

used by some authors as Algorithm performance in 

unconstrained problems solving, is included in total 

(NOC). 

We propose (NOC) as the performance indicator needed 

to solve the constrained problems; however, the 

iteration's number (NOI) and (NOF) are also included. 

Each of DFP & BFGS formulas was used with SUMT in 

minimization of constrained problems. Hence, the 

efficiency of the   SUMT algorithm can be measured by 

the following rules
[4]

: 

(A) Let Ri= the ratio of new algorithm’s NOI to the basis 

algorithm NOI (i.e. (NOI)new/(NOI)basis=relative 

iteration). 

(B) Let Rci= relative constraint evaluation of new 

algorithm  

= (NOC/NOI)new 

(C) Find Rcost=relative cost of new algorithm    

=Ri * Rci 

(D) Find the performance factor of the new algorithm 

with respect to the basis algorithm as: 

 P%=100 * [1-{Rcost}new/{Rcost}basis]. 

Numerical Computation and Conclusions: 
The computer program is written in FORTRAN 77 to 

implement all updating formulas (i.e. DFP &BFGS )with 

the new proposed indicators NOL & NOC for solving 

constrained problems. The program which used SUMT 

algorithm following Bunday
[12]

 was intended to couple 

DFP and BFGS formulas with our proposed indicators. 

They are tested by the constrained problems (Appendix 

A) and compared each one to another. The performance 

factor was measured by the rules mentioned in section 

(2). 

The same termination criteria are applied in the 

implemented program, namely that we have convergence 

if successive minimum of Фi(x,r), i=1,2,…are such that  

 .ε; where  ε was used to be equal to (1 ≥׀ Фi /(Фi- Фi+1)׀

E-4). This condition can of course be modified so that the 

programming actually terminates when the above 

condition and 
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≤ ε] both are hold
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.  

Table (1) gives the number of iteration ( NOI), number of 

function evaluations (NOF), number of constraints 

evaluations (NOC) and the number of constraints 

evaluations used to find the values of λk through the 

program computation (NOL) for each of the test 

constrained problems by using DFP & BFGS formulas 

mentioned in equations (2) &(3). 

Table (1): Performance Parameters for the Standard Algorithms 

Test 

Problem 

No. 

Method 

DFP BFGS 

NOI NOF NOL NOC NOI NOF NOL NOC 

1 29 100 1456 1556 34 118 1572 1690 

2 20 70 1993 2063 21 73 1741 1814 

3 34 111 4017 4128 36 117 3690 3807 

4 42 135 6627 6762 45 142 6573 6715 

5 38 125 5412 5537 39 128 5125 5253 

6 21 74 2110 2184 23 77 1885 1962 

7 25 83 1486 1569 24 80 1251 1331 

8 19 70 1852 1922 17 63 1471 1534 

Total 228 768 24953 25721 239 798 23308 24106 

In order to compare the effiecncies of such formulas the 

rules mentioned in section 2 are used to measure the 

performance of each algorithm based on the standard 

DFP  formula. 

Table (2) gives the performance factors of DFP & BFGS 

formulas based on (NOC) parameter. 

Table (3) gives the performance factors of DFP & BFGS 

formulas based on (NOL) parameter. 



Table (4) gives the performance factors of DFP & BFGS formulas based on (NOF) parameter. 

Table (2): Performance Factors of Updating formulas based on (NOC) parameter 

Optimization  

Algorithm 

Total Performance Factors 

NOI NOC Ri Rci Rcost P

% 

DFP basis 2

28 

25721 1 112.

81 

112.

81 

0 

BFGS 2

39 

24106 1.

05 

100.

86 

105.

91 

6.1

22 

 

Table (3): Performance Factors of Updating formulas based on (NOL) parameter 

Optimization 

 Algorithm 

Total Performance Factors 

NOI NOL Ri Rci Rcost P% 

DFP basis 228 24953 1 109.44 109.44 0 

BFGS 239 23308 1.05 97.523 102.4 6.436 

 

Table (4): Performance Factors of Updating formulas based on (NOF) parameter 

Optimization 

 Algorithm 

Total Performance Factors 

N

OI 

N

OF 

R

i 

Rci 

Rco

st 

P% 

DFP basis 
2

28 

76

8 
1 

3.3

68 

3.3

68 
0 

BFGS 
2

39 

79

3 

1.

05 

3.3

39 

3.5

06 
-4.084 

Examining tables (1) through (3) we notice that (NOL) 

takes a high percentage of total (NOC) for each 

algorithm. This indicates that step size λk requires a more 

constrained function evaluations (NOC) to check that no 

constraint is violated through the computations. There is 

a need to find a powerful method to optimize the step 

size of each iteration. This method must reduce the total 

(NOC), which proved to be used as a main factor in the 

measurement of algorithm performance in minimization 

of constrained problems ( see section 2 ). 

Table (2) agrees that BFGS formula is to be more 

effective than DFP formula and improves the 

performance factor by 6.122%. 

Table (3) shows that BFGS formula was decreased 

(NOL) by 6.436% compared with DFP formula. 

Comparing tables (2) & (4) shows that when using 

(NOF)as a main factor of the measurement, DFP formula 

appeared to be more efficient than BFGS formula which 

was not true as it had seen in section (1). 
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 قياس أداء خوارزميات التقليل للمسائل المقيدة
 

صالح الدليمي سالم عبدا لله  
 ، تكريت، جمهورية العراقجامعة تكريت ،كلية الهندس

 

 الملخص:
يتت تح يديتتدحائج تتمثلحائلمشتتلحئشلقتتم احائلييتتدسحائام يتتيح ملتت مداتح يجيتتيحائ يشيتتاح

لتتتت مداتح  تتتت  ح(.حلتتتتخحائممااتليتتتتمةحائقتتتتمث يحااSUMTائل  تتتتم لاحائالييتتتتدحح 
(.حيلتت مدتحل يتتماحمتتددحلتتااةح ييتتيتحDFP & BFGSائ يجيتتيحممااتليتتمةح 

(حمتتمدسحئشليماجتتيح تتيخحائممااتليتتمةحائل  لتتدسحاتت حيتتاحائلقتتم احNOFائدائتتيح 
ائالييدس.ح جفسحائليمقحام مدح  ضحائ ميميخحمشلحال مداتحهت احائل يتماحات ح

احلتتتيلمح شتتت حائ تتت ح ييتتتيتحائممااتليتتتمةحائل  لتتتدسحاتتت حيتتتاحائلقتتتم احائلييتتتدسح
ح(.SUMT ل مدتحللاح يجييح 

لأجاحائ ييقحلخح ئ ح جممئةحه  حائماقتيحائليماجتيحائ يشيشيتيح تيخحهت احائل يتماح
مل تتميياحلي ايتتتيح متتتا .ح   تتتاةح شتتت حائليماجتتيحتخحل يتتتماحمتتتددحلتتتااةح ييتتتيتح

(حائلي تتتتتااحهتتتتتمحائل يتتتتتماحائقتتتتتملاحمائل تتتتتماحمشيتتتتت حاتتتتت ح ييتتتتتيتحNOCائييتتتتتمدح 
ح(حا حياحائلقم احائلييدس.SUMTدليحللاح يجييح ائممااتليمةحائلل م

ائلقم احائلييدس،ح فتمةسحائممااتليتمة،ح يجيتيحائ يشيتاحائل  تم لاحالكلمات الدالة:
ححح.ائالييد

 

 

Appendix  A 
Constrained Test Problems 

Problem 1: 

Min. F(X)= (X1-1) (X1-2) (X1-3)+ X3 

S.T. 

-X1
2
 –X2

2
 +X3

2
        ≥ 0 

X1
2
 +X2

2
 +X3

2
 -4    ≥ 0 

X3
 
        ≥ 0 

Xi
 
         ≥ 0 

X0 =( 0.1, 2.0, 2.1 ) ; X
* 
=( 0, √2, √2 ) ;   F( X

* 
)= -6 + √2 

Problem 2: 

Min. F(X)= -X1 X2 X3 

S.T. 

X1
2
 +2X2

2
 +4X3

2
     ≤ 0 

Xi
 
       ≥ 0 

X0 =( 1.0, 1.0, 1.0 ) ; X
* 
=( 4.0, 2.83, 2.0 ) ;  F( X

* 
)= -

22.627 

Problem 3: 

Min. F(X)= -X1 X2 X3 

S.T. 

X1 +2X2 +2X3     ≤ 72 

Xi
 
   ≤ 42 

Xi
 
   ≥ 0 

X0 =( 20.0, 10.0, 10.0 ) ;X
* 
=( 24.0, 12.0, 12.0 ) ; 

F( X
* 
)= -3456.0 

Problem 4: 

Min. F(X)= -X1 X2 X3 

S.T. 

X1               < 20 

X2                 ≤  11 

X3          ≤ 42 

Xi
 
   ≥ 0 

X0 =( 15.0, 10.0, 20.0 ) ; X
* 
=( 20.0, 11.0, 42.0 ) ;  

F( X
* 
)= -9240.0 

Problem 5: 

Min. F(X)= -X1 X2 X3 

S.T. 

X1 +2X2 +2X3       ≤ 72 

X1                                       ≤ 20 

X2                         ≤ 11 

X3       ≤ 42 

Xi
 
 ≥ 0 

X0 =( 15.0, 10.0, 15.0 ) ; X
* 
=( 20.0, 11.0, 15.0 ) ;  

F( X
* 
)= -3300.0 

Problem 6: 

Min. F(X)= -X1 X2 X3 

S.T. 

2X1
2
 +X2

2
 +3X3

2
     ≤ 51 

Xi
 
       ≥ 0 

X0 =( 1.0, 1.0, 1.0 ) ;    X
* 
=( 2.9155, 4.1231, 2.3805 ) ; 

F( X
* 
)= -28.6153 

Problem 7: 

Min. F(X)= X1
2
 +X2

2
 +X3

2
      

S.T. 

X1 +X2 +X3      ≥ 3 

X1   X2   X3      ≥ 3  

Xi
 
      ≥ 0   

X0 =( 1.0, 2.0, 3.0 ) ; X
* 
=( 1.4422, 1.4422, 1.4422) ; F( 

X
* 
)= 6.2403 

Problem 8: 

Min. F(X) = -( X2
3
 / 27√3) (9 –(X1 – 3)

2
 ) 

S.T. 

0 ≤ X1 + √3 X2  ≤ 6 

0 ≤               X2  ≤ X1 / √3 

Xi   ≥ 0 

X0 = ( 1.0, 0.5 ); X
* 
= ( 3.0, √3 ); F(X

* 
) = -1.0 

 

 


