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ABSTRACT 

This research deals with the effect of using  additional boundary conditions as well as 

the eccentricity ratio on the axisymmetric free vibrational characteristics of thin isotropic 

oblate spheroid shells. The formulation depends on the boundary matching method using                                   

the non – shallow shell theory. The oblate shell was assumed to be constructed from two  

spherical elements matched along the continuous boundaries. The additional boundary 

conditions under construction were clamped – clamped, clamped – free and pined – pined. It 

was found that the natural frequency of the shell with clamped – clamped additional 

boundaries was greater than other two types of the additional boundaries. On the other hand it 

was found that in the case of clamped – clamped boundary condition, the eccentricity ratio 

has an effect on the natural frequency greater than the other two cases, i.e, clamped – free and 

pined - pined cases,  respectively.  

Key words: Vibration, Oblate shells, Spheroidal Oblate, Axisymmetric Oblate 

الترددات الطبيعية المتناضرة المحور  للقشريات  على إ� ضافية تأثير الشروط الحدودية 

  المفلطحةالبيضوية 

     الخلاصة

تناول هـذا البحـث دراسـة تـأثير إضـافة شـروط حدوديـة إضـافة إلـى نـسبة الحيـود علـى الخـصائص  الاهتزازيـة المتنـاظرة المحـور  

 تماثل الحدود  في عملية التمثيل الرياضي للمسالة لقد اعتمدت طريقة. ئص المتماثلةيات البيضوية المفلطحة ذات الخصارللقش

وقـد تـم افتـراض ان القـشرية مكونـة مـن جـزئين كـرويين مثبتـين علـى طـول الحـدود .   نظرية القشريات العميقة وذلك باستخدام 

 تثبيـت -تثبيـت  مفـصلي ، حـر – ثبيـت محكـم ت،  تثبيـت محكـم –تثبيـت محكـم : إن الـشروط ألحدوديـه الاضـافية  هـي .بينهمـا

تثبيـت محكـم يزيـد مـن قيمـة التـردد الطبيعـي وان تـاثير هـذا النـوع مـن _ لقد وجد ان الشرط الحـدي نـوع تثبيـت محكـم . مفصلي 

ر نـسبة اضافة الـى ذلـك فـان تـاثي. الشروط الحدية على التردد الطبيعي اكبر من تاثير باقي النوعين الاخرين من الشروط الحدية

 تثبيت محكم  اكثر من تاثير هـذه النـسبة فـي –الحيود على التردد الطبيعي في حالة استخدام الشروط الحدية نوع  تثبيت محكم 

   .حالة استخدام النوعين الاخرين من الشروط الحدية
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1. INTRODUCTION 

 One of the commonly used types of elastic thin shells which has a particular interest in 

the engineering applications is the oblate spheroid shell which is defined as the locus surface 

resulting by rotating an ellipse around its minor axis. This type of shells has many practical 

applications such as; the tanks of liquid oxygen used in several upper stages of space vehicles, 

the housing of the early – warning scanner and others. The nature of these applications of 

such structures which may cause failure in the structure of these shells. One of the very 

important dynamic problems is the resonance. Therefore the free vibration of such shells may 

be studied to present the resonant problems. 

 In general the free vibration of such shells is effected by thr stiffnes distribution, mass 

distribution and the type of boundary conditions that used. The main purpose of this paper is 

to study the effect of using additional boundary conditions on the free vibration of the oblate 

spheroid shell. 

 Penzes and Burgin, 1965 were the first who solve the problem of the free vibrations 

of thin isotropic oblate spheroid shells by Galerkin's method using membrane theory and 

harmonic axisymmetric motion. It was shown that Galerkin's method of solution for the oblate 

spheroid shell yields the exact solution for the closed spherical shell as the eccentricity of the 

oblate spheroid shell approaches zero. The conditions to be imposed are that the 

displacements should be single valued and bounded at every point of the oblate spheroid, 

including the north and south poles. Penzes, 1969 extended the solution of the above 

reference to include thin orthotropic oblate spheroid shells. He used the same assumptions and 

equations of motion in the above reference except that the principal direction of the elastic 

compliances was assumed to be along parallel of latitude and along meridian. Both of the 

spheroid and spherical shells were investigated with various orthotropic constants. The 

discussion was restricted to the axially symmetric torsionless motion of shells. The conditions 

to be imposed are that the displacements should be single valued and bounded at every point 

of the oblate spheroid, including the north and south poles. Irie, 1985 analyzed the free 

vibration of an elastically or rigidly point supported spherical shell. The deflection 

displacements of the shell were written in a series of the Legendre functions and the 

trigonometric functions. The dynamical energies of the shell were evaluated and the 

frequency equation was derived by Ritz Method. The natural frequencies and mode shapes 

were calculated numerically for a closed spherical shell supported at equi – spaced four points 

located along a parallel of latitude. Fawaz, 1990 in his M.Sc. thesis the Rayliegh variation 

method was used to obtain natural frequencies and mode shapes of axisymmetric vibrations of 

thin elastic oblate spheroidal shells with clamped – free for boundary condition and presents 

the results theoretically and experimentally. He showed that the Rayliegh's method was found 

to be suitable only for oblate shells with eccentricities less than 0.6. In the paper presented by 

Antoine Chaign et. al. 2002, linear and nonlinear vibrations of shallow spherical shells with free 

edges are investigated experimentally and numerically and compared to previous studies on 

percussion instruments such as gongs. The preliminary bases of a suitable analytical model are 

given. Identification of excited modes is achieved through systematic comparisons between spatial 

numerical results obtained from a finite element modeling, and spectral information's derived from 

experiments. 
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This research deals with the effect of additional boundary conditions such as clamped 

_ clamped, clamped – free and pined – pined on the free vibration of the oblate spheroid 

shells.  

2. MATHEMATICAL ANALYSIS 

The problem of vibration of oblate spheroid shells will be treated as a structure 

composed of two spherical shells joined rigidly at their ends. Centers of curvature of the two 

spherical shell elements fall along the minor axis of the proposed oblate spheroid Fig. ( 1 ). 

Such approximation is not far from reality, as the oblate spheroidal tanks are produced 

by joining, either by welding or riveting, two spherical shell elements through a toroidal shell 

element. 

The effective radius ( Rr ) of the spherical shell model represents the radius of 

curvature at the apex of the shell. This radius can be obtained from the geometrical relation 

[Penzes, 1965]: 
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The free vibration of spherical shells was solved analytically by [Kalinins, 1964]. In 

this work considering the actual Ф – dependent coefficient of the variable as those derived in 

the latter reference which are : 
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The parameters βi's are the three roots of  the  cubic  equation:- 
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Pn(x), Qn(x) are Legendre functions of the first and the second kinds, respectively Pn'(x), 

Qn'(x) are the derivatives with respect to (Ф) of the Legendre functions of the first and the 

second kinds, respectively. Ai & Bi   are arbitrary constants. 

The above solutions can be applied to the study of free vibration of an elastic spherical 

shell bounded in general by any two concentric openings. 

As stated before the two spherical shell elements are assumed to be rigidly connected 

along their edge Ф=Фo. To guarantee that the continuity of all deflections, slopes, moments 

and forces along the function is insured, (selecting the coordinates of the top shell as the   

reference coordinates ) the boundary conditions at the junctions may be written as follows [ ( 

Fig. 2) ]: 

      

2-1 – Kinematics : 
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2 -2Equilibrium :  

- 02sin2cos 02021 =Φ−Φ− ΦNQQ                                                                                        (9)                                                                                                   

02cos2sin 02021 =Φ−Φ− ΦΦ NQN                                                                                      (10) 
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021 =−MM                                                                                                                        (11) 

Substituting the terms of equation. ( 4a – 4g ) into the boundary conditions results in 

six homogenous simultaneous equations in terms of the constants which can be written as 

follows : - 
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where the elements Ci,k are functions of Ω. These elements are generated from the 

applications. For non trivial solution of the simultaneous equations, the determinant of the 

coefficients Ci,k must  vanish,  thus 
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The elements of equation (12) can be found according to the following boundary 

conditions:  

(a) For clamped end : W(x) = UΦ(x) = W
 '
(x) = 0. 

                                        C1,k = Pni,k(x),                                                                            (13a) 

                                        C2,k  = Ci Pni,k
'
(x),                                                                      (13b) 

                                        C3,k  =  Pni,k
'
(x).                                                                         (13c) 

                                            

(b) For free end : Q(x) = NΦ(x) = MΦ(x) =0.   

                             C1,k = [ ] )1()1(1 −+++ iiC βυυ  Pni,k
'
(x),                                   (14a)                                                              

                                  C2,k  =  { .)1( iiC β+  Pni,k(x) + Φ− cot)1( iCυ  Pni,k
'
(x),                   (14b)   

                                  C3,k  =  [ ]{ iiC βυ )1(1 ++ Pni,k
'
(x) Φ−+ cot)1( iCυ  Pni,k

'
(x).     (14c)  

(c) For hinged edge : W(x) = UΦ(x) = MΦ(x) =0.  

                                         C1,k = Pni,k(x),                                                                           (15a) 

                                         C2,k  = Ci Pni,k
'
(x),                                                                    (15b) 
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The calculation of the natural frequency is carried out by  specifying an initial guessed 

then evaluating the determinant jiC , . Increasing  the  frequency  by  small  increments  and  

repeating  the same procedure until the value of the determinant changes its sign. This   

indicates that a natural frequency is expected in the new value. The   frequency increment is 

then minimized and the operation is repeated until the desired accuracy of the natural 

frequency is obtained when the determinant is vanished. The mode shape associated with any 

natural frequency is then derived by substituting the value of the natural frequency obtained 

above in equation. (12) and normalizing the [ ]A  coefficients and determining the 

eigenvectors. 

 

 

 

 

                                                   

                                                         minor axis 
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3. RESULTS  AND  DISCUSSION: 

Figure ( 3 ) shows the non–dimensional natural frequencies ( )aE .ωρλ =  of 

the first three modes of vibration as functions of the eccentricity ratio obtained by the 

matching boundary condition method using the non – shallow shell theory for clamped – free  

of boundary conditions. This figure shows clearly the tendency of the natural frequencies 

towards lower values as the eccentricity increases.  

 This behavior could be explained by the fact that the mode shapes of a closed spherical 

shell would resemble those of an oblate spheroid up to certain eccentricity ratio. As the 

eccentricity ratio increases, the oblate spheroid tends to flatten up. Such "flattening" causes 

the uncoupling of the radial (or transverse motion) and the tangential motion where the latter 

is minimized and the radial or transverse motion mode shape approaches that of a circular 

plate (a plate is an oblate spheroid with approach unity eccentricity ratio). Another reason is 

that the spherical shape is stiffer than the oblate spheroid due to the flattening in the 

geometry.    

The effect of the additional conditions on the free vibrational characteristics of the 

oblate spheroidal shell is shown in fugures ( 4 , 5  and  6 ). This figures show the non – 

dimensional natural frequencies ( )aE .ωρλ =  of the first three modes of vibration 

obtained by the boundary matching method for variouse boundary conditions as a function of 

eccentricity ratio.  

 It is well indicated that the three figures obey the previous obsarvation of the effect of 

eccentricity ratio on bending modes. However, it is further observed that the curve of clamped 

– clamped boundary conditions in three figures predict higher values than two curves for the 

other types of boundary conditions. This is attributed to the fact that the structure for clamped 

– clamped boundary conditions are in general stiffer than the structure for other two boundary 

conditions due to the constant moment created at the clamped ends.  

The difference of natural frequency in clamped - clamped type between any points is 

hihger than other types because of the stiffener of this type drop when icreaased the 

eccentricity.  

   

4.CONCLUSIONS: 

            From the results obtained, the main conclusion can be summarized as; the natural 

frequencies curved of clamped – clamped boundary conditions predict higher values than the other 

boundary conditions. 
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Fig. ( 3 ) :  Effect   of   eccentricity   on   the   three   first   bending 

modes   obtained   by   BMM 
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Fig.  ( 4 ) :  Effect  of   eccentricity   on   the   first   bending   mode 

for   various   boundary   conditions 
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Fig.  (  5 )  :   Effect  of   eccentricity   on   the   second   bending   mode 

for   various   boundary   conditions 
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Fig.  ( 6 ) :   Effect  of   eccentricity   on   the   third   bending   mode 

for   various   boundary   conditions 

REFERENCES: 

AL-Reheimy Nawal H. A. "Theoretical Investigation of The Axisymmetric Free Vibration of an    

Isotropic Thin Oblate Spheroid Shells", M. Sc. Thesis, Mechanical Engineering/ University of 

Babylon, 2005.   

 Antoine Chaigne, Mathieu Fontaine, Oliver Thomas, Michel Ferre, Cyril Tou., "Vibrations of 

Shallow Spherical Shells and Gongs", J. of Sound and Vibration, 2002. 

Fawaz Abbas Najim, "An Investigation into the Free axisymmetric vibration characteristics of 

isotropic thin oblate spheroidal shells",  M. Sc. Thesis, Mechanical Engineering/ University of 

Baghdad, 1990.   

Irie T., Yamada G. and Muramoto Y., " Free vibration of point – supported spherical shell", 

Transactions of ASME Vol. 52, PP. 890 – 896, 1985.  

Kalnins A., "Effect of bending on vibrations of spherical shells", J. Acoust. Soc. Amer., Vol. 

36 (1), PP. 74 – 81, 1964.  



Ahmed A. et. al.                   The Iraqi Journal For Mechanical And Material Engineering, Vol. 11,No. 4, 2011  

 599

Kalnins A. and Naghdi P. M., " On vibrations of elastic spherical shells", J. App. Mech., Vol. 29, 

PP. 65 – 72, 1962.  

Penzes L. and Burgin G.," Free vibrations of thin isotropic oblate spheroidal shells", General 

Dynamic Report No. GD/C–BTD 65 – 113, 1965. 

Penzes L., " Free vibrations of thin orthotropic oblate spheroidal shells", J. Acoust. Soc. Amer., 

Vol. 45, pp. 500 – 505, 1969 

LIST OF SYMBOLS  

Ai , Bi Arbitrary  constants.                     

a , b Major and minor semi – axis  of  an  oblate  spheroid  shell 

respectively.    

Ci , j Element  of  the  boundary  conditions  matrix. 

Db Plate or shell rigidity  ( E.h
3
 / 12 ( 1 – υ

2
 ). 

E Young's  modulus  of  elasticity (GN / m 
2 

).   

e Eccentricity  ratio  ( 221 ab−  
). 

h Shell  thickness (mm). 

MΦ , Mθ  Moments  per  unit  length.     

NΦ , Nθ  Membrane  forces  per  unit  length. 

Pn(x) Legendre  function  of  the  first  kind. 

P'n(x) First  derivative  of  the  Legendre  function  of  the  first  kind.    

Q n(x) Legendre  function  of  the  second  kind. 

Q'n(x) Derivative of the Legendre function of the second kind. 

QΦ(x) 

R r                                   

Transverse shearing force per unite length . 

Effective  radius. 

RΦ , Rθ                       

UΦ  

Principal radii of curvatures of an oblate spheroid.  

Tangential  displacement  mode. 

u Φ Tangential  displacement  of  points  on  shell  middle  surface. 

W Transverse or radial  displacement  mode. 

w Transverse  displacement  of   points  on  shell  middle surface. 

iβ      Roots  of  the non – shallow shell cubic equation.   

Φ'     Inclination  angle  of  an  oblate  spheroid. 

Φ     Inclination  angle  of   a spherical  shell  model. 
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Φo     Opening  angle  of  the  approximate  spherical  shell.. 

λ    Non – dimensional  frequency  parameter aE .ωρ  

                 (used  for  oblate  spheroid  shells ).         

ρ    Mass density ( kg / m 
3 

). 

Ώ Non – dimensional  frequency  parameter RE .ωρ  

               (used   for   spherical   shells ).                          

 υ Poisson   ratio. 

   ω                        Circular  frequency ( rad / sec). 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  


