
Iraqi Journal of Computers, Communication and Control & System Engineering (IJCCCE), Vol. 17, No. 1, November 2017 33

Received 13 April 2017; Accepted 3 October 2017

© 2017 University of Technology, Iraq ISSN 1811-9212

Proposed Pseudo Random Generator Based on
RC5 Block Cipher

Ashwaq Talib Hashim1, Zaid Mundher Radeef 2

1Control and Systems Eng. Dept., University of Technology, Baghdad, Iraq.
2Computer Science Dept., University of Technology, Baghdad, Iraq.

e_mail:60102@uotehnology.edu.iq, zaidmalani@gmail.com

Abstract— Digital cryptography relies greatly on randomness in providing the security
requirements imposed by various information systems. Just as different requirements call
for specific cryptographic techniques, randomness takes upon a variety of roles in order to
ensure the proper strength of these cryptographic primitives. This paper presents a 64-bit
random number generator with a high generation speed and a good random sequences by
employing the RC5 encryption algorithm round functions with some changes in the usage
of the key, where two keys have been used with an initial vector to start the sequence
generator. This generator can be used as a keys generator for any security system or to
generate an intermediate password for signing process, and it can be adapted in many
other applications, such as random pattern generation, games, etc. Examining the
sequences shows great results in terms of randomness and security by achieving a
difference near 0.5, this value is the best result, and a high undependability on the previous
generated sequences by also achieving a difference more than 0.5, frequency, serial and
run test came out with a near optimality results.

Index Terms— Pseudo random generator, Randomness, Block cipher, Cryptography,
Security.

I. INTRODUCTION

Block ciphers are the most popular cryptographic primitives; due to the standardization of DES
followed by AES, but also due to the fact that block ciphers constitute some of the fundamental building
blocks for pseudorandom number generators, stream ciphers, hash functions and message
authentication codes [1].

Most block ciphers apply a simple encryption function, round function, iteratively a certain number
of times - called rounds, using round keys derived from the initial secret key using a key expansion
algorithm. There are two main types of iterated ciphers: Feistel ciphers (e.g. DES, Blowfish, and CAST-
128) and Substitution-Permutation network ciphers (e.g. AES and Serpent) [2].

Security in all of its aspects requires a high degree of randomness to achieve the desired goal, a
strong hard to crack security system, while the build of such a random generator needs to deal no impact
on the performance, while still achieving the best results [3]. An automated security solution also needs
a good random generator, without the need for human intervention to supply seeds to the generator [4].

Random generator is a computational algorithm to generate a sequence of bits, numbers or
characters with unpredictable chance to guess it only randomly [5].

Many applications lead to the need of generating random data, such as cryptography, secret key
generator or authenticating system to make the system hard to attack or predict [6].

The environment where the random generator will be used also adds some limitations to the random
sequence, in cryptography as an example, it is desirable that the generated number should neither be
repeated nor discovered, or the system will be vulnerable. In simulation as an example the sequence is
desired to be repeated not only an individual number. The true random number generator uses a source

Iraqi Journal of Computers, Communication and Control & System Engineering (IJCCCE), Vol. 17, No. 1, November 2017 34

Received 13 April 2017; Accepted 3 October 2017

© 2017 University of Technology, Iraq ISSN 1811-9212

with high entropy (the amount of uncertainty about an outcome), for example; the coin flip, rolling dice
and drawing a card from a deck. These examples have a high degree of entropy, because it is impossible
to predict the result. True random disadvantages are that they are low rate production systems, and they
are implemented using some sort of hardware devices to roll the dice or to flip a coin and another to
record the results [7].

The true random number generator needs real world phenomena, on the other hand, the pseudo
random number generator does not need any real world phenomena to generate a random sequence.
This kind of generators uses seeds such as initial value to start producing pseudo random numbers [8].
Some of the systems use time, date, and location on the pointer as an initial value, some needs user
interaction with the process to get the initial value, this initial value has a great impact on entropy. Some
of the well-known pseudo random generators are lagged Fibonacci, feedback shift registers and many
other generators.

The rest of the paper is organized into 5 sections, some of the related works are illustrated in Section
II, an overview of RC5 algorithm has been described in Section III, Section IV gives a full description
of the proposed system along with the achieved results in Section V, and finally the conclusion is
pointed out in Section VI.

II. RELATED WORKS

1. In 2004, Moni Naor and Omer Reingold introduced the Naor–Reingold pseudorandom function and
achieved a good statistical distribution in almost all vectors [9].

2. In 2006, Ghusn Alban Ali Ahmed presented a random number generator based on the division
algorithm [10].

3. In 2008, Christophe Petit, et al., introduced a Block Cipher Based Pseudo Random Number Generator
Secure against Side-Channel Key Recovery, they add some noise and masks to the process of
generation to make it impossible to revert the process and build the generator [11].

4. In 2014 Ashwaq T. Hashim and Loay E. George proposed a pseudo random generator dependent on
a secret key and a timestamp. The secret information is distributed randomly into n segments [12].

5. In 2015, Alaa kadhim et al., presented the design and implementation of a system of keys generator
with nonlinear random of output keys and large moment bits [13].

III. THE RC5 ALGORITHM

RC5 (Rivest Cipher version 5) is a symmetric key block cipher; its design makes it suitable for
implementation in hardware and software. RC5 is a variable block size algorithm which works on 32,
64 or 128-bit block of data, variable number of rounds (0 to 255) and a variable key size (0 to 2040-
bits). These options give a high flexibility in terms of performance and security.

The optimal configuration for both security and performance is 64-bit block, 128-bit key and 12
rounds simply written as RC5-64/12/16, using RC5-w/r/b as the configuration symbol where w is the
block size, r is the number of rounds, and b is the key length in bytes.

 The overall design of this algorithm is divided into 3 components: key expansion, encryption
phase and decryption phase.
The main operations in these three components are:
1. Addition of words modulo 2w
2. Bit-wise exclusive-OR of words
3. <<< Rotation symbol: the rotation of x to the left by y bits is denoted by x <<< y.
 The simple design of RC5 makes it easy to implement, while the high degree of data
dependency makes it hard for differential and linear cryptanalysis.

Iraqi Journal of Computers, Communication and Control & System Engineering (IJCCCE), Vol. 17, No. 1, November 2017 35

Received 13 April 2017; Accepted 3 October 2017

© 2017 University of Technology, Iraq ISSN 1811-9212

 To implement the RC5 algorithm, first the input block is divided into two W-bit word blocks, let
A and B represent these two words. The resultant two W-bit words are also placed in A and B.
 Using the sub-keys array S[0]…..S[n] generated using key expansion algorithm(described later),
the operations of the encryption rounds are:

A = A + S[0]
B = B + S[1]
for i = 1 to r do
A = ((A B) <<< B) + S[2i]
B = ((B A) <<< A) + S[2i + 1]
End loop

The output is in A and B W-bit words.
The decryption phase of the RC5 algorithm is just the opposite operations of the encryption, as described
below:

For i = r down to 1 do
B = ((B − S[2i + 1]) >>> A) A
A = ((A − S[2i]) >>> B) B
B = B − S[1]
A = A − S[0]
End loop

The RC5 encryption/decryption algorithms are illustrated as shown in Fig.1 and Fig.2, respectively.
The key expansion algorithm expands the secret key K ‘provided by the user to the required number

of keys (2 × number of rounds) and the keys are collected in array S. The key expansion algorithm uses
two constants and works in three simple operations.
The key expansion algorithm uses two word binary constants Pw and Qw. For w = 32, these constants
are given below in binary and in hexadecimal.
Pw = P16 = 1011 0111 1110 0001 = B7E1
Qw = Q16 = 1001 1110 0011 0111 = 9E37

The user provided secret key is firstly converted from bytes to words by copying the secret key
K[0...b-1] into an array L[0...c-1] of c = [b / u] words, where u=w/8 is the number of bytes/word, as
follows:
 c = [max(b, 1) / u]
 For i = b - 1 downto 0 do
 L[i / u] = (L[i / u] <<< 8) + K[i]
Then array S is initialized as follows:
S[0] = Pw;
For i = 1 to t - 1 do
 S[i] = S[i - 1] + Qw
Then array S will be computed as follows:
i = j = 0;
a = b = 0;
do 3 * max(t, c) times:
a = S[i] = (S[i] + a + b) <<< 3
b = L[i] = (L[j] + a + b) <<< (a + b)
i = (i + 1) mod (t)
j = (j + 1) mod (c)

Iraqi Journal of Computers, Communication and Control & System Engineering (IJCCCE), Vol. 17, No. 1, November 2017 36

Received 13 April 2017; Accepted 3 October 2017

© 2017 University of Technology, Iraq ISSN 1811-9212

FIG. 1: THE RC5 ENCRYPTION ALGORITHM

FIG. 2: THE RC5 DECRYPTION ALGORITHM

IV. PROPOSED SYSTEM
Cryptography relies mainly and mostly on the randomness, the rate of randomness affects the

strength on any security system and adds a high rate of complexity to the system. RC5 block cipher
based pseudo random number generator has been proposed. Fig.3 depicts the general structure of the
pseudo random sequence generator where IV is the initial vector of the generator and the set (K, K’)
are the keys (seeds). The proposed pseudo random generator is based on using the rounds of the highly
random block cipher algorithm RC5.

The KSG is a serial combination of two instances of RC5 block cipher placed into the cipher block
chaining encryption mode. The input of the first RC5 is initialized to a public IV, and each block cipher
is initialized with its own master key, denoted ki and k’i, respectively, these keys are playing the role of
seed for the pseudorandom generator. Fig.4 shows the block diagram of KSG. This system generates 64
bit long random number as described in Algorithm (1).

As noticed in Fig.4, the xi is the input to the first RC5, and the mi is an intermediate. Then the output
of the KSG is yi.

Iraqi Journal of Computers, Communication and Control & System Engineering (IJCCCE), Vol. 17, No. 1, November 2017 37

Received 13 April 2017; Accepted 3 October 2017

© 2017 University of Technology, Iraq ISSN 1811-9212

FIG. 3: THE PROPOSED PSEUDO RANDOM NUMBER GENERATOR

FIG. 4: THE PROPOSED KEY STREAM GENERATOR (KSG)

V. EXPERIMENTAL RESULT

Pseudo-random number generator relies on two master keys and an initial vector to generate as
many random numbers as needed. Many statistical tests were produced to test the randomness of a
sequence, in general many sequences that are considered random maybe easy to predict.

Algorithm (1) Proposed Pseudo-Random Generator
Input: Key1 //64-bit master key number 1
 Key2 //64-bit master key number 2
 IV //64-bit initial random generator vector
 L //Sequence length
Output: Sequence //Random Sequence
Step1: Generate L random numbers based on IV, Key1 and Key2
For i =1 to L
 Input=IV
 mi= RC5(Input, key1)
 yi= RC5 (mi, key2)
 Input = Input ⊕ yi (1)
 Key1 = key1 ⊕ mi (2)
 Key2 = key2 ⊕ mi (3)
 Sequence [i] = yi
End loop

Iraqi Journal of Computers, Communication and Control & System Engineering (IJCCCE), Vol. 17, No. 1, November 2017 38

Received 13 April 2017; Accepted 3 October 2017

© 2017 University of Technology, Iraq ISSN 1811-9212

So it’s important to test the generator to prove its efficiency, some of the well-known widely used
NIST suggested tests are given below: [15]

a. Frequency test: It determines how many zeros and ones in number, the closer probability between
them the better randomness achieved, the perfect ratio is 1:1 [15].

b. Runs test: This test checks the runs of identical consecutive bits in the sequence. This run should
not be long [15].

c. Serial test: This test calculates the frequency of all possible patterns (00, 01, 10, 11) [15].
d. Difference test: This test runs on two generated sequences, and determines the bit’s difference in

the generated sequence, it is preferable that the difference should pass 0.5 of the sequence length
[15].

e. Information entropy: Unpredictability degree of an information is measured by the information
entropy. consider as an example a coin flip, the result of the flip is unknown in advance and
unpredictable in terms of math, the entropy of such an example is very high, now let’s flip the coin
again, the result of the second flip is not related to the first flip and preserves its entropy. let’s take
another example a game of domino the first stone is unpredictable and achieves high entropy, but
as the game goes on the stones become slightly predictable and entropy reduces, till it reaches a
case where the next stone is 100% predictable and entropy vanishes [16].

In terms of security, it is preferable to get high entropy and preserve it as system goes on. Entropy can
be measured by the following equation:

ܪ ൌ െ෌ ௜ሻݔሺ݌ logଶ ௜ሻݔሺ݌
௡
௜ୀ଴

 (1)

f. Avalanche affect: It is a desirable property in cryptography and hash function, in which changing
few bits in text or key should do a huge change in the output (more than half of the result size is
desirable to be affected) [16].
Table I shows first three samples generated using the specified initial vector and keys, while Tables

II to VII show some of the tests result, such as the impact of each input on the generated sequence when
changing one bit of each input, frequency of 0’s and 1’s, the difference between the generated
sequences, the difference between the first sequence of each sample, longest run of 0’s and 1’s in each
sequence, frequency test and serial test.

The speed of execution is 200000 sequence/sec or 12,800,000 bit/sec.
Table II shows the difference between the first generated sequences of the samples. we can find the
avalanche effect of each generated sequence, as mentioned earlier, it is preferred to achieve a total
difference of half or more the length of the sequence when one bit or more is changed in the input
parameters, in the proposed generator the length is 64 bit so any difference near 32 is considered very
good.

In binary random sequence generation algorithms it is preferable to acquire a close frequency of
0’s and 1’s to each other, while getting a frequency of 0’s equals to frequency of 1’s is considered the
perfect situation, but the samples that have this property are a small portion of the entire population.

The results in Table III shows that the property of close frequency has been achieved even the
perfect situation has been achieved in some samples and it shows that the difference between subsequent
sequences is more than half of the bit length.

Table IV contains the results of the frequency test, one of the famous tests to check the randomness
of a sequence is that; most of the results are below the threshold of randomness “3.84”.
Another test of randomness is the serial test; Table V contains the result of the test, where all the samples
passed the randomness condition, which is below the threshold of the test “5.99”.
Table VII lists the information entropy of each generated sequence, for a binary sequence the best
possible entropy to achieve is 1 which is the maximum value, while any value below 0.8 will be
considered as worse, it’s obvious from looking at Table VII that all the achieved values are very good.

Iraqi Journal of Computers, Communication and Control & System Engineering (IJCCCE), Vol. 17, No. 1, November 2017 39

Received 13 April 2017; Accepted 3 October 2017

© 2017 University of Technology, Iraq ISSN 1811-9212

Table VI contains the longest run of 0’s and 1’s in each generated sequence, and it shows good
results, long run of a bit leads to a bad random sequence, still the acquired values are good.

TABLE I: THREE CONSECUTIVE RANDOM SEQUENCES GENERATED USING DIFFERENT INITIAL AND MASTER KEYS.

Sample
no

Initial vector Master Key 1 Master Key 2
First random

sequence
Second random

sequence
Third random

sequence

1 0 0 0

100000010101
000010100011
111010010100
100101011100
111001001000

0010

001100010001
001001010011
001000110010
000000111011
011011111000

0101

111010000001
110011010101
110100100011
101011111100
001001011100

1110

2 0 1 0

010000110100
110000111001
111100100011
011100001111
011010110110

0100

011000111110
011101110110
011011010100
010010011110
011011110001

1011

110010111001
111111110111
110001000110
010010010000
001001000111

1011

3 0 0 1

100000011010
000100100000
111001100000
101001000000
100111001010

1100

000100100100
100100001001
111101011111
011101100001
110101110111

1101

100100101110
011110001101
001100100001
110100001111
100011001101

0000

4 1 0 0

101011001101
100000010110
110000101110
001111101100
111001111011

0111

100101101100
101100111011
111000011101
110101111101
011010111101

1100

000000110100
110101011101
011110110101
111101000011
100110000011

0011

5

100100111101
111000101000
101000000011
101100001001
110010101101

0010

011000110101
010110100101
000000010001
000010101001
110011101001

0001

001111110001
110111011110
010001110111
011110100001
111100011111

1111

011001011000
110100100001
001111111111
111101101001
000110110011

0010

001111010011
010010000111
110001110101
001100011001
001001111010

1110

010001101111
111110011000
110100010000
001010100100
001101010000

0110

6

100100111101
111000101000
101000000011
101100001001
110010101101

0010

001111110001
110111011110
010001110111
011110100001
111100011111

1111

011000110101
010110100101
000000010001
000010101001
110011101001

0001

000011011011
101011111100
101101011110
100100001010
001011010110

1001

001011110111
010000000001
010111000111
010001010111
111111000010

0011

000000011011
100000001001
100110101011
101100000110
100111001100

1100

TABLE II: DIFFERENCE BETWEEN FIRST GENERATED SEQUENCES IN THE SIX SAMPLES

Sample no 1 2 3 4 5 6

1 0 34 26 28 37 34

2 34 0 34 34 27 32

3 26 34 0 34 31 32

4 28 34 34 0 35 34

5 37 27 31 35 0 33

6 34 32 32 34 33 0

Iraqi Journal of Computers, Communication and Control & System Engineering (IJCCCE), Vol. 17, No. 1, November 2017 40

Received 13 April 2017; Accepted 3 October 2017

© 2017 University of Technology, Iraq ISSN 1811-9212

TABLE III: FREQUENCY OF 0’S AND 1’S IN THE GENERATED SEQUENCES IN THE SIX SAMPLES

Sample
no

Sequence 1
Frequency of

0’s/1’s

Sequence 2
Frequency of

0’s/1’s

Sequence 3
Frequency of

0’s/1’s

Difference
between 1st

& 2nd

Difference
between 1st

& 3rd

Difference
between 2nd

& 3rd

1 38/26 37/27 30/34 29 30 31
2 32/32 27/37 30/34 33 36 23
3 42/22 29/35 34/30 31 30 33
4 28/36 24/40 31/33 30 39 35
5 29/35 31/33 36/28 32 37 33
6 30/34 32/32 37/27 36 27 31

TABLE IV: FREQUENCY TEST OF THE GENERATED SEQUENCES IN THE SIX SAMPLES

Sample no Sequence 1 Frequency test Sequence 2 Frequency test Sequence 3 Frequency test

1 2.25 1.5625 0.25
2 0 1.5625 0.25
3 6.25 0.5625 0.25
4 1 4 0.0625
5 0.5625 0.0625 1
6 0.25 0 1.5625

TABLE V: SERIAL TEST OF THE GENERATED SEQUENCES IN THE SIX SAMPLES

Sample no Sequence 1 Serial test Sequence 2 Serial test Sequence 3 Serial test

1 1.13 -0.34 -1.69
2 -1.8 -0.34 -0.043
3 4.87 -1.37 -1.31
4 -1.30 2.3 -1.88
5 -0.86 -1.76 -1.3
6 0.21 -0.68 -0.21

TABLE VI: LONGEST RUN OF 0’S AND 1’S IN THE GENERATED SEQUENCES IN THE SIX SAMPLES

Sample
no

Longest 0
run in first

seq.

Longest 1
run in first

seq.

Longest 0 run
in second seq.

Longest 1 run
in second seq.

Longest 0 run
in third seq.

Longest 1 run
in third seq.

1 6 5 7 5 6 6
2 4 5 3 5 6 9
3 6 3 4 5 4 5
4 6 5 4 5 6 5
5 4 14 4 5 6 9
6 4 6 9 9 7 3

TABLE VII: INFORMATION ENTROPY TEST FOR THE GENERATED SEQUENCES IN THE 6 SAMPLES

Sample no Sequence 1 Sequence 2 Sequence 3
1 0.9745 0.9823 0.9972
2 1.0000 0.9823 0.9972
3 0.9283 0.9936 0.9972
4 0.9887 0.9544 0.9993
5 0.9936 0.9993 0.9887
6 0.9972 1.0000 0.9823

VI. CONCLUSION

A block cipher-based pseudo random generator is presented. It is based on a re-keying approach and
used the rounds of the RC5 which is a highly random block cipher algorithm. The proposed system
generates a large number of sequences in merely a second; the speed of execution is around 200000

Iraqi Journal of Computers, Communication and Control & System Engineering (IJCCCE), Vol. 17, No. 1, November 2017 41

Received 13 April 2017; Accepted 3 October 2017

© 2017 University of Technology, Iraq ISSN 1811-9212

sequence/sec. The randomness test shows a good degree of randomness and security and the degree of
randomness is still preserved over a long run of sequence generation. The proposed system can be
modified to fit the needs of any application.

REFERENCES
[1] Lars R. Knudsen and Matthew Robshaw, The Block Cipher Companion, Springer, 2013.
[2] William Stallings, Cryptography and Network Security: Principles and Practice 6th edition, Pearson, 2014.
[3] László Babai, Trading group theory for randomness, STOC '85 Proceedings of the seventeenth annual ACM symposium

on Theory of computing, Pages 421-429,1985.
[4] Ehab Al-Shaer, Xinming Ou and Geoffrey Xie, Automated Security Management, 2013, Springer.
[5] G.K Savvidy, N.G Ter-Arutyunyan-Savvidy, On the Monte Carlo simulation of physical systems, Journal of

Computational Physics, 1991.
[6] Matsumoto, Makoto and Nishirmura, Takuji, Mersenne Twister: A 623- dimensionally equidistributed uniform pseudo

random number generator, ACM Transactions on Modeling and Computer Simulation, ol. 8, No.1, pp.3-30,1998.
[7] Lagarias J. C. “Pseudorandom Number Generators”, Cryptology and Computational Number Theory, edited by C.

Pomerance, Proceedings of Symposia in Applied Mathematics 42, American Mathematical Society,1990.
[8] David DiCarlo, Random Number Generation: Types and Techniques, Liberty University, 2012.
[9] Moni Naor and Omer Reingold, Number-theoretic constructions of efficient pseudo-random functions, Journal of the

Association for Computing Machinery, 2004.
[10] Ghusn Alban Ali Ahmed, Using The Division Algorithm to Generate Pseudo Random Decimal Sequences, Iraqi

Academic Scientific Journals, 2008.
[11] Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., Yung, M.: A block cipher based pseudo-random number generator

secure against side-channel key recovery. In: ASIACCS, pp. 56–65, 2008.
[12] Ashwaq T. Hashim and Loay E. George, "Secret Image Sharing Based on Wavelet Transform", International Conference

on Information Technology in Signal and Image Processing, Mumbai, India, Pp. 324-332, 2014.
[13] Alaa kadhim and Hussein Abed, A New Random Keys Generator Depend on Multi Techniques, Eng. & Tech. Journal,

Vol.33,Part (B), No.3, 2015.
[14] Ronald Linn Rivest, "The RC5 Encryption Algorithm". Workshop on Fast Software Encryption (FSE), pp. 86–96, 1994.
[15] AndrewRukhin, JuanSoto, JamesNechvatal, Miles Smid, ElaineBarker, Stefan Leigh, MarkLevenson, Mark Vangel,

DavidBanks, AlanHeckert, JamesDray and SanVoB, A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications, NIST Special Publication 800-22, 2010.

[16] Claude Shannon, "A Mathematical Theory of Communication", Bell System Technical Journal, 1948.
[17] Horst Feistel, "Cryptography and Computer Privacy", Scientific American, 1973.

