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Abstract 
 A theoretical solution is presented for polymeric thick pressurized cylinder, 

where material behaviour is described by the modified Von Mises criterion. The 

solution is carried out using different values of Yc/Yt ratio to demonstrate their effects 

on the plastic zone radius and on the radial and hoop stresses also on the residual 

stress components. 

      The results is indicated that the influence of α  ratio or (Yc/Yt) ratio on the 

plastic zone radius and stress distributions is significant, and it can be shown that , 

when α  ratio increases the plastic zone radius decreases , the value of α  ratio has no 

effect on the value and distribution of radial stress, and when α  ratio increases the 

level of the hoop stress increases in the plastic zone and decreases in the elastic zone 

and the value of α  ratio is directly proportional to the value of residual radial and 

hoop stresses in the cylinder. A published finite element results give a reasonable 

agreement with the obtained results.  

 

ة  السميكة الجدران والمعرضه البوليميريةللاسطوانة المتبقية اللدن – ةالمرنتحليل الاجهادات 

  لضغوظ داخلية 

   *  أثير زكي محسن*                   أحمد هادي عبود         *هاني عزيز أمين. د.م. أ

    قسم هندسة المضخات- المسيب / الكلية التقنية          *          

  لاصة الخ

لقد استخدم . السميكة الجدرانالبوليميرية في هذا البحث تم دراسة وتقديم حل نظري للاسطوانات 

 Yc/Ytالحل تم باستعمال قيم مختلفة لـ . لوصف سلوك المادة معيارية فون ميسز المطورة

ك لتوضيح تأثيرها على نصف قطر مجال اللدونة وعلى توزيع الاجهادات القطرية والحلقية وكذل

 واضحة على مجال α او نسبة  Yc/Ytتشير النتائج ان تأثير نسبة . مركبات الاجهادات المتبقية

 فان نصف قطر αنصف قطر اللدونة وعلى توزيع الاجهادات ، حيث تبين انه عند زيادة نسبة  

ند  لا تأثير لها على قيم وتوزيع الاجهاد القطري، حيث انه عαمجال اللدونة سوف يقل وان قيمة 

 فان الاجهاد الحلقي سوف يزداد في مجال اللدونة ويقل ضمن مجال المرونة، حيث ان αزيادة 

تم مقارنة نتائج .  تتناسب طرديا مع قيمة الاجهاد المتبقي والاجهاد الحلقي في الاسطوانةαقيمة 

 . الحل النظري مع نتائج طريقة العناصر المحددة، والتي اظهرت تقاربا مقبولا
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Introduction 

 The formulation of elasto-plastic relation for a complex problem under multiaxial 

stresses can be achieved by assuming a reasonable mathematical model to correlate 

between the uniaxial test results and the multiaxial cases. 

The general relation between stress and strain can be obtained in terms of the uniaxial 

behaviour, by specifying the following rules and conditions [1]. 

(i) The elastic stress–strain relations, (ii) An initial yield condition, (iii) A flow rule 

which relates the plastic strain increments to the stresses and stress increments, and (iv) 

A hardening rule for establishing the conditions for subsequent yield from a plastic 

state. It is necessary to have an initial yield condition which characterize the transition 

of a material from the elastic state to the state of yielding under any possible 

combination of stresses. One of the most widely used yield criteria for metallic 

materials is the Von Mises criterion. The Von Mises criterion is based on the 

assumption that the hydrostatic stress has no effect on yielding of metallic materials, i.e 

the only effective component is the deviatoric stress. While for polymetric materials, 

the following additional points have to be taken into consideration [2,3] (i)The 

hydrostatic stress effect, (ii) Tensile and compressive yield stresses are not necessarily 

equal. 

 The modified pressure Von Mises yield criterion takes into account the above two 

points. The actual variations between the Von Mises and the modified Von Mises yield 

criterion can be seen in the present work by comparing the results of the solution for 

the thick cylinder. Hani [4] studied the thermo-elasto- plastic behavior of the thick wall 

pressurized cylinder for metallic and polymeric materials  by finite element method. 

Rogge et al [5] use the FEM package “NONSAP” to compare between the Von Mises 

and modified Von Mises yield criteria. Najdat et al [6] studied the effect of yield stress 

on the stress distribution of thick walled pressurized cylinder using finite element 

method and Davidson et al [7] studied the residual stresses in thick walled cylinders 

resulting from mechanically induced overstrain. Hani [8] studied the theoretical elasto-

plastic analysis of thick pressurized cylinder using tresca yield criterion. In this study 

the complete theoretical elasto-plastic solution and calculating the residual stresses for 

thick walled cylinder is presented using modified Von Mises yield criterion.  

  

Pressure Modified Von Mises Yield Criterion 

 The distortion energy theory or Von Mises criterion assumes that yielding begins 

when the distortion energy in a multiaxial problem is equal to the distortion energy at 

yielding in a simple uniaxial test. Using this criterion or condition, it can be shown that 

the yield surface in a three dimensional stress space is represented by [9] 
22
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By substituting Yc and Yt in place of Y
2
 in the above equation, it can be deduced that: 
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Where: C1 is a constant to be determined. 

To find the value of C1, the uniaxial case can be considered as follows: 
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Then equation (1) becomes: 
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If  
x

σ  equals to the yield stress ( Yt or Yc ), then it can be shown that: 

If 
tx
Y=σ            ⇒    )(21 tc

YYC −=  

If 
cx
Y−=σ          ⇒    )(21 tc

YYC −=  

Substituting for C1  ,  equation (1) becomes 

tctc
YYYY 2))((2)()()( 321

2

13

2

32

2

21 =++−+−+−+− σσσσσσσσσ    …… …….(2)  

The above equation is similar to the equation of modified Von Mines mentioned in 

Ref.[2] and [3], and it can be rewritten as follows: 

ee
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me
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Elastic Expansion and Initial Yielding 

Consider a thick-walled cylinder, with inner radius (a), and the external radius (b), 

which is subjected to an internal pressure “P” . The material is assumed to be elastic 

ideally plastic. The equilibrium equation for the pressurized cylinder can be written as 

follows [10,11]:  

rr

rr
σσσ θ −=

∂

∂
             ……………………………………………………….….(3) 

This equilibrium equation can be integrated to obtain the general elastic solution: 
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Where:   
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   and    
a

b
=λ  

This is known as Lame’s equation. The longitudinal stress for plane strain condition 

( 0=
z
ε ) may be written from Hooke’s law as: 

)( θσσυσ +=
rz

 = 
v
Aυ2  

If the material yields according to the modified Von Mises criterion, i.e polymeric 

materials, it can then be shown from equation (2) that: 

tczrtcrzzr
YYYY 2))((2)()()( 222 =++−+−+−+− σσσσσσσσσ θθθ  

Which can be simplified to: 
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The second and third terms on the left-hand side are independent of r, and the term 

4)(
r

b
 has the greatest value where r = a . Hence yielding begins at the inner radius when 

the applied pressure becomes: 
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Where 
t

c

Y

Y
=α  , and P is the minimum value of the internal pressure to initiate yield in 

the cylinder 

 

Elastic- Plastic Expansion  

 When the internal pressure exceeds P , a plastic zone spreads out from the inner 

radius, hence the elastic-plastic boundary at any stage becomes of radius ‘c’. The stress 

distribution in the elastic zone (i.e at brc ≤≤ ) can be written as follows: 
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where  
v
A′  can be obtained from equation (5) with  r = c as follows: 
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 The radial stress component in the plastic zone can be evaluated from the 

equilibrium equation by means of Runge-Kutta method. While the hoop stress 

component can be obtained for a given value of radial stress, provided that: 

tc
YY2=θσ    , by means of Newton-Raphson algorithm .  

 

Residual Stresses  

 The result of simple tensile test shown that when materials are loaded beyond the 

yield point the resulting deformation does not disappear completely when load is 

removed and the material is subjected to permanent deformation or so called permanent 

strain[7] . Residual stresses are therefore produced. In order to determine the magnitude 

of these residual stresses in the thick cylinder it is normally assumed that the unloading 

process from either partially plastic or fully plastic states is completely elastic. The 

unloading stress distribution is therefore linear and it can be subtracted graphically 

from the stress distribution in the plastic or partially plastic state to obtain the residual 

stresses.  

 Suppose that a thick-walled cylinder which is rendered partially plastic by the 

application of an internal pressure (P) is completely unloaded by releasing the pressure. 

For sufficiently small value of (P). Then the residual components can be written as 

follows: 

For the region )( brc ≤≤  

errRr
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For the region )( cra ≤≤  
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Where  

Rr
)(σ , 

Rh
)(σ  residual hoop and radial stresses respectively .  
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Case studies  

Case one  

 In this case a thick cylinder is subjected to an internal pressure of (1000, 1050, 1100, 

1150, 1200) psi which is equivalent to (6.895, 7.239, 7.584, 7.929, 8.274) MPa 

respectively. The modified Von Mises criterion is assumed with different values of 

(Yc/Yt) or of α  ratio. The main dimensions of this case and material properties are as 

follows: 

a = 1.333 in (3.385 cm), b= 2.0 in (5.08 cm), E=134000 psi (923.93 MPa), with elastic 

ideally plastic material υ =0.47, Yt=2750 psi (18.961 MPa) , α = 1.0, 1.2, 1.35, 1.5, and 

2.0 . 

 Fig(1) shows the location of the elastic-plastic interfaces as a function of α  ratio and 

the internal pressure. The theoretical results show a reasonable agreement with the 

finite element results published by [5]. However, it is clear that the FEM results begin 

to diverge from the theoretical at high plastic deformation. The deviations between the 

two sets of results increase with the increasing of the pressure. 

Fig(2) shows the variation of the plastic percentage of the cross-section with the 

internal pressures at different values of α  ratio. It can be deduced that the plastic zone 

radius is increased with decreasing the value of α  ratio. This example can be 

considered as a verification case study for the theoretical solution and its numerical 

algorithms. 

 

Case Two  

 In this case, thick cylinder is tested with b/a ratio equals to 2. This cylinder is 

subjected to an internal pressure which is varied from 12 to 20 MPa. The main 

dimensions and material properties are as follows: 

a=100 mm , b=200 mm, =υ 0.4, Yt=24MPa , α = 1.0, 1.25, and 1.5 

Figs(3-5) show the distributions of the dimensionless radial stress (
tr
Y/σ ) over 

traverse section of the cylinder at different values of α  ratio and with internal pressure 

of 12, 14, and 16 MPa. The results indicate that the α  ratio has no influence on the 

distribution of the radial stresses. While the α  ratio has great influence on the value 

and distribution of the dimensionless hoop stress (
t
Y/θσ ) as shown in Figs(6-8). 

It is clear from Figs(6-8), that when the internal pressure increases, the plastic zone 

spread out in the cylinder of α = 1 is more rapid than that of α = 1.25 and which is in 

turn more rapid than of α =1.5 . Fig(6), where the applied internal pressure equals to 12 

MPa, shows that the yielding occurs in cases of α = 1 and of α =1.25 and therefore the 

behaviour of the cylinder material is elastic–partially plastic. While for case of α =1.5 

there is nearly no yielding and the stress is almost but not quite elastic. 

Figs(9-11) show the variation of the dimensionless residual radial stress over the 

traverse section of the cylinder. At a given value of the internal pressure, it can be 

deduced that there is an indirect proportionality between α  ratio and the dimensionless 

residual radial stress. In Fig(9) the residual radial stress for the case of α =1.5 equals to 

positive value while it should be negative or nearly equals to zero. The positive value is 

due to the numerical instability occurring in the calculations as a result of the very 

small plastic deformation in the cylinder. 

 Also an indirect proportionality between α  ratio and the dimensionless residual hoop 

stress can be seen from Figs(12-14). It can be seen that in the case where the internal 

pressure is 12 MPa (or P/Yt= 0.5) with α =1.5 the residual hoop stress is nearly equal 

to zero as a result of the only elastic deformation in the cylinder, while for α  less than 
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1.5 the amount of plastic deformation in the cylinder is increased and therefore the 

value of the residual hoop stress is also increased. 

Fig(15) shows the variation of the dimensionless plastic zone radius (c/a) with the 

dimensionless internal pressure (P/Yt). It is interesting to note that the plastic zone 

radius “c” is proportional to α  ratio for a given internal pressure. It is clear that at 

P/Yt=0.5 and for case of α =1.5 the plastic radius is nearly equal to the inner radius of 

the cylinder. 

 

Conclusions 

 A new theoretical elastic ideally plastic model for polymeric thick-walled cylinder 

using the modified Von Mises yield criterion has been proposed. The theoretical  

results indicate that the influence of α  ratio or (Yc/Yt) ratio on the plastic zone radius 

and stress distributions is significant, and it can be deduced that: 

(i)  When α  ratio increases the plastic zone radius decreases. 

(ii) The value of α  ratio has no effect on the value and distribution of radial stress. 

(iii) When α  ratio increases the level of the hoop stress increases in the plastic 

zone and decreases in the elastic zone. 

(iv) The value of α  ratio is directly proportional to the value of residual radial and 

hoop stresses in the cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(1) Location of the elastic-plastic interfaces for thick 

cylinder at different values of α ratio 
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Fig.(2) Location of the elastic-plastic interfaces for thick 

cylinder at different values of α ratio ( theoretical results) 

Fig.(3) Distribution of (
tr
Y/σ ) with (r/a) at (P/Yt) = 0.5 

Fig.(4) Distribution of (
tr
Y/σ ) with (r/a) at (P/Yt) = 0.5833 
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Fig.(6) Distribution of (
t
Y/θσ ) with (r/a) at (P/Yt) = 0.5 

Fig.(7) Distribution of (
t
Y/θσ ) with (r/a) at (P/Yt) = 0.5833 

Fig.(5) Distribution of (
tr
Y/σ ) with (r/a) at (P/Yt) = 0.6 
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Fig.(8) Distribution of (
t
Y/θσ ) with (r/a) at (P/Yt) = 0.6 

Fig.(9) Distribution of residual (
tr
Y/σ ) with (r/a) at (P/Yt) = 0.5 

Fig.(10) Distribution of residual (
tr
Y/σ ) with (r/a) at (P/Yt) = 0.5833 
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Fig.(11) Distribution of residual (
tr
Y/σ ) with (r/a) at (P/Yt) = 0.6 

Fig.(12) Distribution of residual (
t
Y/θσ ) with (r/a) at (P/Yt) = 0.5 

Fig.(13) Distribution of residual (
t
Y/θσ ) with (r/a) at (P/Yt) = 0.5833 
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Notation  

Symbol   Definition 

       a , b                           inner and outer radius of cylinder  

       E    modulus of elasticity  

     α                                ratio of  Yc/Yt   

       P    internal pressure  

       c                                 elasto-plastic boundary radius  

       r     variable radius   

   321 ,, σσσ    principal stress components  

    Yt, Yc    absolute tensile and compressive yield stresses, respectively  

      Y    yield stress ( when Yc=Yt)   

      σ                               effective stress  

      
e

σ                               equivalent effective stress  

       
e
Y                      equivalent yield stress  

       
m

σ    mean or hydrostatic stress  

       J2    second invariant of deviatoric stresses  

        υ    Possion’s ratio  

     
zr

σσσ θ ,,                       radial, hoop , and longitudinal stress , respectively 

eher
)(,)( σσ                         elastic radial & hoop stress  

11 )(,)(
hr

σσ                         plastic radial & hoop at  cra ≤≤  

22 )(,)(
hr

σσ                         plastic radial & hoop at brc ≤≤  

RhRr
)(,)( σσ                        residual radial & hoop stress  

      λ                                 ratio of 
a

b
 

 

 

 


