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The singularity of positive harmonic functions has been studied in the 

punctured unit open ball in 𝐵(0,1)\{0} [1]. The representation of a 

positive harmonic function in 𝐵(0,1)\{0} is given by Bôcher’s 

Theorem. In this work, the representation of Bôchre’s has been 

generalized to a punctured bounded domain in 𝑅𝑛, Ω\{𝑥0}. Then the 

work has been extended to represent positive harmonic functions with 

two isolated singularities in a bounded domain of 𝑅𝑛.  
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1. Introduction  

    This work includes study the isolated singularities of harmonic functions and then it has been 

described the features of positive harmonic functions near the isolated singularities in a bounded 

domain of 𝑅𝑛.  Harmonic functions are the main part of the field of elliptic partial differential 

equations [2]. Studying the isolated singularities of harmonic functions would lead to studying the 

singularities of elliptic partial differential equations.  Partial differential equations (PDEs) are one 

of the most desirable topics in mathematics that plays an important role in many scientific fields 

such as physics, engineering, astronomy, and medicine. Recently, many researchers have been 

focusing on using problems that arise from partial differential equations to solve them in numerical 

study. For example, the stability of the heat pattern in porous media has been studied in [3-5]. The 

numerical analysis of Newtonian and die swell flow have been studied in [6,7]. Inpainting 

techniques and topological analysis have been used to develop the missing details of images with 

involving PDEs can be found in  [8]. For the domain decomposition based on system of partial 

differential equations that have been treated in numerical programs have been shown in [9] and 

[10]. Another type of work for the researchers that have used functional analysis and calculus of 

variation to deal with elliptic partial differential equations can be seen in [11], and [12].  

Laplace equation is the core part of the elliptic partial differential equations which can be 

considered as the concrete base of all theorems that treated the elliptic partial differential equations. 

In physics and in dimension three, Laplace equation can be derived from Maxwell’s equations. 

For more information about the derivation see [13]. The purpose of this work is to generalize the 

Bôcher’s representation of positive harmonic functions in the punctured unit open ball. In fact, in 

[1], any positive harmonic function in 𝐵(0,1)\{0} has the following form  

𝑢(𝑥) = {

𝐴̃|𝑥|2−𝑛 + 𝑢̃(𝑥),            𝑛 ≥ 3;

𝐴̃ log (
1

|𝑥|
) + 𝑢̃(𝑥), 𝑛 = 2,

                                               (1) 

 

where, 𝐴̃ is a nonnegative constant and 𝑢̃ is a harmonic function in 𝐵(0,1).  
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First, Bôcher’s representation has extended into a general punctured bounded domain in 𝑅𝑛. That 

is, when Ω is a bounded domain in 𝑅𝑛, and 𝑢 is a positive harmonic in  Ω\{𝑥0}. The following 

representation for 𝑢 in  Ω\{𝑥0} has been obtained, 

𝑢(𝑥) = {
𝐴̃ log (

𝛼

|𝑥 − 𝑥0|
) + 𝑣(𝑥),        if     𝑛 = 2;

𝐴̃|𝑥 − 𝑥0|
2−𝑛 + 𝑣(𝑥),                 if     𝑛 ≥ 3.

                               (2) 

Where, 𝐴̃ is a nonnegative constant, 𝑣 is a harmonic function in Ω, and  

𝛼 = {

1                                 if    dist(𝑥0, 𝜕Ω) > 1;

1 − 𝜖                           if    dist(𝑥0, 𝜕Ω) = 1;

 dist(𝑥0, 𝜕Ω)            if    dist(𝑥0, 𝜕Ω) < 1,

                                    (3) 

 

for some 0 < 𝜖 < 1. 

Moreover, the representation of positive harmonic functions extended into bounded domains with 

two singularities. In other words, for a positive harmonic function 𝑢 in Ω\{𝑎1, 𝑎2}, where 𝑎1 and 

𝑎2 be two isolated singularities of 𝑢 in the bounded domain Ω, where the closed neighborhood for 

𝑎1, 𝐵(𝑎1, 𝛿1) ⊂ Ω, and the closed neighborhood for 𝑎2, 𝐵(𝑎2, 𝛿2) ⊂ Ω are disjoint, that is, 

𝐵(𝑎1, 𝛿1)⋂𝐵(𝑎2, 𝛿2) = ∅. 

The following representation has been obtained 

𝑢(𝑥) = {
𝐴1 log (

𝛼1

|𝑥−𝑎1|
) + 𝐴2 log (

𝛼2

|𝑥−𝑎2|
) + 𝑣(𝑥)              if    𝑛 = 2,

𝐴1 |𝑥 − 𝑎1|
2−𝑛 + 𝐴2 |𝑥 − 𝑎2|

2−𝑛 + 𝑣(𝑥)            if    𝑛 ≥ 3,
             (4) 

for 𝐴1, 𝐴2 to be nonnegative constants, 𝑣 is harmonic function in Ω,  

α1 = {

1            if   δ1 > 1;
1 − ϵ    if   δ1 = 1;
 δ1         if   δ1 < 1;

                (5) 

and, 
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α2 = {

1            if   δ2 > 1,
1 − ϵ    if   δ2 = 1,
 δ2         if   δ2 < 1,

                                                                       (6) 

 

for some 0 < 𝜖 < 1. 

This paper is organized as follows: Section (2) includes all ingredients that are needed to clarify 

the notion of the isolated singularities and the radial average of harmonic functions in a punctured 

open unit ball. Furthermore, Bôcher’s representation for the positive harmonic function in the 

punctured open unit ball in 𝑅𝑛has been stated. Section (3) generalizes the representation of positive 

harmonic functions into a general punctured bounded domain of 𝑅𝑛 instead of the punctured open 

unit ball. Continuing further in section (4) for generalizing the representation of harmonic 

functions with two singularities in a bounded domain of 𝑅𝑛. In section (5), the conclusions of this 

work have been stated. The future work is stated in section (6). 

1. Preliminaries 

In this section includes some basic details about the harmonic functions and the singularities of 

positive harmonic functions in a bounded domain of 𝑅𝑛. The representation of Bôcher’s that has 

been studied in [1] will be briefly stated in this section.  

2.1. Harmonic Functions 

Let Ω be an open set of  𝑅𝑛, where 𝑛 ≥ 1. Denote by 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) to be a point in Ω, and 

𝜕𝑗

𝜕𝑥
𝑖
𝑗 to be the 𝑗th partial derivative with respect to 𝑥𝑖 coordinate for  𝑖 = 1,2, … , 𝑛  and  𝑗 = 1,2. 

The boundary of Ω is denoted by 𝜕Ω and the distance from 𝑥 to the boundary ∂Ω is given by the 

following equation  

dist(x, ∂Ω) = inf𝑦∈𝜕Ω |x − y|. 

                                                                     

Definition 2.1. [2] The Laplacian operator on 𝑅𝑛 is defined by  

∆= ∑
𝜕2

𝜕𝑥𝑖
2

𝑛
𝑖=1 =

𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 +⋯+

𝜕2

𝜕𝑥𝑛
2 .                                                      (7) 
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Definition 2.2. [2] A 𝐶2 −function  𝑢 that is defined on Ω is called harmonic on Ω if it satisfies 

the Laplaceؙ’s equation  

∆𝑢(𝑥) = ∑
𝜕2𝑢

𝜕𝑥𝑖
2

𝑛
𝑖=1 = 0,                                                                                       (8) 

for all 𝑥 ∈  Ω . 

A 𝐶2 −function means that all of its second partial derivatives are exist and continuous in its 

domain of definition.  

Definition 2.3. [14] The fundamental solution for Laplacian ∆ is given by the following equation 

             Γ(𝑥) = {

1

(𝑛−2)𝜔𝑛

1

|𝑥|𝑛−2
  ,      for       𝑛 ≥ 3 ,

−
1

2𝜋
log|𝑥| ,                    for        𝑛 = 2,

                                                      (9) 

where 𝜔𝑛 is the volume of the unit open ball 𝐵(0,1) in 𝑅𝑛 .  

 The symbol |. |  denotes for the magnitude (norm) of the point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)   in Rn, that is, 

|𝑥| = √x1
2 +⋯+ xn2.  

The punctured unit open ball is the unit open ball in 𝑅𝑛 excluding its center, and it is denoted by 

𝐵(1). That is,  

                  𝐵(1) = 𝐵(0,1)\{0}.                                 (10) 

 

 

2.2 Singularities of Harmonic Functions 

  This subsection is devoted for stating basic details about the singularities of harmonic functions. 

     Let Ω be abounded domain in 𝑅𝑛 and 𝑢 be a given harmonic function. The following useful 

information about the singularities are given; 

1. If 𝑢 is defined in Ω except at a point 𝑥̃ ∈ Ω. In this case, the point 𝑥̃ is called a singular 

point for 𝑢 in the bounded domain Ω.   
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2. If 𝑥̃ is a singularity of 𝑢 and if there exists 𝑟 > 0 such that 𝐵(𝑥̃, 𝑟) ⊂ Ω  and 𝑥̃ is the only 

singularity of 𝑢 in 𝐵(𝑥̃, 𝑟). In this case, 𝑥̃ is called an isolated singularity of 𝑢 in Ω. 

3. If 𝑥̃ is an isolated singularity of 𝑢 in Ω and if there exists another harmonic function 𝑢̃ 

which is defined in Ω so that  

𝑢̃(𝑥) = 𝑢(𝑥),      𝑥 ∈ Ω\{𝑥̃}, 

           in this case 𝑥̃ is called a removable isolated singularity of 𝑢 and 𝑢̃ is called    

           harmonic extension of 𝑢 in Ω. 

4.  Let 𝑢 be a harmonic function defined in the bounded domain Ω. For a positive constant 𝛼, 

the dilation of 𝒖 is defined to be the harmonic function 𝑢̃𝛼 that defined in the bounded 

domain Ω1

𝛼

 as follows,  

𝑢̃𝛼(𝑥) = 𝑢(𝛼𝑥),  𝑥 ∈ Ω1

𝛼

= {
𝑥

𝛼
:    𝑥 ∈  Ω}.                                      (11)                                                              

Let 𝑥̃ be an isolated singularity of 𝑢 in Ω. Since the translation of harmonic function is 

harmonic, then the following function 𝑣(𝑥) = 𝑢(𝑥 + 𝑥̃), is harmonic in Ω̃ = Ω − {𝑥̃} =

{𝑥 − 𝑥̃: 𝑥 ∈ Ω}. Therefore, if 𝑥̃ is an isolated                singularity of 𝑢 in Ω, then 0 is an 

isolated singularity for 𝑣 in Ω̃. Thus, without loss of generality, instead of saying that 𝑥̃ is 

a singularity of 𝑢, after a suitable translation, Then, 0 is a singularity of 𝑢 in Ω. 

5. If 𝑥̃ is a singularity of 𝑢 in Ω, then it can be assumed that, after a suitable translation and 

dilation, Ω is containing the closed unit ball 𝐵(0,1)  and 0 is the singular point of 𝑢 instead 

of 𝑥̃. 

  2.3.  Radial Average of Harmonic Functions 

Let 𝑢 be a harmonic function defined in 𝐵(0,1)\{0}. The radial average (spherical average) of 𝑢 

in the punctured unit open ball [1], and [15] , 0 < 𝑟 = |𝑥| < 1, is defined as follows  

𝑅𝑢(𝑟) =
1

𝑛𝜔𝑛
∫ 𝑢(𝑟𝑤)𝑑𝑠(𝑤)
𝜕𝐵(0,1)

.                                                (12) 

Proposition 2.4. [1] The radial average of 𝑢 in 𝐵(0,1)\{0} satisfying the following equation 
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755-542) (2022)3Bas J Sci 40(                                                                        Yasiri-K. S. Aland H. R. Hamed  

548 
 

                     This article is an open access article distributed under 

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license) 

).nc/4.0/-http://creativecommons.org/licenses/by( 

𝑅𝑢(𝑥) = {
𝐶1 + 𝐶2|𝑥|

2−𝑛  , 𝑛 ≥ 3,

𝐶1 + 𝐶2 log (
1

|𝑥|
) , 𝑛 = 2,

                   (13) 

for some constants 𝐶1 and 𝐶2.  

 

2.3. Positive Harmonic Functions in the Punctured Unit Open Ball 

This subsection, briefly summarizes the representation of positive harmonic functions in 

𝐵(0,1)\{0} that has been discussed in [1] and it will show that such functions can be decomposed 

into two parts. One part depends on the fundamental solution of Laplacian and the other part is 

harmonic in the entire unit ball. In other words, if 𝑢 is positive harmonic in 𝐵(0,1)\{0}, then 𝑢 

has the following decomposition in 𝐵(0,1)\{0},  

𝑢(𝑥) = {
𝐴̃|𝑥|2−𝑛 + 𝑢̃(𝑥),            𝑛 ≥ 3,

𝐴̃ log (
1

|𝑥|
) + 𝑢̃(𝑥), 𝑛 = 2,

                                                  (14) 

where, 𝑢̃ is a harmonic function in 𝐵(0,1) and 𝐴̃ is a nonnegative constant. 

The above representation of positive harmonic functions is called Bôcher’s representation and it 

has been studied in [1].  

Remark 2.5. It can be shown that the harmonic function 𝑢̃ and the nonnegative constant 𝐴̃ in the 

representation that is given by (14) are unique. In fact, let us assume that 𝑢 has two representations. 

That is, there are two nonnegative constants 𝐴1, 𝐴2 and two harmonic functions, 𝑢2, 𝑢2 in 𝐵(0,1) 

, the work designated for 𝑛 ≥ 3 (similar work would simply hold for 𝑛 = 2, be such that  

 

𝑢(𝑥) = 𝐴1|𝑥|
2−𝑛 + 𝑢1(𝑥),                𝑥 ∈ 𝐵(0,1)\{0}, 

and, 

𝑢(𝑥) = 𝐴2|𝑥|
2−𝑛 + 𝑢2(𝑥),      𝑥 ∈ 𝐵(0,1)\{0}. 

Therefore, it obtained that   
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             𝑢1(𝑥) − 𝑢2(𝑥) = (𝐴2 − 𝐴1) |𝑥|
2−𝑛, ∀ 𝑥 ∈ 𝐵(0,1)\{0}.                                          (15) 

Involving the Laplace operator ∆ for both sides of (15), obtaining the following differential 

identity, 

            ∆(𝑢1 − 𝑢2)(𝑥) = (𝐴2 − 𝐴1) ∆|𝑥|
2−𝑛                                                     (16) 

Therefore, the following identity is abstained 

(𝐴2 − 𝐴1)𝛿0(𝑥) = 0,        𝑥 ∈ 𝐵(0,1).                                                            (17) 

Where 𝛿0 is the Dirac delta function concentrating at 𝑥 = 0, which is defined by the following 

identity, 

              𝛿0(𝑥) = {
0        if   𝑥 ≠ 0,
+∞   if   𝑥 = 0.

                                                                                            (18) 

Therefore, it is seen that   𝐴1 = 𝐴2 and 𝑢1 = 𝑢2. That is, the Bôcher’s representation in (14) is 

unique.  

2. Positive Harmonic Functions in the Punctured Bounded Domain 

     The aim of this section is to generalize the representation of positive harmonic functions into 

general punctured bounded domain instead of punctured unit open ball. 

     Let Ω be a bounded domain in 𝑅𝑛 and 𝑢 be a positive harmonic function in Ω\{𝑥0}, where 𝑥0 

is an isolated singularity of  𝑢 in Ω.  

First, involve the translation  

𝑢∗(𝑥) = 𝑢(𝑥 + 𝑥0),  for 𝑥 ∈ Ω∗\{0}, 

where, 

Ω∗ = (Ω − {𝑥0}) = {𝑦 − 𝑥0: 𝑦 ∈ Ω}. 

Therefore 𝑢∗ is positive harmonic function in Ω∗\{0}. 

After translating 𝑢 into 𝑢∗, dilate 𝑢∗ to 𝑢𝛼
∗  in the domain Ω1

𝛼

∗  in order to guarantee that 𝐵(0,1) ⊂

 Ω1

𝛼

∗  . In fact, the desired dilation can be represented as follows; 

http://creativecommons.org/licenses/by-nc/4.0/
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For 𝑑 = dist(0, 𝜕Ω∗), make the following two cases  

1. If 𝑑 > 1, set 𝛼 = 1 and define 

 Ω1

𝛼

∗  = Ω∗ and 𝑢𝛼
∗ (𝑥) = 𝑢(𝑥) for 𝑥 ∈ Ω1

𝛼

∗  .                 (19) 

Then evidently it can be seen the inclusion 

𝐵(0,1) ⊂  Ω1

𝛼

∗   .  

 

Figure 1: The dilated domain for d>1. 

2. If 𝑑 ≤ 1, set  

 𝛼 = {
𝑑         if   𝑑 < 1;
1 − 𝜖  if  𝑑 = 1;

            (20) 

for some 0 < 𝜖 < 1. Then define the following dilation  

𝑢𝛼
∗ (𝑥) = 𝑢∗(𝛼𝑥), 𝑥 ∈ Ω1

𝛼

∗  ,  

where,  

Ω1

𝛼

∗  = {
𝑦

𝛼
: 𝑦 ∈ Ω∗}. 

Thus, it obtains the desired inclusion,  

𝐵(0,1) ⊂  Ω1

𝛼

∗ . 
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Figure 2:  The dilated domain for d≤ 𝟏. 

From the above two cases, it has obtained that  𝑢𝛼
∗  is positive harmonic in 𝐵(0,1)\{0}. Therefore, 

from the previous section (4.4), the following representation for 𝑢𝛼
∗  in 𝐵(0,1)\{0} is obtained, 

 𝑢𝛼
∗ (𝑥) = {

𝐴 log (
1

|𝑥|
) + 𝑣∗(𝑥),      𝑛 = 2;

𝐴|𝑥|2−𝑛 + 𝑣∗(𝑥),           𝑛 ≥ 3;
                        (21) 

for unique 𝐴 ≥ 0 and 𝑣∗ is the unique harmonic function in 𝐵(0,1). 

Extend 𝑣∗ to be harmonic in Ω1

𝛼

∗  as follows  

𝑣∗(𝑥) =

{
 
 

 
 𝑣

∗(𝑥)                                                                       if      𝑥 ∈ 𝐵(0,1);

𝑢𝛼
∗ (𝑥) − 𝐴 log (

1

|𝑥|
)               for  𝑛 = 2 and 𝑥 ∈ Ω1

𝛼

∗ \𝐵(0,1);

𝑢𝛼
∗ (𝑥) − 𝐴|𝑥|2−𝑛                 for   𝑛 ≥ 3 and 𝑥 ∈ Ω1

𝛼

∗  \𝐵(0,1).

                                 (22) 

Thus 𝑣∗ is harmonic function in Ω1

𝛼

∗ .  

Therefore,  

𝑢𝛼
∗ (𝑥) = {

𝐴 log (
1

|𝑥|
) + 𝑣∗(𝑥)      if   𝑛 = 2;

𝐴|𝑥|2−𝑛 + 𝑣∗(𝑥)          if    𝑛 ≥ 3;
                                                       (23) 

for 𝑥 ∈ Ω1

𝛼

∗\{0}. 

Now, dilate back to obtain the following, 

𝑢∗(𝑥) = 𝑢𝛼
∗ (

𝑥

𝛼
), for 𝑥 ∈ Ω∗\{0}. 
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That is, for 𝑥 ∈ Ω∗\{0}, it follows that  

𝑢∗(𝑥) = {
𝐴 log (

𝛼

|𝑥|
) + 𝑣∗ (

𝑥

𝛼
) ,             𝑛 = 2;

(𝛼𝑛−2𝐴)|𝑥|2−𝑛 + 𝑣∗ (
𝑥

𝛼
) ,     𝑛 ≥ 3.

                                                   (24) 

Let  

𝐴̃ = {
𝐴             if   𝑛 = 2;

𝛼𝑛−2𝐴    if   𝑛 ≥ 3;
                                                                                     (25) 

and 𝑣̃(𝑥) = 𝑣∗ (
𝑥

𝛼
), for 𝑥 ∈ Ω∗, then for 𝑥 ∈ Ω∗\{0} it follows that 

𝑢∗(𝑥) = {
𝐴̃ log (

𝛼

|𝑥|
) + 𝑣̃(𝑥),    if   𝑛 = 2;

𝐴̃ |𝑥|2−𝑛 + 𝑣̃(𝑥),        if   𝑛 ≥ 3;
                                                          (26) 

where 𝐴̃ ≥ 0 and 𝑣̃ is harmonic in Ω∗.  

Finally, translate back as follows: 

𝑢(𝑥) = 𝑢∗(𝑥 − 𝑥0) for 𝑥 ∈ Ω\{𝑥0}. 

Therefore, for 𝑥 ∈ Ω\{𝑥0}, it follows that  

𝑢(𝑥) = {
𝐴̃ log (

𝛼

|𝑥−𝑥0|
) + 𝑣(𝑥),     if   𝑛 = 2,

𝐴̃|𝑥 − 𝑥0|
2−𝑛 + 𝑣(𝑥),         if   𝑛 ≥ 3,

                                                  (27) 

where, 𝑣(𝑥) = 𝑣̃(𝑥 − 𝑥0) is a harmonic function in  Ω, and for some 0 < 𝜖 < 1, 

𝛼 = {
1, if 𝑑 > 1,

1 − 𝜖, if 𝑑 = 1,
𝑑, if 𝑑 < 1.

                                                                                    (28) 

Remark 3.1. If 𝐴̃ = 0 in (27), then 𝑥0 is a removable isolated singularity of 𝑢 in Ω.  

 

4. Positive Harmonic Functions in Bounded Domain with more than One Singularity  
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In the previous section, the representation of positive harmonic functions in a general punctured 

bounded domain is given. Continuing further to generalize the representation of positive harmonic 

functions in a bounded domain that contains more than one isolated singularity. For this purpose, 

the following definition is needed to ease the representation of such positive harmonic functions 

with two isolated singularities. 

Definition 4.1. Let 𝑆 be a subset of 𝑅𝑛, the characteristic function of 𝑆, 𝜒𝑆, is defined by  

𝜒𝑆(𝑥) = {
1    if    𝑥 ∈ 𝑆;
0    if    𝑥 ∉ 𝑆.

                          (29) 

The work will focus on bounded domains with two isolated singularities because positive 

harmonic functions in bounded domains with more than two isolated singularities can be made in 

the same way. 

Let 𝑢 be a positive harmonic function in Ω\{𝑎1, 𝑎2}, where 𝑎1 and 𝑎2 be two isolated 

singularities of 𝑢 in the bounded domain Ω. 

First, let 𝐵(𝑎1, 𝛿1) ⊂ Ω and 𝐵(𝑎2, 𝛿2) ⊂ Ω be closed neighborhoods for 𝑎1 and 𝑎2 respectively be 

such that  𝐵(𝑎1, 𝛿1)⋂𝐵(𝑎2, 𝛿2) = ∅. 

From the representation in the previous section in 𝐵(𝑎1, 𝛿1) it follows that  

𝑢(𝑥) = {
𝐴1 log (

𝛼1

|𝑥−𝑎1|
) + 𝑣1(𝑥)    if   𝑛 = 2;

𝐴1|𝑥 − 𝑎1|
2−𝑛 + 𝑣1(𝑥)         if   𝑛 ≥ 3;

                         (30) 

where 𝐴1 ≥ 0 and 𝑣1 is harmonic in 𝐵(𝑎1, 𝛿1), and  

α1 = {

1            if   δ1 > 1;
1 − ϵ    if   δ1 = 1;
 δ1         if   δ1 < 1;

                             (31) 

for some 0 < 𝜖 < 1. 

Notice that, the harmonic function 𝑣1 can be extended harmonically to 𝜕𝐵(𝑎1, 𝛿1) as follows, for  

𝑦 ∈ 𝜕𝐵(𝑎1, 𝛿1), define 𝑣(𝑦) = lim
𝑥→𝑦

𝑣(𝑥). 
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Figure 3: Bounded domain with two isolated singularities 

 

 

Therefore, in 𝐵(𝑎1, 𝛿1)\{𝑎1}, 𝑢 has the following representation; 

𝑢(𝑥) = {
𝐴1 log (

𝛼1

|𝑥−𝑎1|
) + 𝑣1(𝑥)      if   𝑛 = 2;

𝐴1|𝑥 − 𝑎1|
2−𝑛 + 𝑣1(𝑥)          if    𝑛 ≥ 3;

                                               (32) 

also, in 𝐵(𝑎2, 𝛿2), 𝑢 can be represented as follows; 

𝑢(𝑥) = {
𝐴2 log (

𝛼2

|𝑥−𝑎2|
) + 𝑣2(𝑥)      if   𝑛 = 2,

𝐴2 |𝑥 − 𝑎2|
2−𝑛 + 𝑣2(𝑥)          if   𝑛 ≥ 3,

                                               (33) 

where, 𝐴2 ≥ 0, 𝑣2 is harmonic in 𝐵(𝑎2, 𝛿2), and  

α2 = {

1            if   δ2 > 1,
1 − ϵ    if   δ2 = 1,
 δ2         if   δ2 < 1,

                                                                                    (34) 

for some 0 < 𝜖 < 1. 

Now use 𝑣1 and 𝑣2 to define the harmonic function 𝑣  in Ω depending on the dimension 𝑛. for 

𝑛 = 2, define 

𝑣(𝑥) = 𝜒𝐵(𝑎1,𝛿1) (𝑣1(𝑥) − 𝐴2log (
𝛼2

|𝑥−𝑎2|
)) +

𝜒𝐵(𝑎2,𝛿2) (𝑣2(𝑥) − 𝐴1log (
𝛼1

|𝑥−𝑎1|
)) +

 𝜒Ω\(𝐵(𝑎1,𝛿1)∪𝐵(𝑎2,𝛿2)) (u(𝑥) − 𝐴1log (
𝛼1

|𝑥−𝑎1|
)−𝐴2log (

𝛼2

|𝑥−𝑎2|
)).        

 

 

                                     (35.a) 
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While for 𝑛 ≥ 3 the function 𝑣 is given by the form 

𝑣(𝑥) = 𝜒𝐵(𝑎1,𝛿1) (𝑣1(𝑥) − 𝐴2|𝑥 − 𝑎2|
2−𝑛) +

𝜒𝐵(𝑎2,𝛿2) (𝑣2(𝑥) − 𝐴1 |𝑥 − 𝑎1|
2−𝑛) +

𝜒Ω\(𝐵(𝑎1,𝛿1)∪𝐵(𝑎2,𝛿2))(𝑢(𝑥)−𝐴1 |𝑥 − 𝑎1|
2−𝑛 − 𝐴2 |𝑥 − 𝑎2|

2−𝑛).

 

 

            (35.b) 

Therefore, 𝑣 is harmonic function in Ω. Consequently, 𝑢 have the following representation in 

Ω\{𝑎1, 𝑎2}  

𝑢(𝑥) = {
𝐴1 log (

𝛼1

|𝑥−𝑎1|
) + 𝐴2 log (

𝛼2

|𝑥−𝑎2|
) + 𝑣(𝑥)              if    𝑛 = 2,

𝐴1 |𝑥 − 𝑎1|
2−𝑛 + 𝐴2 |𝑥 − 𝑎2|

2−𝑛 + 𝑣(𝑥)            if    𝑛 ≥ 3.
                            (36) 

 

6. Conclusions 

The positive harmonic function 𝑢 in Ω\{𝑥0}, where Ω is a bounded domain of 𝑅𝑛 and  𝑥0 is an 

isolated singularity of  𝑢 in Ω can be divided into two parts. One of them is the singular parts that 

depends on the fundamental solution of Laplacian and the other part is the harmonic part. 

Explicitly, 𝑢  has given in (27).   The work has continued to describe more general form for positive 

harmonic functions with two isolated singularities. That is, when 𝑢 is a positive harmonic function 

in Ω\{𝑎1, 𝑎2}, for two isolated singularities 𝑎1 and 𝑎2 of 𝑢 in the bounded domain Ω. Insert the 

condition  𝐵(𝑎1, 𝛿1)⋂𝐵(𝑎2, 𝛿2) = ∅ and  𝐵(𝑎1, 𝛿1) ⊂ Ω, 𝐵(𝑎2, 𝛿2) ⊂ Ω, would enable to 

generalize the formula (27) for two isolated singularities. In which case, 𝑢 described in (36). 
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 النقاط المعتلة للدوال التوافقية الموجبة في المجال  المقيد

 حنين رياض حمد ، خلدون سعد غالب

 قسم الرياضيات، كلية العلوم، جامعة البصرة

 المستخلص 

لقد تم دراسة النقطة المعتلة للدوال التوافقية الموجبة في الكرة التي يكون مركزها هو النقطة المعتلة من قبل الباحثون ألكس و  

بوردن و رأيمي كما مؤشر في المصدر الاول حيث ان تمثيل هذه الدالة يكون بواسطة مبرهنة بوجر. لقد تم تعميم الدراسة الى  

نقطة معتلة واحدة بدلاً من الكرة التي يكون مركزها هو النقطة المعتلة. ومن ثم تم تعميم الدراسة الى    مجال مقيد عام يحتوي على

 اعطاء صيغة الدوال التوافقية في مجال مقيد عام يحتوي على نقطتين معتلتين. 
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