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The Vibrio cholera bacterium, which belongs to the Vibrionaceae 

family, is the source of the cholera virus. A bacterium known as Vibrio 

cholerae is the cause of the human disease cholera. This study 

developed a fractional epidemic model to describe the transmission of 

cholera. The model consists of four elements: susceptible people, 

infected people, recovered people, and a setting where the germs may 

flourish. The endemic and disease-free equilibrium points were 

calculated. The next-generation matrix was used in order to calculate 

the reproduction number. It has been proven that a disease-free 

equilibrium is capable of being locally asymptotically stable. To make 

sense of them and to compare them to the qualitative answers, 

numerical simulations of the fractional equations of the epidemic 

model were performed. According to the findings, the system's 

susceptible population decreases when more populations are restored. 

This study suggests that for outbreak and preventive initiatives, health 

professionals should make good use of the media. 
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1. Introduction  

 Cholera is caused by a type of bacteria called Vibrio cholera. Cholera can be caught when a person 

eats or drinks something that has been contaminated with the virus that causes cholera, or when 

they drink water or drinks that have been contaminated with the virus [1]. People die quickly from 

diseases, especially if the outbreak isn't found in time and people don't get help right away. 

Children and women have been hurt the most by the cholera outbreak. The cholera outbreak is 

blamed for between 28,000 and 142,000 deaths each year, and it is thought that between 1.4 million 

and 4.3 million people get the disease each year around the world. The WHO report states this 

despite the fact that the actual number of cholera cases cannot be determined due to a lack of a 

defined monitoring system for various regions and a lack of methods to get comprehensive 

information through the surveillance system Moreover, According to WHO, Tanzania recorded 

33,421 cases between August 2015 and January 2018, leading to 542 deaths. Around  86 percent 

of all cholera cases during this time period were on the mainland of Tanzania. It was also 

discovered that 11.4 percent of these cases involved children under five years of age and elderly 

people [2]. 

   Furthermore, the next-generation matrix method was used to study cholera bacteriophage in the 

study by authors in [3]. Based on the analysis of the results, both the bacteriophage and the 

treatment decreased the number of cholera bacteria in the environment. M. Pascual et al. [1] 

investigated the dynamic behavior of a fractional order of cholera model in Ghana using a Codeco 

compartmental (SIR) basic model with an environmental component containing V. Cholera in the 

water supply. Ruth-Hurwitz stability conditions were used to investigate the disease's local 

stability. 

   In their investigation of cholera epidemics in Zimbabwe, C. J. Acosta et al. [4] focused on the 

disease's transmission mechanisms as well as how the environment influences it. Between 41 and 

95 percent of the population got cholera as a result of this finding, and many of them recovered. 

[5] used epidemiological and environmental observations of cholera outbreaks as waterborne 

diseases to make a mathematical model. The main focus was on how cholera spreads and how 

bacteria and phage populations change over time. The results showed that the amount of phage in 

the reservoir was to blame for the rise in cholera outbreaks. With the help of other organizations, 

a lot has been achieved in the fight against the cholera epidemic [6]. The focus seemed to be on 
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cholera antibiotic treatment. First, contain the cause of cholera disease. Through initiative and 

support for a national cholera response plan, affected areas were able to calm the outbreak. This 

was a model for future public health efforts. According to some assessments, the main factor 

associated with the severe spread of infection in the region was a lack of safe water and sanitation, 

as well as adequate water treatment from water sources. Policymakers, epidemiologists, and public 

health modelers must collaborate to harmonize ideas. Similar cholera outbreak studies are 

underway in Tanzania, especially in Dar es Salaam, but rarely use modeling. Mathematical 

modeling of the physical systems of a humanly natural phenomenon is essential for engineering 

and health practitioners, with direct applications in health science and other fields. The use of 

fractional calculus theory in the mathematical modeling of biological systems has gotten a lot of 

attention in recent decades since it carries more memory information and provides a learning 

mechanism for the spread of disease in the population compared to the ordinary differential 

equation, which is incapable of this purpose [7-12]. Fractional differential equations and their 

applications have been studied and used extensively in chemistry, physics, biology, hydrology, 

medicine, engineering, and biochemistry [13-18]. 

     The structure of this paper is as follows: In section 2, the necessary definitions of fractional 

derivatives are presented, also a review of some important properties and theorems for stability 

analysis. In Section 3, the fractional Cholera model is presented and shows that the model's 

solutions are bounded. In section 4, the infection equilibria points and checks into their stability 

are computed. The basic reproduction number is also calculated. Section 5 discusses the numerical 

results, and Section 6 summarizes the conclusions.  

2. Fundamentals of fractional calculus 

     This part will present the definition of the Caputo fractional derivative as well as some 

important properties and theorems in the field of stability analysis.  

Definition 2.1 [19] The right (left) Caputo fractional derivative of order 1 ,m m m−     

are defined as follows: 

                       ( )
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Lemma 2.1 [20] Suppose that the Caputo fractional differential equation is as follows: 
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with 0 1  . The Caputo fractional differential equation (3) has equilibrium point y
if

*( , ) 0g t y = . 

Theorem 2.1 [21] The Caputo fractional differential equation (3) is locally asymptotically stable 

If all the eigenvalues of the Jacobian matrix of Eq. (3) satisfy the following condition.  

                   arg( )
2


                                                                                                     (4)   

Definition 2.2 [22] The Laplace transform F( )s  of the Caputo derivative of the function F( )t  is 

defined as follows: 
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Definition 2.3 [22] The function r,n ( )E t  for t   is defined by 
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Where r,n ( )E t is called the generalized Mittag-Leffler function and satisfies  
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Where L  is the Laplace transform of , ( )r nE t .  
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3. Fractional Cholera model description and formulation 

   The model divides the total human population in the system at any time t  into four 

subpopulations based on their disease status. The total population is represented by ( )N t , which is 

further subdivided into susceptible humans S , infected humans I , the recovered vector R , and 

the environment V . The total population is calculated as ( ) ( ) ( ) ( )N t S t I t R t= + + . Where S : 

population at risk of Cholera infection, I : population with Cholera symptoms, R : recovered 

patients with temporary immunity.  

In a system of fractional differential equations, the fractional Cholera model is written as follows: 

                     

0

0

0

0

C
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C

t

C
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t
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   

    

  

 

=  − − + +

= − − − −

= − −

= −

                                                                   (9)  

In system (9) of the fractional Cholera model, all parameters are non-negative constants. Table 1 

describes the parameters of the fractional Cholera model. 

 Parameter   Description  

    The rate at which susceptible humans are recruited. 

    The rate of contact with infectious humans. 

   The rate of natural death. 

    The rate of infection humans with the bacteria. 

   The rate of loosed immunity of recovered humans and return to the susceptible compartment. 

    The cholera infection death rate. 

  The rate of infectious human contamination. 

  The rate of individuals recover from the disease. 

Table 1: parameters used in fractional Cholera model and their meaning 
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Theorem 3.1 The regionthe fractional Cholera model  for ( ) 3Ψ { , , :  0, 0, 0}S I R S I R+=    R   

(9) is uniformly bounded. 

Proof: From (9) the total population satisfies 
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 Where    ( ) ( ) ( ) ( )N t S t I t R t= + +   
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Now by using the Laplace transform for Eq. (5) we can get the following equation  

                   1 (0( ) ( )         )s L N t
s

Nt s L N


  −− 


−                                                          (12)             

                  1( ) ( ) (0)    s L N t s
s

N


  −+ 


+                                                                         (13)       

                 
1 1

( ) (0)  
s s

L N t N
s s




  

− −

 +
+


+

                                                                     (14) 

Then from Eq. (7) and Eq. (8) we get  
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Solutions in the system (9) are restricted as follows 

                    3{( , , ) : 0 ( ) }S I R R N t

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+ =   
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                                                                      (16)       
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4. Infection equilibria points and Basic reproduction number 

4.1. Disease free equilibrium and endemic equilibrium  

     There are two equilibria in the fractional Cholera model (9). The disease-free equilibria 0E , is 

given as follows:    

                  0 ( (0), (0), (0), (0))  ,0, 0,0    E S I R V




 
= =  

 


                                                           (17) 

The other type of equilibrium is endemic equilibrium points would be in the form;   

                 

* *

***

*

*

* *

( ) (

( , , , )

( ,
) ( )
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E S I R V
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   
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          
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+

=

−
=

+ + + + +        (18) 

4.2. Calculating the basic reproduction number 0R   

   These are the threshold parameters that govern disease spread in the population. Whether the 

disease would persist or die out in the system over time is unknown. The basic reproduction 

number indicates or explains the progression of the disease over time. The next-generation matrix 

at the disease-free equilibrium is used to figure out the basic reproductive number 0R [23].   

 From system (9) the infective compartments are   
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  Using the next-generation matrix approach, the matrices F  and V  that correspond to the newly 

discovered infection terms and the remaining transfer terms, respectively, are as follows:          
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and   
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The inverse of matrix from is given by V   
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Now, we compute the eigenvalues of the matrix  
1G FV −=  to get the basic reproduction number

0R .  
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Therefore, the basic reproduction number 0R  is given by the relation 

          0 max{0, }
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Theorem 4.1 The disease-free equilibrium point 0E  is locally asymptotically stable if  0 1R   and 

unstable if 0 1R  . 

Proof: To determine local stability, we apply the Jacobian matrix at the disease-free equilibrium 

of the Caputo fractional system (9) as follows: 
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Now, we compute the determinant of the Jacobian matrix at free equilibrium as follows; 
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The eigenvalues of the Jacobian matrix in Eq. (26) are 
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               4

 = −                                                                                                                       (30)   

Note that 1 3,   and 4  have a real negative part. Now, we will proof the 2 has a real negative 

part. Suppose 2 0  , we get  
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Since 0
( )
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
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

    
=

+ + +


 , then from Eq. (31) we have 0 1R  . 

Then the disease-free equilibrium point 0E  is locally asymptotically stable. 
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5. Numerical results 

   By using systems of fractional differential equations that were solved over a predetermined 

period of time using the fractional Adams method, numerical simulation was done to demonstrate 

the effects of the model parameters. Table 2 contains the parameter values used in the simulations. 

Also, we will use the proposed initial values of the state variables in Table 3. The simulation was 

carried out three months after the cholera epidemic started. To determine the changes in the various 

populations of these compartments over time, we ran numerical simulations of the system of 

fractional differential equations of susceptible humans, recovered humans, and infectious humans. 

There seems to be a continuous decrease in the number of susceptible humans as the number of 

the recovered population increases with time. 

Parameter Value Reference 

  0.000096274   [24] 

  0.011   [24] 

  0.00002537   [24] 

  0.075   Assumed 

  0.002   Assumed 

  0.0004   [24] 

  10   [24] 

  5   [24] 

Table 2: Parameter values in the fractional Cholera model 

 

Variable Initial values Reference 

( )S t  10   [24] 

( )I t  1   [24] 

( )R t  1   [24] 

( )V t  100   [24] 

Table 3: The initial values in the fractional Cholera model 
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Figure 1: Susceptible population with 0 1  . 

 

 

Figure 2: Infected population with 0 1  . 
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Figure 3:  Recovered population with 0 1  . 

 

6. Conclusions 

The fractional Cholera model has been shown to have limited solutions. The basic reproductive 

number was identified, and it was demonstrated that our model possesses a locally asymptotically 

stable infection-free equilibrium when the basic reproductive number is smaller than one. The 

computer calculations demonstrated that there has been a rise in the overall number of recovered 

persons as the susceptible population has decreased. The vulnerable human and the recovered 

human have an inversely proportionate connection. The influence of the order of the fractional 

derivative (the memory property of fractional derivatives) on the fractional Cholera model has 

been recommended to be examined using Adams' approach for numerical simulations. 
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يكسرتحليل الاستقرار والمحاكاة العددية لنموذج الكوليرا ال  

 سناء لفته خلف

قسم الرياضيات ،كلية العلوم ،جامعة البصرة   

 المستخلص 

. الكوليرا مرض يصيب البشر وينتج عن Vibrionaceaeفيروس الكوليرا يسببه بكتيريا ضمة الكوليرا ، وهي أحد أفراد عائلة 

ي لشرح كيفية انتشار الكوليرا. يتكون النموذج من كسر، تم عمل نموذج وبائي  بحثال  اكائن حي يسمى ضمة الكوليرا. في هذ

أربعة أجزاء هي: البشر المعرضون للخطر، والبشر المصابون، والبشر الذين تعافوا، والبيئة التي يمكن أن تنمو فيها البكتيريا.  

. 0R  اب رقم الاستنساختم حساب نقاط التوازن الخالية من الأمراض والمتوطنة. تم تطبيق مصفوفة الجيل التالي في عملية حس

0  الأمراض يمكن أن يكون مستقرًا محليًا بشكل مقارب عندمالقد ثبت أن التوازن الخالي من   1R   تم إجراء المحاكاة العددية .

لنظام المعادلات الكسرية في النموذج الوبائي للمساعدة في فهمها ومقارنتها بالحلول النوعية. وأظهرت النتائج أنه مع ارتفاع عدد 

المتعافين، ينخفض   الممارسين الصحيالسكان  الدراسة، يجب على  لهذه  النظام. وفقًا  للخطر في  المعرضين  ين عدد الأشخاص 

 استخدام تغطية إعلامية فعالة لحملات تفشي المرض والوقاية.
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