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         Usually in nucleon-nucleon reactions, optical potential is used to study the nuclear 

structures resulting from these reactions. As this potential during the reaction is subject 

to dispersion by the nuclei surface as well as the total size of the nucleus, it is very 

important to calculate the dispersive behaviour. We present an analytical and numerical 

expressions used to evaluate the dispersive contribution to the real potential of the 

imaginary part and surface contribution and applied to 
15

C
 
+ 

9
Be at energy 60 MeV. For 

both imaginary volume and surface potentials, solutions to the nuclear optical model 

dispersion relation have been obtained. For the volume imaginary term, a typical 

Brown-Rho shape has been considered with the parameters (n=2,m=2,4), and for the 

surface contribution, a Brown-Rho shape multiplied by the decreasing exponential. For 

exponent with any even value appearing in these forms, the analytical solutions are 

valid. The energy representation of the real and imaginary parts of the OMP is carried 

out by these approaches. 
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Introduction 

 A lot of theoretical focus has recently been 

placed on creating an optical model potential (OMP) that 

acts as a consistent formulation of the mean-field of 

nucleons and nuclei in both positive and negative 

energies [1,6]. 

This type of potential is defined by two terms, 

first one is Hartree-Fock which represents the 

component of the mean-field that varies with energy 

slowly, i.e. independent of energy. The second one 

called the correction term which is more complicated 

and dependent on energy derived from a dispersion 

relation. Two terms are called dispersive optical 

potential. It can be describing the bound state properties 

as probabilities of occupation etc and nucleon-nucleus 

scattering system. The two parts of optical potential real 

and imaginary are satisfying the dispersion relation [7]. 
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 which is an attempt at this idea in our paper. The 

analysis of OMP was taken care of in the work of 

Mahaux and Sartor [8] where their dispersive analysis of 

potential achieved by an integral relation links real and 

imaginary parts. 
 

 

At the Fermi surface region, the depth of real 

potential differs from the regular behavior because of the 

dispersion phenomena. So, the main two parts the 

potential, real and imaginary, will related in dispersion 

relations. This elation and according to Cauch's theorem 

have two poles that can be neglected. The potential 

depth does not depend on particular nuclei and can be 

considered as an interaction property, and this property 

be the due heavy nucleus and high incident energy of 

particle [9]  

The analyzes conducted on the optical 

potentials used in nuclear reactions using dispersion 

relations proved insufficient in giving us additional 

information about the high-energy region, as the data 

were not accurate or comprehensive enough. 

Therefore, it was necessary to distinguish between 

real dependence on energy and false dependence in 
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order to obtain accurate data and thus improve this 

data. In the present paper, the dispersive optical model 

analysis of the neutron removed from 
15

C nucleus will 

be done and the results comparing with global 

parametrization of the optical model potential results at 

energy range up to 103 MeV by taking the calculation 

step for energy range whose value (1)MeV and using 

Mahaux and Sartor and Brown and Rho functions 

values. 

 

2. Theory: 

When the nucleon-nucleus interact and scattering 

happen, the optical potential U is given as [10-14] 

( , ) ( , ) ( , ). . ( , ) ( )

                ( ( , ) ( , )) ( , ). . )

V SO S C

V S SO

U r E V r E V r E V r E V r

i W r E W r E W r E





    

  
  …(1)                                                                                                                                                         

Where VC is the Coulomb potential, VV,S are real 

parts of volume (V) and surface (S) generated by the 

Wood-Saxon well, and WV,S,SO are imaginary parts has a 

combination of volume and surface where the volume 

term can be considered to have a Wood-Saxon shape. 

The spin-orbit potential VSO has Thomas form and has 

an effect on the polarization of the scattering of 

particles. LAB energy is represented by E (MeV) for 

incident nucleon. The scalar product of operators .   

given as [15 ]:  

1 for j =1+1/2  parallel
.

( 1)     for j = 1-1/2 anti-parallel



 

 
 

All these parts in eq.(1) are in well-depths 

(VV,VS,WV,WS,Wso) with energy dependent and radial 

parts f (r,Ri,aI ) with energy independent define as the 

radial geometrical form factor of Vreal, VSO, VV, and VS  

potentials and take a standard formula of Wood-Saxon 

shape that given as [16]:  
1

( , , ) 1 exp i
i i

i

r R
f r R a

a



  
   

  
  ………….. (2) 

Where the nuclear radius 
1

3
i iR r A , with 

atomic mass number A, the diffuseness parameters ia  , 

and the functional , ,i V SO S geometry parameters 

represent the volume, spin-orbit, and surface potentials. 

By solving the Schrodinger equation using the complex 

potential we shall get a prediction about some basic 

observables, such as total cross-section, and elastic 

angular momentum distribution [17]. 

The causality principle, which states that a 

scattered wave cannot be emitted before the incident 

wave arrives [1], naturally leads to certain dispersion 

relation. The depth of absorptive part in the dispersive of 

the potential is determined by the imaginary part can be 

expressed by dispersion relation as [18]:  

( , )
( , )

P W r E
V r E dE

E E






 

  ……….(3) 

Where E is projectile incident energy, E' is the scattering 

energy, and the symbol P represented the principal value 

of the integral. Now, by assuming that W(r, E') is 

symmetric according to Fermi energy (the amount of 

energy holds between the last occupied shell and final 

empty shell), i.e ( , ) ( , )F HF FV r E E V r E E    , 

the total real-central potential can be written as a sum of 

Hartree-Fock component VHF (r,E) and total dispersion 

potential and given as: 

( , ) ( , ) ( , )HFV r E V r E V r E    …………..  (4) 

and as the imaginary component has two parts, 

volume, and surface, the last term (dispersion term)  in 

eq. 4 is determined as:  

( , ) ( , ) ( , )V DV r E V r E V r E        with 

( , ) ( ) ( , , ) 4 ( ) ( , , )V V V D D D D

d
V r E V E f r R a a V E f r R a

dr
      ……… (5) 

The values of volume and surface correction 

terms of dispersion are given by: 

( )
( ) V

V

W E
V E dE

E E






 

          and           

( )
( ) D

D

W E
V E dE

E E






 

   …………(6) 

The HF energy dependence potential is given as 

( , ) A exp[ ( )]HF HF HF FV r E E E   being: 

1A V 1 ( 1)z viso
HF o

o

C N Z

V A

 
   

 
   

while Vo, HF , and visoC are undetermined constants. 

 

2.1 Numerical solution: 

The numerical solution is the simplest integral 

method used to solve the dispersion relation. Since there 
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is a pole at E'=EF in eq.3, this equation cannot be used to 

have a numerical solution.  

There is a difficulty represented as the potentials 

required to cover the whole energy range ( ) . 

i.e. this integral must be analytic for absorption potential 

energy dependence. To make the analytical solution 

available for dispersive correction calculation, some 

conditions must be taken as the symmetric of imaginary 

potential (either volume or surface) with respect to 

Fermi surface energy EF for the target, i.e: 

( ) ( )F FW E E W E E   , is used for energies below 

Fermi, so the eq. 3 be [19]: 

2 2

2 ( , )
( ) ( )

( ) ( )
F

F

F FE

W r E
V E E E dE

E E E E




  
      ………… (7) 

Note that the term P is dropped because the integral 

does not have a singular point at E' =E. 

   The sum of volume absorption potential, WV 

(E), and surface energy, WS(E) give imaginary optical 

potentials, W(E), that give birth to the terms ∆VV (E) and 

∆VS(E), which are subdivided into the dispersive term 

∆V(E). The core components of the dispersive OMP's 

actual volume VV (E) and surface VS (E), while the VS(E) 

is taken as a correction term: 

( ) ( ) ( )

( ) ( )

V HF V

S S

V E V E V E

V E V E

  


  
   ………..(8)  

It is beneficial express the fluctuation of the 

surface WS(E) and volume WV(E) with energy in 

functional forms appropriate for the dispersive optical 

model analysis, as was mentioned in Refs. [9,13]. The 

energy dependence of the volume imaginary portion is 

defined in this study as: 

0                           

( ) ( )

( ) (B )

F P

n
V P

V Pn n

P V

E E E

W E E E
A E E

E E




 
  

  …..…….(9) 

where to define such region there is an average energy 

called single-particle state energy Ep [20]. Likewise, the 

energy dependence of imaginary-surface potential was 

given by [21]: 

0                                       

( ) ( )

( ) (B )
S P

F P

m
C E ES P

S Pm m

P S

E E E

W E E E
A e E E

E E

 




 
  

……(10)    

Where AV, BV, AS, BS, and CS are undetermined 

constants [8]. The constants (n) and (m) must have 

values with even numbers for integral (1) to exist, where 

Mahaux and Sartor [8] was suggested n=4, while Brown 

and Rho [22] suggested n=2, while m = 2,4. Such a 

region needs to define the is the average energy of the 

single-particle states EP, so the energy shift (offset) for 

the particle-hole region is Eof=Ep - EF. According to eq's 

5 and 6, W(E) will be zero at E=EF, and with any value 

everywhere else, 

2.2 Analytical solution: 

Recent research [23,24] has derived the analytical 

solutions given by Eq. (7) for the frequently utilized 

forms of W(E), used in DOM investigations (Eq's. (5)–

(7)): 

1

( ) ln( ) ln ln
n

n n n n

V j j

i

A
V E Z p R E R E


   



 
      

 
   

…..(11) 

1

1

( ) e ( ) e ( ) ( )
m
j

m
p C CE CEm m m m

S j j

i

A
V E Z E p C R Ei CE R e Ei CE


 

 

   



 
      

 
  …….(12) 

the p
n

j are the n-zeroes of (U
n
 + B

n
), that is: 

2 1
expn

j

j
p B i

n


 
  

 
            ……..(13) 

The dispersion relation that emerges from the 

asymmetric form of WV (E) (Eq’s. (8) and (9)) have to 

derived directly from Eq. (2) then separated into extra 

three parts [8]. As a result, the dispersive correction for 

the imaginary part in the form can be written as: 

( ) ( ) ( ) ( )V V VV E V E V E V E        ……..(14) 

      Where ∆V<(E) and ∆V>(E) are the dispersive 

corrections produced from the asymmetric terms of 

Eq’s. (9-10), and ∆VV (E) is the dispersive correction as 

a result of the symmetric imaginary part of Eq(5). The 

dispersive correction for the surface imaginary potential 

can be expressed as follows: 

( ) ( ) ( )S S SV E V E V E     ……..(15) 

( ) Res ( ), ln( )x
j a F j

i

AE
V E f z z E E z



 
      

 
     ….(16) 

where the function f (z) has a residue given as 

Res[f (z), zj ] at the pole z = zj. The total in Eq. (16) is 

over (n+ 4) terms because two real poles (z=-E, z=-EF).                                                                                                 
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Given that the WV (E) for E (EF, Ea) grows in 

magnitude by less than 10% of its max. magnitude at E 

= EF Ea, a highly accurate estimation of the exact 

contribution of ( )V E  may calculated. Eq. (8) 

therefore can be approximately be: 

2

2 2

( )
( ) ( ) W ( )      for   

( )

F a
V V V F a F a

F a a

E E E
W E W E E E E E E

E E E E

 
   

  
    ..(17) 

3. Results and discussion: 

The volume and surface terms are major terms for 

imaginary potential. Analytical and numerical solutions 

of the dispersion relation of these terms of optical 

potential will be considered. Different proton energy 

used to investigate the reaction 
15

C+
9
Be at different well 

depths, as shown in figure (1), with n=2 and m=2,4 that 

using in eq.'s (9,10). A Fermi-energy describes the depth 

energy dependence of the volume and surface 

components of the imaginary part.   

To solve the eq.9 for the numerical solution by 

slow Simpson integration we shall need to reduce the 

iterations number by making 1000 steps with (50 keV) 

for each step up to 100 MeV. Based on the Gauss-

Legendre integration method (GLIM) [25], the fast 

convergence was achieved of the integral of dispersion 

relation and got an accurate numerical solution with 

finite interval (-1,1) and can be approximated by the 

formula: 

 
1

1
1

( ) ( )





n

n n

i i

i

f x dx W f X    ………… (18 ) 

Where n

iW  and n

iX are the wights suitable for n-

point Gauss-Legendre integration. The value of n was 

taken as n=10 for each interval used in this work. The 

main parameters used in this work, to describe the 

proton reaction with incident energy 60 MeV, were 

taken from the RIPL-3 library [26], and Fermi energy is 

EF= -10.1136 MeV. Figure (1) describe the energy 

dependence that was made from zero to 100 MeV of 

dispersion correction when get the numerical results 

with n=2 and m=2. 

 

 

Figure 1: Energy dependence of volume and surface 

components with n=2 and m=2,4. Calculations are made 

by analytical and numerical. 

The event of the surface imaginary part, it is 

anticipated that the gradual decrease in surface 

absorption with increasing energy will be indicated by 

the slow decline of the volume potential at energies 

above the Fermi energy. The radial form and depth of 

the real potential are influenced and contributed to by 

the dispersive of the surface terms and imaginary 

volume. Although the actual potential fills up as neutron 

energy rises, the imaginary 

potential fluctuates parabolical with respect to Fermi 

surface energy.  

  From this figure, due to the non-local optical 

potential, the true volume central potential depth W(E) 

decreases with the increase in energy. This contrasts 

with the linear energy dependence of this part of the 

potential, which is assumed to occur mostly in OMP 

analysis. The lack of dependence here is due to the fact 

that the linear dependence is reasonable only in a narrow 

energy period limited to 10-40 MeV, while depending 

on the OMP dispersion analysis within the range of high 

energies, the volume real central part behaves as an 

exponential function, exp(-E), to an energy limit of 140 

MeV, which is noticeable in the figure above when we 
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adopt the representation of the exponential function for 

this real potential of less than 100 MeV. 

 

 
Figure 2: Components of OPM dependence ON Energy 

with n=2 and m=4 get by analytical and numerical ways. 

          

Similarly, absorption imaginary potential 

compounds, surface WS and volume WV, depend mainly 

on E-EF. At low energies, the absorption obtained from 

the surface compound WS dominates, and after about 10 

million electron volts, there will be an appearance of the 

volumetric compound WV, and it cannot be ignored, but 

at high energies, the volumetric compound will 

completely dominate the absorption. In general, at low 

energies the Brown-Rho function is modest, then it 

becomes more noticeable till it eventually reaches a 

fixed amount.. In dispersion analyses, Brown-Rho 

function may in general be equal to any low integer 

(n=2,4,6), which is what was found in our work when 

using the exponent of 2 and 4 in the two relations of the 

imaginary surface and volume, and it gave a good 

description of our result as shown in the figure above 

Figure (1) illustrates the typical energy 

dependency of the Wv(E) and the Ws (E). The surface 

term, which indicates coupling to long-range 

correlations-LRC, predominates at energies close to the 

Fermi energy. The number of ways a particle-hole can 

couple to 2h-1p (2p-1h) states rises as energies become 

more negative (positive), which is why the absorption 

around the Fermi energy increases. The ∆V<(E) and 

∆V>(E) were shown in figures (1 and 2) as they the 

dispersive corrections results of the asymmetric terms . 

The volume term, which stands for coupling to 

short-range correlations SRC, dominates at larger and 

more minuscule energies. The volume term keeps rising 

as the positive energies increase. This result is caused by 

the fact that when energy rises, the phase space for 2p1h 

states rises. The nucleon-nucleon interaction's repulsive 

core strength determines when the 2p1h states ultimately 

approach zero and at what energy. Experimentally, the 

coupling does not reach zero, but theoretical 

calculations indicate that it does at very 

high energies [27]. Large negative energies have a 

quicker volume term that becomes zero. This behavior 

results from the dominance of high-momentum 

components in the area of large negative energies and 

the difficulty of coupling a hole to a high-momentum 

state as momentum increases. To compare the numerical 

calculation for ∆VV  and ∆Vs with method of Gauss-

Legendre, table (3) show the results when integration 

have been don using different values of n and m.  

 

Table 1: The numerical integration calculations of volume 

and surface correction terms of dispersion with different 

values of n and m. The error represent the values 

calculation by Gauss-Legendre integration. 
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4. Conclusions: 

      Using dispersion relation helped for drawn the 

dispersive optical potential for 
15

C + 
9
Be for constant 

input values, by analytic and numerical methods. A 

description of angular momentum distribution for a 

nucleon-target reaction can be done by analyzing the 

DOM potential. Also, overlap functions of the reaction 

can produce an understanding of the nuclear structure. 

So, DOM analysis introduces an extrapolating for 

potentials of isotopes. 
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