
Measurement of Algorithm Performance in

 Minimization of Constrained Problems

 SALIM A. SALEH
College of Engineering, University of Tikrit, Tikrit, Iraq

Abstract:
In this paper, constrained non-linear programming

problems are solved by using the Sequential

Unconstrained Minimization Technique (SUMT). The

most popular formulas (DFP& BFGS) are used with

SUMT in minimization of constrained problems.

Numerical comparison shows that the Number of

Constrained evaluations (NOC) must be used instead of

Number of Function evaluations (NOF) as a main

factor in the measurement of algorithm performance.

Keywords: SUMT, Algorithm Performance, NOF, NO

Notations:
n : Dimension of the problem;
m : Number of the constraints;

SUMT: Sequential Unconstrained Minimization

Technique;

DFP: Davidon- Fletcher- Powell formula;

BFGS: Broyden- Fletcher- Goldfarb- Shanno formula;

NOC: Number of constraint evaluations;

NOF: Number of function evaluations;

NOI: Number of iterations;

λ: Step size obtained by the line search procedure;

K: K
th

 iteration;

g: n x 1 gradient of f(x);

S: n x 1 difference vector between two successive points;

P: n x 1 search direction vector;

y: n x 1 difference vector between two successive

gradients;

H: n x n Hessian matrix;

QN: Quasi- Newton method.

Introduction:
Consider the constrained mathematical problem

Minimize f(x) Subject to Cj (x) ≥0; j= 1, 2,…, m

Where x= (x1, x2, …., xn) is an n-dimensional Vector.

The function f(x) is termed the objective or criterion

function. The restrictions are stated as nonlinear

constraints Cj (x).This problem can be performed with

respect to any optimization procedure
[1]

. Since the

constraints Cj (x) are nonlinear it is often particularly

advantageous to transform the constrained problem into

an unconstrained problem
[2]

.







mj

1j)x(Cj

1
r)x(f)r,x(.(1)

This transformed problem is called the inverse barrier

function, which is only suitable for inequality constraints.

This problem then can be optimized by the most popular

approach in the sequential method, referred to by Fiacco

and McCormick in 1968
[3]

 as Sequential Unconstrained

Minimization Technique and commonly abbreviated to

SUMT.

The defining function Ф(x,r) becomes infinite at the

boundary of the feasible region R, i.e. barriers are

constructed on each constraint, and the solution xmin(r)

Є R ; then x
*
, is approached from the interior of R in a

sequence defined by the controlling parameter r, where a

sequence of r values tending to zero is used. The growth

of (Cj
-1

(x)) can be controlled or " canceled " by

decreasing r. Each constraint has its inverse barrier

function, which has the necessary property that Cj
-1

(x)→

∞ as Cj (x) → 0. In addition, as r→ 0 the effect of barrier

term is steadily reduced to take effect nearer to the

boundary of the feasible region. The SUMT algorithm

basically consists of the following steps.

Step 1: Select an initial value for r [rk; where k=0]

which tends the decreasing sequence of rk→ 0 as k → ∞.

Select x0 Є R0 .

Step2:Minimize Ф(x,rk) =f(x) + rk)x(
mj

1j
Cj

/1




Step 3: From xk , xk+1 , gk , gk+1 , and Hk ,the new matrix

Hk+1 is calculated.

Step 4: Increment k =k+1 and return to step 2 if

convergence is not satisfied.

The initial value given to r [i.e. r0] is important in

reducing the number of iterations to minimize Ф(x,r). In

many problems the value r0=1 is acceptable; however, an

initial value for r, suggested by Fiacco and McCormick

in 1968 which appears to give good results in general,

 

 XZ)x(Z

XZ)x(f
r

T

T




 ;where Z(X)=)x(

mj

1j
Cj

/1



.

The usual method of reducing r is simply to define

rk+1=rk/c, where c=10, though many other sequences

have been explored. It should be noted that the current

point must remain feasible throughout the calculations. If

a non-feasible point is reached at any time, then the

calculations continue with a suitably reduced step length

from the last feasible point.

Many variants of the Quasi-Newton (QN) methods have

been written to solve the problem of minimizing an

unconstrained function Ф(x,r) whose gradient is

available. The DFP technique was originally proposed by

Davidon (1959) and subsequently improved by Fletcher

and Powell (1963)
[8]

. Later BFGS technique has been

devised by Broyden (1970), Fletcher (1970), Goldfarb

(1970), and Shanno (1970)
[5,6,7,and 8]

. The central feature

of all QN implementations in the use of successive

approximations to the inverse Hessian matrix H of Ф(x,r

). If at the point xk the gradient is gk and the inverse

Hessian matrix is Hk then a new point xk+1 is given by

xk+sk=xk+λk Pk where (λk is a scalar chosen to ensure that

Фk+1 < Фk , and the search direction Pk=-Hk gk). The

inverse Hessian approximation is tend revised by

considering the change in gradient (yk=gk+1-gk) caused

by the move (sk=xk+1-xk). Several formulas for obtaining

Hk+1 from Hk have been used, DFP & BFGS are the most

important formulas.

DFP formula was expressed as
[4]

 :

yHy

Hy.yH

ys

ss
HH

kk

T

k

k

T

kkk

k

T

k

T

kk

k1k



 .(2)

BFGS formula is superior in almost all cases
[4]

 was

expressed as:

ys

ss
)

ys

yHy
1(

ys

HyssyH
HH

k

T

k

T

kk

k

T

k

kk

T

k

k

T

k

k

T

kk

T

kkk

k1k






.(3)

Each of these formulas can be used with SUMT in

minimization of constrained problems.

Measurement of Algorithm Performance:
Usually NOF was used as a main factor in the

measurement of algorithm performance in minimization

of unconstrained problems
[4,9]

. In minimization of

constrained problems many authors used to adopt NOF

to measure the algorithm performance
[10,11]

.

While SUMT

is used in minimization of constrained problems, it is

based on the strategy of calling objective function (NOF)

and constraint functions (NOC) in different stages of

computations (see Bunday)
[12]

. It calls the objective

function and constraint functions together in three stages

while it calls additionally the constraint functions in the

fourth stage. These stages are:

A-To find the current point P, the obj. fun. (NOF) and

the constraint fun. (NOC) are called together;

B-To find the value of λk so that no constraint is violated,

only the constraint fun. (NOC) is called;

C-To find the next point Q, the obj. fun. (NOF) and the

constraint fun. (NOC) are called together;

D-To investigate that no minimum between P & Q, and

replace P by Q, (NOF) and (NOC) are called together.

Since the value of λ is founded in stage (B), NOC of this

stage can be replaced by NOL. Then the total number of

constraint function evaluations given through all stages

must be equal to:

NOC= NOL + NOF

From this equation we conclude that (NOF), which was

used by some authors as Algorithm performance in

unconstrained problems solving, is included in total

(NOC).

We propose (NOC) as the performance indicator needed

to solve the constrained problems; however, the

iteration's number (NOI) and (NOF) are also included.

Each of DFP & BFGS formulas was used with SUMT in

minimization of constrained problems. Hence, the

efficiency of the SUMT algorithm can be measured by

the following rules
[4]

:

(A) Let Ri= the ratio of new algorithm’s NOI to the basis

algorithm NOI (i.e. (NOI)new/(NOI)basis=relative

iteration).

(B) Let Rci= relative constraint evaluation of new

algorithm

= (NOC/NOI)new

(C) Find Rcost=relative cost of new algorithm

=Ri * Rci

(D) Find the performance factor of the new algorithm

with respect to the basis algorithm as:

 P%=100 * [1-{Rcost}new/{Rcost}basis].

Numerical Computation and Conclusions:
The computer program is written in FORTRAN 77 to

implement all updating formulas (i.e. DFP &BFGS)with

the new proposed indicators NOL & NOC for solving

constrained problems. The program which used SUMT

algorithm following Bunday
[12]

 was intended to couple

DFP and BFGS formulas with our proposed indicators.

They are tested by the constrained problems (Appendix

A) and compared each one to another. The performance

factor was measured by the rules mentioned in section

(2).

The same termination criteria are applied in the

implemented program, namely that we have convergence

if successive minimum of Фi(x,r), i=1,2,…are such that

 .ε; where ε was used to be equal to (1 ≥׀ Фi /(Фi- Фi+1)׀

E-4). This condition can of course be modified so that the

programming actually terminates when the above

condition and

[rk)x(
mj

1j
C/1

*

kj




≤ ε] both are hold

[12]
.

Table (1) gives the number of iteration (NOI), number of

function evaluations (NOF), number of constraints

evaluations (NOC) and the number of constraints

evaluations used to find the values of λk through the

program computation (NOL) for each of the test

constrained problems by using DFP & BFGS formulas

mentioned in equations (2) &(3).

Table (1): Performance Parameters for the Standard Algorithms

Test

Problem

No.

Method

DFP BFGS

NOI NOF NOL NOC NOI NOF NOL NOC

1 29 100 1456 1556 34 118 1572 1690

2 20 70 1993 2063 21 73 1741 1814

3 34 111 4017 4128 36 117 3690 3807

4 42 135 6627 6762 45 142 6573 6715

5 38 125 5412 5537 39 128 5125 5253

6 21 74 2110 2184 23 77 1885 1962

7 25 83 1486 1569 24 80 1251 1331

8 19 70 1852 1922 17 63 1471 1534

Total 228 768 24953 25721 239 798 23308 24106

In order to compare the effiecncies of such formulas the

rules mentioned in section 2 are used to measure the

performance of each algorithm based on the standard

DFP formula.

Table (2) gives the performance factors of DFP & BFGS

formulas based on (NOC) parameter.

Table (3) gives the performance factors of DFP & BFGS

formulas based on (NOL) parameter.

Table (4) gives the performance factors of DFP & BFGS formulas based on (NOF) parameter.

Table (2): Performance Factors of Updating formulas based on (NOC) parameter

Optimization

Algorithm

Total Performance Factors

NOI NOC Ri Rci Rcost P

%

DFP basis 2

28

25721 1 112.

81

112.

81

0

BFGS 2

39

24106 1.

05

100.

86

105.

91

6.1

22

Table (3): Performance Factors of Updating formulas based on (NOL) parameter

Optimization

 Algorithm

Total Performance Factors

NOI NOL Ri Rci Rcost P%

DFP basis 228 24953 1 109.44 109.44 0

BFGS 239 23308 1.05 97.523 102.4 6.436

Table (4): Performance Factors of Updating formulas based on (NOF) parameter

Optimization

 Algorithm

Total Performance Factors

N

OI

N

OF

R

i

Rci

Rco

st

P%

DFP basis
2

28

76

8
1

3.3

68

3.3

68
0

BFGS
2

39

79

3

1.

05

3.3

39

3.5

06
-4.084

Examining tables (1) through (3) we notice that (NOL)

takes a high percentage of total (NOC) for each

algorithm. This indicates that step size λk requires a more

constrained function evaluations (NOC) to check that no

constraint is violated through the computations. There is

a need to find a powerful method to optimize the step

size of each iteration. This method must reduce the total

(NOC), which proved to be used as a main factor in the

measurement of algorithm performance in minimization

of constrained problems (see section 2).

Table (2) agrees that BFGS formula is to be more

effective than DFP formula and improves the

performance factor by 6.122%.

Table (3) shows that BFGS formula was decreased

(NOL) by 6.436% compared with DFP formula.

Comparing tables (2) & (4) shows that when using

(NOF)as a main factor of the measurement, DFP formula

appeared to be more efficient than BFGS formula which

was not true as it had seen in section (1).

References:
1. Rao, S.S. ; and Hati, S.K.; " Computerized selection of

optimum machining conditions for a job Requiring

Multiple operations" ASME, J. of Engineering for

Indus., Vol. 100, Aug. (1978) PP. 356 – 362.

2. Feiring, B.R.; Phillips, D.T., and Hogg, G.L.,

"Computational experience with an exact penalty

function technique (EPT) ", Comput. And Indus.

Engineering, Vol. 5, No. 3, (1981) PP. 205 – 216.

3. Gill, P.E.; and Murray, W. (eds.), "Numerical methods

for constrained optimization ", Academic Press. Inc.,

London, (1974).

4. Scales, L.E., "Introduction to Non-linear optimization

", Macmillan, London, (1985).

5. Broyden, C. G., "The convergence of a class of

double- rank minimization algorithms ", J.I.M.A., 6,

(1970).

6. Fletcher, R., "Practical methods of optimization ", 2
nd

ed., John Willey and Sons, (1987).

7. Goldfarb, D., "A family of variable metric methods

derived by Variational means ", Math. Comp., 24

(1970).

8. Shanno, D. F., "Conditioning of Quasi- Newton

methods for function minimization ", Math. Comp.,

24, (1970).

9. Taha, D. B., " A study of different programming

Languages Implementiry a New Quasi- Newton

Method ", M.Sc. Thesis, University of Mosul,

College of Science, (1995).

10. Muhanad, M.S., "Investigation on the use of different

numerical techniques in CAD systems ", Ph.D.

Thesis Brunel University, Dept. of Manufacturing

and Eng. System, UK (1991).

11. Tassopoulos, A., "The use of Non- Quadratic Models

in Optimization ", Ph.D. Thesis University of

Technology, Loughborugh, UK, (1982).

12. Bunday, B.D., "Basic Optimization Methods ",

Edward Arnold Pub. Ltd., London, (1985).

 قياس أداء خوارزميات التقليل للمسائل المقيدة

صالح الدليمي سالم عبدا لله
 ، تكريت، جمهورية العراقجامعة تكريت ،كلية الهندس

 الملخص:
يتت تح يديتتدحائج تتمثلحائلمشتتلحئشلقتتم احائلييتتدسحائام يتتيح ملتت مداتح يجيتتيحائ يشيتتاح

لتتتت مداتح تتتت ح(.حلتتتتخحائممااتليتتتتمةحائقتتتتمث يحااSUMTائل تتتتم لاحائالييتتتتدحح
(.حيلتت مدتحل يتتماحمتتددحلتتااةح ييتتيتحDFP & BFGSائ يجيتتيحممااتليتتمةح

(حمتتمدسحئشليماجتتيح تتيخحائممااتليتتمةحائل لتتدسحاتت حيتتاحائلقتتم احNOFائدائتتيح
ائالييدس.ح جفسحائليمقحام مدح ضحائ ميميخحمشلحال مداتحهت احائل يتماحات ح

احلتتتيلمح شتتت حائ تتت ح ييتتتيتحائممااتليتتتمةحائل لتتتدسحاتتت حيتتتاحائلقتتتم احائلييتتتدسح
ح(.SUMT ل مدتحللاح يجييح

لأجاحائ ييقحلخح ئ ح جممئةحه حائماقتيحائليماجتيحائ يشيشيتيح تيخحهت احائل يتماح
مل تتميياحلي ايتتتيح متتتا .ح تتتاةح شتتت حائليماجتتيحتخحل يتتتماحمتتتددحلتتتااةح ييتتتيتح

(حائلي تتتتتااحهتتتتتمحائل يتتتتتماحائقتتتتتملاحمائل تتتتتماحمشيتتتتت حاتتتتت ح ييتتتتتيتحNOCائييتتتتتمدح
ح(حا حياحائلقم احائلييدس.SUMTدليحللاح يجييح ائممااتليمةحائلل م

ائلقم احائلييدس،ح فتمةسحائممااتليتمة،ح يجيتيحائ يشيتاحائل تم لاحالكلمات الدالة:
ححح.ائالييد

Appendix A
Constrained Test Problems

Problem 1:

Min. F(X)= (X1-1) (X1-2) (X1-3)+ X3

S.T.

-X1
2
 –X2

2
 +X3

2
 ≥ 0

X1
2
 +X2

2
 +X3

2
 -4 ≥ 0

X3

 ≥ 0

Xi

 ≥ 0

X0 =(0.1, 2.0, 2.1) ; X
*
=(0, √2, √2) ; F(X

*
)= -6 + √2

Problem 2:

Min. F(X)= -X1 X2 X3

S.T.

X1
2
 +2X2

2
 +4X3

2
 ≤ 0

Xi

 ≥ 0

X0 =(1.0, 1.0, 1.0) ; X
*
=(4.0, 2.83, 2.0) ; F(X

*
)= -

22.627

Problem 3:

Min. F(X)= -X1 X2 X3

S.T.

X1 +2X2 +2X3 ≤ 72

Xi

 ≤ 42

Xi

 ≥ 0

X0 =(20.0, 10.0, 10.0) ;X
*
=(24.0, 12.0, 12.0) ;

F(X
*
)= -3456.0

Problem 4:

Min. F(X)= -X1 X2 X3

S.T.

X1 < 20

X2 ≤ 11

X3 ≤ 42

Xi

 ≥ 0

X0 =(15.0, 10.0, 20.0) ; X
*
=(20.0, 11.0, 42.0) ;

F(X
*
)= -9240.0

Problem 5:

Min. F(X)= -X1 X2 X3

S.T.

X1 +2X2 +2X3 ≤ 72

X1 ≤ 20

X2 ≤ 11

X3 ≤ 42

Xi

 ≥ 0

X0 =(15.0, 10.0, 15.0) ; X
*
=(20.0, 11.0, 15.0) ;

F(X
*
)= -3300.0

Problem 6:

Min. F(X)= -X1 X2 X3

S.T.

2X1
2
 +X2

2
 +3X3

2
 ≤ 51

Xi

 ≥ 0

X0 =(1.0, 1.0, 1.0) ; X
*
=(2.9155, 4.1231, 2.3805) ;

F(X
*
)= -28.6153

Problem 7:

Min. F(X)= X1
2
 +X2

2
 +X3

2

S.T.

X1 +X2 +X3 ≥ 3

X1 X2 X3 ≥ 3

Xi

 ≥ 0

X0 =(1.0, 2.0, 3.0) ; X
*
=(1.4422, 1.4422, 1.4422) ; F(

X
*
)= 6.2403

Problem 8:

Min. F(X) = -(X2
3
 / 27√3) (9 –(X1 – 3)

2
)

S.T.

0 ≤ X1 + √3 X2 ≤ 6

0 ≤ X2 ≤ X1 / √3

Xi ≥ 0

X0 = (1.0, 0.5); X
*
= (3.0, √3); F(X

*
) = -1.0

