

Theoretical study of structure and vibrational frequencies of pyrazole and its derivatives, and x-ray structure determination

Naji A.Abood , Jassim A.H.Al-Hlfi Chemistry department ,College of education, Basra university, Iraq

Abstract

Five compounds have been prepared and studied; Pyrazole,3,5-dimethylpyrazole , 3,5-dimethyl -1 N phenyl pyrazole, 3,5-diphenylpyrazole and p-toluene sulfonyl pyrazole . Molecular orbital calculations using ab initio method / MP_2 theory at 6-31G(d,p) basis set were preformed to determine the geometrical parameters, bond lengths and bond angles , were compared with x-ray analysis results. X-ray measurements showed that pyrazol exists as tautomeric mixture in the solid state , other physical properties such as total energy, dipole moments , charges on the atoms were also determined and discussed . The vibration frequencies were theoretically calculated at the same theory level for optimization and experimentally measured. Key words : Ab initio calculations , structure , vibrational frequencies, x-ray structural

determination, pyrazole and its derivatives

ملخص

حضرت ودرست خمسة مركبات هي البايرازول و بارا- تلوين سلفونيل بايرازول و وأجريت لها حسابات فنيل بايرازول و وأجريت لها حسابات الأوربيتالات الجزيئية باستخدام طريقة ab initio عند المستوى النظري MP2 والمجموعة الاساسية -6 والأوربيتالات الجزيئية باستخدام طريقة أطوال الأواصر والزوايا ومقارنتها بنتائج تحليل الحيود الأشعة السينية وقد أظهرت قياسات الأشعة السينية أن البايرازول يوجد بشكل خليط توتوميري في الحالة الصلبة وكذلك تم حساب بعض الخصائص الفيزيائية للمركبات مثل الطاقة الكلية وعزم ثنائي القطب والشحن على الذرات ومقارنتها بأطياف تحت الحمراء المقاسة .

كلمات المفتاح: حسابات ab initio والتراكيب والترددات التذبذبية وتعين التراكيب بواسطة حيود الأشعة السينية , بايرازول ومشتقاته

1.Introducation

Pyrazole is an aromatic heterocyclic compound containing two bonded nitrogen atoms. It is related to many compounds such as isoxazole, isothiazole, oxazole and imidazole⁽¹⁾. Pyrazole and its derivatives have widespread applications in the fielde of medicine and industry. They are used as antihypertensives⁽²⁾, anti thrombotic⁽³⁾, anti inflammatory⁽⁴⁾, anti microbial⁽⁵⁾, anti rheumatic⁽⁶⁾, anti tumor⁽⁷⁾, anti viral⁽⁸⁾ and anti diabetic⁽⁹⁾. Some derivatives are used as anti corrosion and for coloured photography. Pyrazole molecule is stabilized by resonance structure⁽¹⁰⁾ and posse amphoteric probability⁽¹¹⁾. However it undergoes cyclic tautomeric in solution by exchange of the proton between the two atoms of the aromatic ring⁽¹²⁾. On the other hand, it undergoes electrophilic substitution at 4- position and the two positions 3 and five are equivalent. Since the nitration halogenations and acylation occur at 4-position^(13,14). The aim of the present work was devoted to investigate Theoretically the structure and vibrational frequencies of pyrazole and substituted pyrazoles and compare it with x-ray structural analysis and IR measurements.

2. Experimental

2.1. Preparations

The studied compounds ,pyrazole(S_1) , 3,5-dimethyl pyrazole(S_2) , 3,5-dimethyl - 1 N phenyl pyrazole (S_3) , 3,5-diphenylpyrazole (S_4) and p-toluene sulfonyl pyrazole (S_5) were prepared by reaction of the corresponding 1,3-dicarbonyl compound with hydrazine or phenylhydrazine⁽¹⁵⁻¹⁷⁾ whereas S_5 was prepared by reaction of pyrazole with p-toluene sulfonyl chloride . The compounds were confirmed by m.p , IR and elemental analysis.

2.2. IR Spectra

The spectra were recorded on a SHMADZU FT-IR Spectrometer in the range 4000-500 cm⁻¹, as KBr disc at college of science laboratories- Mesan university.

2.3. X-ray Structure determination


The x-ray diffraction measurements were carried out using single crystal method at 120 K for S_1 and S_4 compounds, at Shaheed paheshty university-Iran . The unit cell dimensions and the geometry parameters have been determind . The crystal lographic data analysis gave crystal and molecular structures .

3. Computations

Molecular orbital calculations were performed using ab initio method at MP2 theory / 6-31G(d,p) basis set . The computations were carried out using HperChem software implemented in the HperChem. 8.0 program. Geometry optimization were preformed at the same theory level before the calculations of the vibrational frequency. Other physical properties such as total energy, charges on the atoms and dipole moments were also calculated to relate it to structure .

4. Results and discussion

The structural formula with numbering are presented by the following

Desir

Fig.1

4.1 Geometry parameters

The calculated geometry parameters for the studied compounds by ab initio method MP2 /6-31G(d,p) are listed in Tables 1 and 2 .

Table 1. Theoretical calculated bonds lengths(\mathbf{A}) and bonds angles degree for pyrazole and its derivatives using ab initio method MP2/6-31G(d,p)

Bond	Compounds	Compounds			
	S_1	S_2	S_3	S_4	S_5
N_1-N_2	1.329	1.338	1.352	1.328	1.339
N_2 - C_3	1.301	1.301	1.294	1.305	1.298
C_3 - C_4	1.413	1.417	1.408	1.416	1.416
C ₄ - C ₅	1.362	1.365	1.363	1.368	1.358
C_5-N_1	1.341	1.341	1.364	1.345	1.350
N_1 - R_6	0.991	0.991	1.428	0.990	1.709
C_3 - R_7	1.071	1.501	1.501	1.480	1.071
C ₄ - R ₈	1.069	1.070	1.070	1.067	1.069
C ₅ - R ₉	1.070	1.496	1.566	1.476	1.068

From Table 1 it is clear that the two bonds N_1 - N_2 and C_5 - N_1 are not equal ,and N_2 - C_3 bond is shorter than C_4 - C_5 . On the other hand C_3 - C_4 bond is shorter than that in aliphatic compounds, succinimide and pyrrole. These observations suggest the aromaticity of the pyrazole ring. However substitution of H_6 in pyrazole by phenyl or p-toluene sulfonyl groups increases N_1 - N_2 and C_5 - N_1 bond lengths. The calculated bond angles(deg.) are shown in Table 2 ,it is clear that the pyrazole molecule is planar, and the two angles N_2 - C_3 - C_4 and C_3 - C_4 - C_5 are not equal they are 111.6 and 103.9 deg. Respectively in addition , the dihedral angles in all studied molecules are almost equal to zero which supports the above suggestion.

Table 2 Theoretically calculated bond angles (deg.) in the studied compounds

Angle	Compounds				
	S_1	S_2	S_3	S_4	S_5
$X_6-N_1-N_2$	119.3	119.1	115.6	118.3	119.0
$X_6-N_1-C_5$	127.8	127.6	134.0	128.3	128.2
$N_2-N_1-C_5$	112.7	113.1	110.3	113.2	112.6
$N_1-N_2-C_3$	104.9	105.2	107.2	105.6	104.8
N_2 - C_3 - C_4	111.6	110.8	110.3	110.4	111.8
$X_7-C_3-N_2$	120.0	121.2	121.4	121.0	119.9
$X_7-C_3-C_4$	128.2	127.8	128.2	128.4	128.2
C_3 - C_4 - C_5	103.9	104.9	105.7	105.1	104.3
X_8 - C_4 - C_3	128.8	127.8	128.0	127.8	128.0
X_8 - C_4 - C_5	127.8	127.1	126.2	126.6	127.6
N ₁ -C ₅ -C ₄	106.6	105.7	106.4	105.4	106.3

Where X=R

4.2 Same physical properties

The calculated energies : total energy , electronic , nuclear repulsion , HOMO , LUMO and ΔE (in a.u) are listed in Table 3 .

Table 3 Theoretically calculated energies for studied molecules by ab initio method MP2/6-31G(d,p).

compound	Total	Electronic	Nuclear*	НОМО	LUMO	$\Delta \mathbf{E}$
	energy[a.u]	energy[a.u]	repulsion	[e.v]	[e.v]	[e.v]
			energy			
S_1	-224.803	-389.778	164.97	-9.817	6.225	16.042
S_2	-302.840	-596.344	293.453	-9.283	6.182	15.465
S_3	-532.427	-1274.475	742.047	-8.939	3.989	12.928
S_4	-683.925	-1713.283	1029.358	-8.381	3.417	11.798
S ₅	-965.695	-1934.767	969.072	-9.511	3.462	12.993

^{*} HOMO ,LUMO , ΔE in ev

The high occupied molecular orbital energy (HOMO) is in S_1 compound, equals -9.817 a.u. which is the lowest value among the studied compounds. In addition the largest energy gap(ΔE), between LUMO-HOMO also found in S_1 while the smallest gap is in S_4 . From these data one may expect that S_1 has relatively high chemical stability compound with the other studied compounds. This can lee explained in term of the substitution effect of phenyl groups in positions 7 and 9 in S_4 .

4.3 Dipole moments and mulliken charges on the atoms

The values of dipole moments and charge on the atoms of studied compounds which are theoretically calculated by ab initio method MP2/ 6-31G(d,p) are shown in Tables 4 and 5.

Table 4. The calculated values of dipole moments (in Debye)

Compound	Dipole	Components		
	moment	X	Y	Z
	deby			
S_1	2.4196	-2.2524	-0.8838	0.000
S_2	2.5659	-2.4294	-0.8257	0.000
S_3	2.0582	-2.0336	0.3172	-0.0001
S ₄	2.9114	-2.6513	-1.2029	0.000
S ₅	4.0664	0.6752	0.4946	-3.9793

These data suggest the planarity of the compounds except S_5 . On the other hand compound S_5 has the largest value of dipole moment and shows three components of the dipole moment .

From Table 5 , 4-carbon atom in pyrazole carring the highest negative charge which indicates that the electrophilic reactions occur at this atom . This result is in agreement with the observed electrophilic reaction of pyrazole $^{(14)}$. In addition , the charge on C_4 is increased in S_3 ,probably due to phenyl group attached to nitrogen atom($N_1)^{(13-15)}$. However , substitution of phenyl groups in 3 and 5 positions reduces the value of the negative charge on C_4 , probably due to sort of conjugation of the phenyl groups with pyrazole ring .On the other hand ,the largest positive charge on carbon atoms in the studied compounds is found on the on C_5 in S_3 compound, 0.38066 (Table 5) . This fact can be understood in term of conjugation of the electron lone pair on the nitrogen atom with phenyl ring .

Table 5. Mulliken charges on the atoms of studied compounds calculated by ab initio method MP2/6-31G(d,p).

Atom no.	Compounds				
	S_1	S_2	S_3	S_4	S_5
N_1	-0.417774	-0.470671	-0.645524	-0.514144	-0.566473
N_2	-0.313326	-0.356418	-0.354949	-0.373857	0.306062
C ₃	0.094267	0.251618	0.288704	0.27581	0.114670
\mathbb{C}_4	-0.302783	-0.331854	-0.345257	-0.295149	-0.314333
C_5	0.130365	0.329690	0.380660	0.366222	0.165761
R_6	0.327422	0.318322	0.344626	-0.324932	1.228664
\mathbb{R}_7	0.152633	-0.343458	-0.342740	-0.024072	0.162433
R ₈	0.155489	0.144825	0.148629	0.158170	0.164775
R ₉	0.173708	-0.357668	-0.343839	0.004945	0.21155

4.4 X-ray Structural determination

X-ray diffraction measurements were carried out on S_1 and S_4 compounds as single crystal at 120 k temperature using x-ray wave length 0.71073 \red{A} . The crystal system of S_1 is orthorhombic with space group Pbcn and the unit cell dimensions are : a=8.2424 \red{A} , b=12.5948 \red{A} , c=6.8159 \red{A} ; α = β = γ =90 deg. the crystal of S_4 is monoclinic with space group C_{21C} and the unit cell dimensions are : a=16.886 \red{A} , b=16.959 \red{A} , c=17.5220 \red{A} ; α = γ =90 deg. β =109.94 deg. The crystal sizes were 0.40x0.30x0.20 mm and 0.25x0.20x0.15 mm for S_1 and S_4 respectively. The values of bond lengths and bond angles determined by x-ray diffractions for the two compounds are listed in Tables 6and7.

Table 6 . Bonds length (\dot{A}) and bond angles (deg.) determined by x-ray diffraction for S_1 compound.

Bond	Bond length	Angle	Angle value
N_1-N_2	1.351	N_2 - N_1 - H_6	124
N_2 - C_3	1.342	$C_5-N_5-H_6$	128
C_3 - C_4	1.383	$N_2-N_1-C_5$	108.3
C ₄ - C ₅	1.385	$N_1-N_2-C_3$	108.4
C_5-N_1	1.339	N_2 - C_3 - C_4	109.2
N_1 - H_6	0.866	N_2 - C_3 - H_7	125.4
C ₄ - H ₈	0.930	C_{5} - C_{4} - C_{3}	104.8
C ₅ - H ₉	0.930	C_3 - C_4 - H_8	127.6
		C_5 - C_4 - H_8	127.6
		C ₄ -C ₅ -N ₁	109.3
		C_4 - C_5 - H_9	125.3
		N_1 - C_5 - H_9	125.3

Table 7. Bonds length and bond angles (deg.) determined by x-ray diffraction for S₄ compound.

Bond	Bond length	Angle	Angle value
N_1-N_2	1.356	$N_2-N_1-H_6$	125.3
N_2 - C_3	1.347	$C_5-N_1-H_6$	125.3
C_{3} - C_{4}	1.395	$N_2-N_1-C_5$	109.3
C_4 - C_5	1.393	N_1 - N_2 - C_3	108.1
C_5-N_1	1.346	N_2 - C_3 - C_4	108.6
N_1 - H_6	0.860	N_2 - C_3 - R_7	122.0
C_3 - R_7^a	1.472	C_4 - C_3 - R_7	129.2
C ₄ - H ₈	0.930	C_3 - C_4 - C_5	105.7
C ₅ - R ₉	1.473	C_3 - C_4 - H_8	127.1
		C_5 - C_4 - H_8	127.1
		C_4 - C_5 - N_1	107.9
		C_4 - C_5 - R_9	129.5
		N_1 - C_5 - R_9	122.4

It is clear ,from Tables 1 and 2 by comparison with that of Tables 6 and 7 , that the theoretically calculated geometry parameters of $\,S_1$ and $\,S_4$ compounds are in good agreement with x-ray diffraction results . In addition the calculated and measured dihedral angles for S_1 and S_4 suggest the planarity of the molecules . However , x-ray structural measurements showed presence of hydrogen atoms on both N_1 and N_2 atoms in S_1 compound (Fig.2) . This fact indicates that the compound exists in solid as a tautomeric mixture . It was previously reported that $.S_1$ undergoes tautomerism in solution. On the other hand , x-ray structure of S_4 is shown in Fig.3 $^{(10,12)}$. It is clear that the

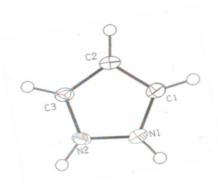


Fig.2 x-ray structure of S_1

S₄ compound does not show tautomerism .

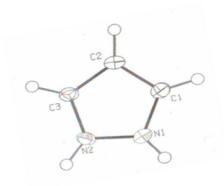


Fig. 2 x-ray structure of S_1

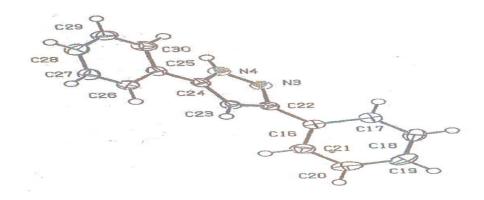


Fig.3 x-ray structure of S₄

In general ,ab initio calculations for the bond lengths $,N_2-C_3$, C_4-C_5 , N_1-N_2 , in S_1 and S_4 compounds give slightly smaller values than that determined by x-ray analysis except that of C_3-C_4 bond. However ,x-ray determination showed the bond lengths , N_2-C_3 , C_3-C_4 , C_4-C_5 and N_1-N_2 in S_4 are longer than that of S_1 .

4.5 IR spectra

The theoretically calculated IR frequencies by ab initio method for the studied compuonds are shown in Table 8 and 9 .

مجلم ميسان للدراسات الاكاديمين مجلد (۱۲) العدد (۲۲) السنم (۲۰۱۲)

Table 8 . Theoretical (an initio method MP2 / 6-31G(d,p)) and experimental IR data for pyrazole and 3,5-dimethyl pyrazole .

Pyrazole			3,5-dimethyl pyrazole		
Ferquency	Approximative	Exp.	Ferquency	Approximative	Exp.
cm ⁻¹	description	cm ⁻¹	cm ⁻¹	description	cm ⁻¹
3714	NH st	3200 broad	3710	NH st	3207 broad
3248	=C-H sst	3100	3221	=C-H st	3107
3230	=C-H ast	3040	3084	C-H ast	2943
3217			3076	C-H sst	2901
1647	NH δ ip,C=N st. C-H δip	1716	1678	NH δip, C=N st, C-H δip	
1545	NH δ ip, C-N st . C-H δip	1556	1590	1	1592
1462	C=C st, N=C st , C-H δ ip	1467	1543	NH δ ip , C-N st , C-H δip	1552
1457	N-C st, N=C st, C-H δip	1447	1512	C=C st, N=C st, C-H δip	1485
1325	N-C st, C=N st, C-H δip	1396	1451	N-C st, N=C st, C-H δip	1465
1209	Ring s ,C-H δοορ	1140	1322	N-C st , C=N st , C-H δip	1423
1160	C-N st , C-H s	1130	1197	Ring s , C-H δοορ	1379
1076	C-H δip, N-N st	1050	1094	C-N st , C-H s	1307
1067	C-H δip, N-N st	1010	1161	C-H δip ,N-N st	1267
966	C=N-N s C-H δip	990	1066	C-H δip ,N-N st	1155
958	C-C=N s , C-H δip	937	1005	C=N-N s , C-H δip	1149
939	С-Н боор	769	838	C-C=N s , C-H δip	1028
928	С-Н боор		748	С-Н боор	1010
806	С-Н боор		704	С-Н боор	779
704	N-Η δοορ , C-Η δοορ	750			
650	Ν-Η δοοр	638			
553	Ν-Η δοοр	575			

a Scaled by 0.9427

c Vibrational modes : st. stretching , sst. Symmetrical stretching , ast. asymmetrical stretching , δ deformation , ip. in plane bending , oop. out of plan bending .

b KBr disc

Table 9 . Theoretical(ab initio method MP2 / 6-31G(d,p)) for S_4 and S_5 compounds in the range 4000- 1400 cm⁻¹.

S ₄ 9 ^a cm ⁻¹	$S_5 \vartheta cm^{-1}$
3735	3284
3203	3257
3196	3097
1715	1703
1692	1693
1680	1636
1662	1579
1577	1542
1556	1538
1528	1486
1525	1468
1482	1378
1472	1370
1394	

^a Scaled by 0.9427

In general the calculated IR values of the studied molecules are in good agreement with the experimental . From Tables 8 and 9 substitution of phenyl group (as in S_4) increases the NH frequency whereas substitution of methyl group (as in S_5) reduces its value ,compound by pyrazole . The increase can be explained in term of conjugation of the phenyl group with NH while the decrease is due to inductive effect of CH_3 group . However , NH in plane bending frequency also shifts to higher frequency by phenyl and methyl groups . In these molecules , the vinyl hydrogen stretching appears at higher frequency compound with that of the aromatic hydrogens.

4.6 Conclusion

ab initio calculations for geometrical parameters and vibrational frequencies for pyrazole and substituted pyrazole are in good agreement with experimental. The x-ray data analysis indicates existence of pyrazole as a tautomeric mixture in the solid state whereas 3,5-dimethyl pyrazole is not.

References

1. B.K.Wibreg "Aromaticity of Hetrocyclic Chemistry ;pyrazole ,pyrazolines ,pyrazolidnes ,imidazoles and condensed ring" 3,20 (1967) ; B.K.Wiberg " Aromaticity and its chemical Manifestation" p 519(1999).

مجلم ميسان للدراسات الاكاديمية مجلد (۱۲) العدد (۲۲) السنم (۲۰۱۲)

- 2. T.Irikura, M.Hayashi, K.Kotare, Y.Kudus, J.Hatayama and E. Hetaugi, Jap. Patent. Chem. 714,799(1997).
- 3. R.L. Bick, J. Fareed and D. Hoppensteadt"New antithrombotic drugs: A perspective.Curr opin cardiovasc pulmonary Renal Invest Drugs" 40,55(1999).
- 4. K.S. Sahu, M. Bouerjee, A. Samantray, C. Behera and A.M. Azam, Tropical J.Pharma Res; 961-968(2008).
- 5. S.B. Holla, M. Mahalinga, S.M. Karthikeyan, M.P. Akberali and S.N. Shetty, Bioorg. Med. Chem. 14, 2040(2006) .
- 6. A.R. Katritzky, A.V.Vakulenko, R.A.Gedu and J.W.Rogers, ARKIVOC i,8555-60(2007).
- 7. Li.J. Zhao, Y.F.Zhao, X.L-Yuan and P.Gong, Arch.Pharm.Chem.Live Sci,339-593(2006).
- 8. Z.R. Yan, Y.X. Liu, F.W.Xu, C. Pannecouque, M. Witvrouw and E. De Clereq, Arch. Pharm. Res. 29,957(2006).
- 9. A. Perez-Rebolledo, J.D. Ayala, G.M. de Lima, N. Marehini, G. Bo-Mbieri, C.L. Zani, E.M. Souza-Fagundes and H. Beraldo, Eur. J. Med. Chem. 40,467 (2005).
- 10. I.L. Finar, D.Sc., Ph.D. (London), C. Chem., M.R.I.C. Principal "Lecturer in organic chemistry" (1977).
- 11. A.N.Kost and I.I.Grandberg "Progress in Pyrazole Chemistry" Adv.Hetrocycl.Chem.6,347 (1966) .
- 12. R.H. Wiley"The Chemistry of Hetrocyclic Chemistry" Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings" 3,20(1967) .
- 13. M.P. Caton, D.H. Jones, R. Slack and K.R. Wodridge, J. Chem. Soc. 446(1964).
- 14. O. Lamarche and J.A. Platts. Chem .phys. lett. 367,123(2000) .
- 15. J.S. Clark "Heterocyclic Chemistry" oxford primer series, 95,100(2010); F.Gosselin, P.D. O'shea, R.A. Wbster, R.A. Reamer, R.D. Tillyer and E.J.J. Grabowski, Synlett, 3267 (2006); S.T. Heller and S.R. Natarajan, Org. Lett.8,2678(2006).
- 16. A.F. Richard, PNAS, Vol.102, No.19, 6648 (2005).
- 17. B.F. Mirjalili, A. Bamoniri, H.R. Akrami, J. Digest, Nanometer Biostruct. ,4,763(2009).

