

احمد زغير جابر مدرس مساعد/كلية الهندسة/جامعة القادسية

Determining Standard weight for influenced factors on productivity of Scraper Ahmed Z. Jabir M.Sc. civil Eng.

Abstract:

The construction sector is usually considered the most important sector among other sectors .The estimation cost of items plays great role in project execution .This paper concludes that implementing standard formula in calculating the productivity of excavating equipment reflects directly on the cost analysis of the project, where the management has been proved the dominant in this era.

(Nunnally, 2000)

(Gouranga, 199)

:

(Hendrikson, 1989) (Day,1973) (Harris, 2001) (Peak Productivity) $.(P_p)$ (P_n) (Normal productivity) () () (%) $P_n = 0.8 \times P_p$ (1) (Pa) (Actual productivity) (Ben Saleh)) .() .() .((P_a) (Ben Saleh) -: -: .() .() () .() .() .() .(,) .()

```
()
                                                   )+( * , )+( * )+( * )+( * )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( *
                                                                     )+( * , )+( * , )+( * )+( * )+( * )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( * , )+( *
                                                                                                                                                                                                                                                                                                                                        =( * , )+( * , )+( * )+( * , )+( * , )+( * ,
                                                                                                                                                                                                                                                                                                                            ()
                                                                                                                                                                          ((
                                                                                                                                                                                                                                                                                                                                                              )
                                                                                                                                                                                                                                                                                                                                                                                                         174
X_{1,1} = \frac{}{174 + 1195 + 150 + 1355 + 93 + 1045 + 1485 + 181 + 1655 + 178 + 1625 + 158 + 1205 + 1095 + 179 + 135 + 121 + 825 + 117 + 1085 + 1315}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X_{11} = 0.06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ()
                                                    X_1 = \sum_{i=1}^{l=1} X_{1,i}
                                                     X_1 = 0.06 + 0.041 + .052 + 0.047 + 0.032 + 0.036 + 0.051
                                                     X_1 = 0.321
                                                    . ( )
                                                                                       ()
                                                                                                                                                                                                                          P<sub>a</sub> ) ((Ben Saleh:
                                                     P_a = P_p \times \left[ F_1 \times X_1 + F_2 \times X_2 + F_3 \times X_3 \right]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (X_3)(X_2)(X_1)
                                                                    (Ben Saleh
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (F_3) (F_2) (F_1)
                                                                                                                                                                                               )
                                                                                                                                                                                                                                                                             ( )
                                                                                                                                                                                                                                                                                                                                                                                                              ()
```

•

$$P_a = P_p \times \sum_{j=1}^{j=3} \sum_{i=1}^{i=7} X_{i,j} \times F_{i,j}$$
 (3)

()

. ()

..

Ben Saleh, Khaled Mubarak Said," Driving an Equation to Calculate The Productivity of Scraper", M.Sc. in Construction Management Thesis, Baghdad University, Civil Eng.Dep.1999.

Day, D.A., P. E., "Construction Equipment Guide", John Wiley& sons, New York, 1973.

Harris, F. and McCffer, R.," Management of Construction Equipment ", 3rd edition, Macmillan Education Ltd, London, 2001.

Hendrikson, C& Tung, "Project Management for Construction", prentice hall Inc., Engle wood Cliffs, New Jersey, 1989.

Nunnally , S.W. ,"Managing Construction Equipment ", 2^{nd} edition, Prentice-Hall, Inc, Pearson Education , New Jersey, 2000.

()

,						()		
()	.		,				
2	3	3	2	3	3	4	1	1
3	3	2	4	3	2	3	1.5	2
4	2	2	2	4	3	4	2.5	3
4	3	3	4	3	3	4	2.5	4
3	1	3	3	3	4	2	1	5
3	3	2	3	4	3	3	1.5	6
3	4	2	3	3	3	4	1.5	7
2	3	1	2	3	3	4	2	8
3	3	2	3	3	3	4	1	9
4	2	3	3	4	3	4	2	10
4	2	2	3	2	2	4	1.5	11
2	2	1	2	3	2	3	1	12
4	2	1	3	3	2	3	2	13
3	2	2	2	3	3	4	1.5	14
3	3	2	3	3	2	4	2.5	15
2	3	2	3	3	2	3	1	16
2	2	3	2	3	1	4	1.5	17
4	1	2	4	3	4	4	2	18
3	3	2	2	2	3	3	1	19
3	1	1	4	3	4	3	1	20
3	2	1	3	4	2	4	1.5	21
4	2	2	2	3	2	4	2.5	22
2	1	2	3	3	2	3	1.5	23
1	1	2	4	4	1	4	2.5	24
4	2	1	2	4	2	4	1.5	25
3	2	2	3	3	3	4	2	26
4	3	2	2	3	4	3	1.5	27
4	2	2	3	3	2	4	2.5	28

()

(X_{1,1})

(X_{1,2})

Ahmed Z. The Iraqi Journal For Mechanical And Material Engineering, Special Issue (C)

ı		$(X_{1,3})$.(X ₁)
1	1	$(X_{1,4})$	
1		$(X_{1,5})$	
1	1	$(X_{1,6})$	
ı	1	$(X_{1,7})$	
ı		$(X_{2,1})$	
ı	ı	$(X_{2,2})$ ()	
ı		$(X_{2,3})$ ()	
ı	ı	$(X_{2,4})$.(X ₂)
ı		$(X_{2,5})$ ()	
ı	ı	$(X_{2,6})$	
ı	ı	$(X_{2,7})$	
ı		$(X_{3,1})$ ()	
ı		$(X_{3,2})$	
ı		$(X_{3,3})$	
ı	1	$(X_{3,4})$.(X ₃)
ı		$(X_{3,5})$ ()	. (213)
ı	ı	$(X_{3,6})$	
,	1	$(X_{3,7})$	

(Ben Saleh) ()

.(X ₃)	.(X ₂)	.(X ₁)
ı	ı	ı

(Ben Saleh) ()

1.0-0.91	
0.9-0.81	
0.8-0.71	
0.7-0.61	
0.6-0.51	

0.5-0.41	
0.4-0.31	
0.3-0<	
0	

()

%	
	-
	-
	-
	-
	-

()

			()
			F _{1.1}
,	,	'	$\Gamma_{1,1}$

,	ı	,	$F_{1,2}$

<	-	-	
1	1	1	$F_{1,3}$

,	,	$F_{1,4}$

<	-	-	-	()
1	1	1	1	F _{1,5}

<	-	-	-	()
ı	ı	,	,	F _{1,6}

Ahmed Z. The Iraqi Journal For Mechanical And Material Engineering, Special Issue (C)

				, >	>	,	- ,		, <	<	()		
				ı		,			ı			F _{1,7}		
			ſ								1		1	
											Б		-	
					ı		1		ı		$F_{2,1}$	<u> </u>		
											()		
		ı		,		1		,]	F _{2,2}		
											Т			
	-	_	-		_		_			<	()	
	,	,	1	١	ı		1		ı	Τ		F _{2,3}		
			()								F _{2,4}		
			.	ı			,		1	1	1	1 2,4		
						>		<		()			
				ı		ı	ı				F _{2,5}			
]
		ı			,		,			,		$F_{2,6}$		
	, , F _{2,7}													
		_		L	,		1							
			<	<	-	-	-		-		()			
		L	ı		,		1		1		F ₃	,1		
		Г								1				
					<	-	-		>		()		
				,		,			1			3,2		
						<		>		()			
						ı		ı		F ₃	,3			
ļ	<									<i>(</i>)				7
	,						-			()	-	F _{3,4}		1
	'	1	,		1	,	, ,		Ī		-	J,¬		1

			()
1	1	1	F _{3,5}

	,	1		,	F _{3,6}
	_		-	<	()
	,	ı		,	F _{3,7}

()

		()
0.85		(F _{1,1})
0.88		(F _{1,2})
0.88	(-)	(F _{1,3})
0.75		(F _{1,4})
0.75	<	(F _{1,5})
0.75	<	(F _{1,6})
0.85	, <	(F _{1,7})
0.85		(F _{2,1})
0.78		.(F _{2,2}) ()
0.8	-	(F _{2,3}) (
0.8		(F _{2,4})
0.75		(F _{2,5}) ()
0.82		(F _{2,6})
0.88		(F _{2,7})
0.75	-	$(F_{3,1})$ ()
0.8	<	(F _{3,2})
0.85	<	(F _{3,3})
0.88	-	$(F_{3,4})$
0.8		(F _{3,5}) ()
0.75		(F _{3,6})
0.85	-	(F _{3,7})

Ahmed Z. The Iraqi Journal For Mechanical And Material Engineering, Special Issue (C)

		(D)	()	
	(P_a) (m^3/h) ()	$\sum_{j=1}^{j=3} \sum_{i=1}^{i=7} F_{j,i} X_{j,i}$	(P _p) (m ³ /h)	(P _a) (m ³ /h)
% ,	ı	ı		ı