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Abstract 
The vibration analysis and stability of curved pipe with linear spring stiffener for fixed-
fixed ends conveying fluid consisting from several of straight pipe elements is 
investigated by using three dimensional finite element model. The characteristic 
matrices consisting of stiffness, inertia, damping and contradictory terms which derived 
by finite element method and the effect of the internal flow velocity, axial force, 
Coriolis force and force of spring stiffener  in connected elbow are considered. Some 
parameters that affect the dynamic characteristic have been studied such as curved pipe 
angle, location of spring stiffener, diameter ratio and wall pipe thickness. It is found 
that the location of spring stiffener would influence the critical flow velocity and the 
natural frequency of the system. Where the natural frequency of curved pipe increased 
with closed the spring stiffener to center of curved pipe as the flow velocity increase. 
The results are compared with the numerical approach and gives good agreement of 
used technique. 
 
Keys: curved pipe, conveying fluid, angle of spring location, straight pipe, critical 
velocity,  coriolis force.  
 

 
 دراسة الاھتزاز والاستقرار لأنبوب مقوس مصلب بنابض خطي ناقل للمائع 

 
  الخلاصة

تمـــت دراســـة تحليـــل الاهتـــزاز والاســـتقرارية لانبـــوب مقـــوس مـــصلب بنـــابض خطـــي مثبـــت النهـــايتين ناقـــل للمـــائع    

ملت خــواص اشــت.المركــب مــن عــدد مــن عناصــر الأنابيــب الطوليــة باســتخدام نمــوذج العنــصر المحــدد ثلاثــي الأبعــاد

واعتبـــر تـــأثير كـــل مـــن ، ضةالمــصفوفات المـــشتقة بطريقـــة العنـــصر المحـــدد علـــى الجـــساءة والكتلــة والتخميـــد والمتناقـــ

تــم دراســة بعــض . ســرعة التــدفق الداخليــة والقــوة المحوريــة وقــوة كــوريكليس وقــوة النــابض المــصلب فــي مفــصل الــربط

المتغيــرات التــي تــؤثر علــى الخــواص الدينامكيــة مثــل زاويــة القــوس المائــل وموقــع النــابض المــصلب ونــسبة الأقطــار 

سة إن موقع النابض المصلب يؤثر على السرعة التدفق الحرجة و التـردد وجد من خلال الدرا. وسمك جدار الأنبوب

الطبيعي للنظام حيث إن التردد الطبيعي للأنبوب المقوس يـزداد بـاقتراب النـابض مـن وسـط الأنبـوب المقـوس وكـذلك 

الطــرق قورنــت النتــائج مــع الطــرق العدديــة وأعطــت الطريقــة المــستخدمة توافــق  جيــد مــن . زيــادة فــي ســرعة التــدفق

  .المقارنة 
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NOMENCLATURES 
 

Symbol Definition Basic Unit 

Ai Fluid cross-sectional area m2

Ap Pipe cross-sectional area m2

- Damping matrix  
oveallC  
E Modulus of elasticity of pipe N/m2

Fx Tension force in the pipe N 
G Shear modulus of elasticity of pipe N/m2

I Unity matrix - 
Iy, Iz Pipe second moment of area in y and z directions m4

J Polar second moment of area  m4

- Stiffness matrix of pipe 
1
l 
k  

m Element length of curved  pipe 
kg/m M Fluid mass per unit length 

m Pipe mass per unit length kg/m 
Pipe mass matrix - 

overallM  
N Shape function - i

m OD Outer diameter of pipe 
R Raduis ofdcurved pipe m 
r	 Radius of gyration of pipe section  m 
t Time s 

m/s U Fluid velocity relative to the pipe 
q Displacement vector  - 
q& Velocity vector -  

- q&& Acceleration vector  
x,y,z Cartesian axes - 

degree β Curved pipe angle  
λ Transformation matrix - 

 
 
INTRODUCTION  
 
The flow induced vibration occurs in many industrial fields including, refrigerators, heat 
exchangers, air conditions, chemical plants, nuclear reactor components, fuel lines of aircraft 
and missiles. Flow induced vibration analysis of curved pipes conveying fluid have been one 
of the attractive subjects in structural dynamics. 
For computationally analyzing curved beams or arches, many prefer using straight beam 
elements based on straight beam theories. This is a simple and good approximation for 
slender curved beams or flexible curved beams although more elements will be used to get a 
satisfactory accuracy. Others prefer using curved beam, arch elements to analyze curved 
beams or arches based on slender beam theories to reduce the number of elements used. 
      Some studies have investigated vibration of fluid conveying straight pipes, for examples 
of straight pipe conveying fluid studied can be found in Ref [Chol [1991], Huang[2010, 
Ni[2011] and Nawras[2011]], but there are significantly fewer studies on curved pipes 
Among the first to study the hydroelastic vibration of curved pipes was Svetlitskii [1966 ]. 
He investigated the out-of-plane motion of a fluid conveying perfectly flexible hose, treating 
it as a string, and therefore neglecting the bending rigidity. Unny et al. [1970]considered the 
in-plane divergence of initially circular tubular beams with fixed ends. The equations of 
motion were derived using Hamilton’s principle, and critical flow velocities for instability 
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were obtained for pinned and clamped ends. Chen[1972,1973]  proposed an early dynamic 
model for the vibration analysis of a curved pipe conveying fluid in his papers. Hill and 
Davis [1974 ] studied the effect of initial forces on the vibrating and stability of curved 
clamped-clamped pipes conveying fluid, shaped as circular arcs, as well as S-shaped, L-
shaped and spiral configurations. Ko and Bert [1984] considered the first-order nonlinear 
interaction between the pipe structure and the flowing fluid and formulated the governing 
equations of motion for the in-plane vibrations of a circular-arc pipe containing flowing fluid. 
Kohli and Nakva [1984] analyzed the straight and curved tubes conveying fluid by means of 
straight beam finite elements. Dupuis & Rousselet [1985] have carried out a study on the 
dynamics of fluid-conveying planar curved pipes modelled as Timoshenko beams. The 
extension of the centerline was taken into account. This study used the transfer matrix 
method. Fan and Chen [1987] investigated the vibration and stability analysis of helical pipe 
conveying fluid based on finite element method analysis. Misra et al. [1988] studied the 
differences of the dynamics between the curved pipes with extensible and inextensible 
centerlines. Lee et al. [1996] presented a transfer matrix formulation for three dimensional 
vibration analysis of straight and curved piping systems containing fluid flow with small 
computer core memory usage. Ni et al. [2005] investigated a fluid-conveying curved pipe 
with demisemi-arc shape placed on nonlinear foundations. Based on numerical analysis, 
three final steady states were detected, and chaotic transients found, as a function of the flow 
velocity parameter. Ni et al. [2006] developed a fluid-conveying curved pipe model subject 
to motion constraints placed arbitrarily along the pipe axis. It was shown that chaotic motions 
may occur at sufficiently high flow velocities for such a self-vibration system. Wang Lin et 
al.[2007] investigated the nonlinear dynamics of a fluid-conveying curved pipe subjected to 
motion constraints and harmonic excitation. Jung [2008] analyzed the in-plane and out-of-
plane motions of a semi-circular pipe conveying fluid. Assuming that the centerline of the 
semi-circular pipe was extensible, nonlinear equations of in-plane and out-of-plane motions 
are derived according to the extended Hamilton's principle. The derived equations of motion 
were discretized by applying the Galerkin method. Linearized equations around the 
equilibrium position were obtained from the discretized equations, and then the dynamic 
characteristics of the pipe were investigated. 
 
       In this paper, the out of plane curved pipe conveying fluid with linear spring location 
composed from several straight pipes are constructed in three-dimensional space and 
analyzed by finite element method. A fixed- fixed end conditions with change location of 
spring stiffener will be adopted in this study. The matrices such as mass, stiffness, damping 
(Carioles) are derived and the pipe natural frequency relates with inlet flowing velocity and 
the velocity caused the frequency is zero (critical velocity) are then performed. The forces 
occur due to momentum change and pressure when the fluid pass by the elbow (joint point of 
two adjacent pipe elements) part is also considered. 
 
EQUATION OF MOTION 
 
The differential equation of motion in three dimensional coordinate's vibration of a pipe 
conveying a moving fluid was used to take into account the presence of motion constraints. 
The system consists of a several of straight pipe of a length (l), where  ( φ*Rl = ), R is the 
radius of curved pipe and (φ  ) is the element front angle measured from curved pipe center 
point.  E and G  are the pipe axial and shear moduli of elasticity respectively, Iy and Iz are 
moment of inertia of the pipe in y and z directions respectively, J is the pipe polar moment of 
inertia, (m) is the  mass of the pipe per unit length, conveying fluid of mass per unit length 
(M), U is the steady mean flow velocity of fluid with respect to pipe, Ft is the tension force in 
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the pipe, A , Ap i, r are the cross section pipe area, internal pipe area (fluid area), and pipe 
radius of gyration respectively. Fig.(1) shows a simple representation of the problem within 
hand which is consist of several pipes joint at their junction by an elbow.  The equation of 
motion of whole system is given by (Païdoussis, 2004) 
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Where u, w, and v are the coordinate axes in the directions of x, y, and z respectively, θ is the 
pipe torsional angular displacement.  
 
 
FINITE ELEMENT DISCRETIZATION  
Fig.(2) Shown the location of spring stiffener and represent the node points(i,j) of finite 
element of length (l). Each node point should have six degrees of freedom to describe their 
motion which consist of three linear displacements u, w, v and three rotational displacements 
θx , θy θz. Therefore the finite element has the total twelve degrees of freedom.  According to 
this the displacement vector for a pipe element in space may be represent by [Rao 2004] 

{ }222222111111}{ zyxzyx
T vwuvwuq θθθθθθ=                                       (2)  

      The equation of motion of finite element may be derived by using the extended 
Hamilton's Principle [Rao 2004] 
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     The Eq.(1) represent the general form of motion of the whole system. Another form 
containing Kinetic, Potential and Dissipation energies were driven in more specific form as 
( ) is potential energy of the pipe, ( ) a kinetic energy of both fluid and pipe 
structure, ( ) a potential energy in pipe which done by internal pressure and 
forces produced by fluid flow, ( ) is the dissipation energy which comes from Coriolis 
acceleration due to fluid flow with velocity (U) relative to the pipe and (t
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and t1 2) time at any 

two instants.  
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The displacement models can be expressed as [ Meirovitch, 2002] 
 
-for transverse displacements 
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And the shape functions  for transverse (flexural) pipe vibration are  )6.....1(),( =ixNi
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While for axial and torsional vibrations the shape functions are 
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 By inserting eqs (6, 7) in to eqs (4), can be obtain the element matrices defined in the 
following equation of motion 
 

                                                                      (8) }0{}]{[}]{[}]{[ =++ qKqCqM overalloveralloverall &&&

 
    Where ( ) the overall mass matrix of pipe and fluid from eq(4-a) the element mass 
matrix has the form 

overallM
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      ( ) is the overall damping matrix of fluid. From eq (4-d) the element damping          
matrix can be written as, 

overallC
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          And ( ), the overall stiffness matrices, where ( ) the 
element stiffness matrix of pipe. From eq (4-b) can be written as 

eeoverall KKK ][][][ 21 −= eK ][ 1
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While ( ) the element stiffness matrix of pressure and forces. From eq(4-c) can be 
written as 

eK ][ 2
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Eq (4-c) which contains the force per unit length (stiffness unit) that conforms the fluid to the 
pipe (weakening effect) besides the axial tension force (stiffening effect). The stiffness spring 

 will added in element matrix (k),( jiKs ), where i,j  represent the position of k1 s in overall 
matrix.  Here, we will call the above matrix as a contradictory matrix because it contains two 
opposite component effects. Where Ft is an axial tension force (tangential) that caused by the 
change in fluid's momentum and pressure in a pipe bend (elbow). Fig (3) shows the induced 
axial tension forces in the pipe bend. 
From Fig.(3), the axial tension forces in pipe bend are equal to (Munson et al., 2002): 
 

  )]cos(1[]1)[cos(1 αρα ++−= QUpAFt fluid

   )sin()sin(1 αρα QUpAFn fluid+=
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Where 
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Where ( ) tension force (tangential) and ( ) normal force on pipe element. 1Ft 1Fn
 
From the mathematical formulation presented above, it is clear that the overall stiffness is 
composed of two parts, namely the contradictory and pipe structural stiffness matrices. 
  It can be seen that the 12 * 12 element matrices ( ) are with 
respect to the local xyz coordinate system. Since the nodal displacements for the angled pipe 
are in different local coordinates, thus it must transform the local coordinate to global 
coordinate system. The transformation matrix, λ, can be identified as (Rao, 2004). 
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Here, lox, mox, and nox denote the direction cosines of the x-axis; loy, moy , and noy represent the 
direction cosines of the y-axis; and loz, moz, and noz indicate the direction cosines of the z-axis 
with respect to the global axes. This leads to the following global element matrices: 
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Globaloverall MM =
 

                                             (16)                                                                             ]][[][][ λλ overall
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Globaloverall KK =
 

                                              (17) ]][[][][ λλ overall
T

Globaloverall CC =
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DYNAMIC ANALYSIS  
 
The solution of eigenvalues problem should be executed to the characteristic matrix [Ω ],  
[Meirovitch, 2002], which is equal to 
  

GlobaloverallGlobaloveralloverallGlobaloverall CMKM
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=Ω −− ][][][][
][]0[
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The solution of eigenvalues problem yields complex roots. The imaginary part of these roots 
represents the natural frequencies of damped system. The real part indicates the rate of decay 
of the free vibration. 
 
RESULTS AND DISCUSSION 
 
In this section, the out of plane results of curved pipe conveying fluid were presented. Table 
(1) presents the number of elements, its represents the major parameter for accuracy of the 
results 
and the consumed time to solve the problem. Some types of error are increase or decrease 
with increasing or decreasing the number of elements and it is noted that, 256 elements gave 
a convergence in the results and then they will be used to discretize the curved pipe system.  

 
To verify the results a simple comparison with another researcher was achieved. In 2008 
Jung, used Galerkin Method to list a different values for velocity of fluid and correspond of 
frequency values without adding a spring stiffener. Table (2) presents the compassion. 
 
 
Fig.(4) present the effect of the curved pipe  angle on natural frequency without additional 
spring stiffener. The frequency of the system depends on the relationship between the 
stiffness and inertia. With decreasing the curved pipe angle the stiffness leads to weaken the 
structure stiffness of the curved pipe angle. This behavior was same as investigated (Jung, 
and Chung,2008).   
  
Fig.(5) present the effect of inlet fluid velocity on the natural frequency, it's clear that any 
increase velocity will lead to decreasing in frequency and static instability buckling 
phenomena occurs at critical velocity. This figure was confirmed previously by Lee (1996) 
used Transfer Matrix Method, for clamped-clamped curved pipe for curved angle (1800) and 
the number of element is (128). It was note that, there was as good agreement between the 
results. The different was result for using Transfer Matrix Method 
 
Fig.(6) present the effect of the fluid velocity  on natural frequency for different values of 
curved pipe angle (600,900,1200,1500,1800). The general sight is the frequency was decreased 
with increasing the flow velocity. Because the frequency depended on the structure stiffness 
of curved pipe and when the velocity of fluid increased leads to weaken the structure 
stiffness according to the overall stiffness matrix [Koverall]. 
 
Fig.(7) present effect the ratio of spring location to angle of curved pipe on the critical 
velocity of curved pipe conveying fluid with different values of curved pipe angle. Which is 
the critical velocity of the fluid caused the corresponding frequency become zero for whole 
system. As a general view, it was noted that the critical velocity is increase with increasing 
the ratio of spring location to angle of curved pipe. For the same value of ratio, the critical 
velocity  is seemed to be increased with increasing ratio for different values of curved pipe 
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angle. This behavior was dominated for the specific value of ratio stared from fixed end to 
center of curved pipe. 
From this figure, two interested were observed. The first, there was the critical velocity value 
in which the response is started from change of ratio. The second, the spring location  which 
attain its critical location at center of curved pipe because the symmetric. 

 
Fig.(8) present the effect of fluid velocity on the natural frequency for different angles of 
spring location values for two types of curved pipe (900 and 1800) . As a general view is the 
frequency was decreased with increasing the fluid velocity. The frequency of the system 
depend on the stiffness  of curved pipe and the flow velocity of fluid as shown in eq.(4-b and 
4-c).The increasing or decreasing in the stiffness of system and velocity of fluid effect on the 
hydrodynamic results of system. the increasing velocity leads to increasing in hydrodynamic 
and thereby  decreasing in frequency of the curved pipe. 

  
The effect of the diameter ratio on the natural frequency present in Fig.(9) for different  
values of spring stiffener location for two types of curved pipe angle and at flow velocity 
(100m/s). It is clear, 
The increasing in the diameter ratio caused increasing in structure stiffness and inertia of  
curved pipe due to the direct  relationship between them. The diameter ratio leads to strong 
the structure stiffness.  
 
Fig.(10) indicated that effect of the thickness pipe on critical velocity with different values of 
spring location for two types of curved pipe angle. Where at the same value of thickness the 
critical velocity increasing  with change in spring location, and  it has high value of critical 
velocity when the location of spring closed to center of curved pipe(at angle 900 for curved 
pipe 1800 0 and 45  for curved pipe 900). 

 
 

CONCLUSIONS  
  

The vibration of three dimensional curved piping systems consisting from several of straight 
pipes is analyzed by the finite element method. As a result, the following conclusions are 
obtained: 
1- The location of spring stiffener has great effect on the critical velocity of fluid and natural 
frequency of system. 
2- The stability of curved pipe dose not loses at a high fluid velocity and when changes in 

location of spring stiffener. 
3- For each location of spring stiffener, there are pipe thickness and diameter ratio that gives 

the best dynamic characteristics. 
4- The increase in ratio of spring location to curved pipe angle leads to decreasing in natural 

frequency for different values of curved pipe angle.. 
5- The Finite Element Method appears good agreement when comparison with numerical 

approach. 
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Table [1]: Effect number of elements on length of curved and frequency (v=0m/s, t=1mm, 
OD=30mm, β =1800, and p=100kPa), Exact length of curved is 3.1415 m 

 
                        Number of Elements            Length of Curved (m)             Frequency (rad/s)  
         

8                                     3.1214                                       2.7045 
16                                    3.1365                                       2.6700 
32                                    3.1403                                       2.6612 
64                                    3.1413                                       2.6590 
128                                   3.1415                                       2.6585 
256                                   3.1415                                       2.6584 

 
 
 
 

Table [2]: Comparison the natural frequencies (Hz) for a curved pipe (t=1.5875mm 
OD=22.375mm, β =1800, =0.3874kg/m, =0.1415kg/m, =1000kg/m3, fm pm fρ

=7800kg/m3 and R=0.511m. pρ
 

Velocity of fluid                  Jung                    Present work       %Error 
                                          m/s                                     Hz                               Hz 

 
                                           20                                20.8423                     19.9451                       4.3 
                                           80                                11.0412                     10.8327                       1.9 
 
 

 
 

 
  

X 

Z 

Y 

Angle of spring 
location 

R 

Ks

X 

Z

R 
φ

β

l 

Fixed End Fixed End 

 
  
 
 
  
  
  
  
  
  
  
  
  
  

Fig.(1): Curved Pipe  Model and Angle of Spring Location. 
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Fig.(2): Degree of freedom of pipe element. 
 
 
 
 

 
 

α

QUAp ,,,1Ft

QUAp ,,, 

2Ft 

 
  
  
  
  
  
  
  
  
  

Fig.(3): Tension forces in curved pipe bend. 
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Fig.(4): Effect the curved pipe angle on the natural frequency 
 

Young's modules(200Gpa), Density of pipe(8000Kg/m3), Density of fluid(1000Kg/m3),  pipe 
outside diameter(30mm), pipe wall thickness(3mm),pressure(100kpa), and pipe radius curved 
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Fig.(5): Effect the inlet fluid velocity  on the natural frequency 
 

Young's modules(207Gpa), Density of pipe(8000Kg/m3), Density of fluid(1000Kg/m3),  pipe 
outside diameter(9.54mm), pipe wall thickness(1mm),pressure(130Mpa), curved angle (1800)  

and pipe radius curved (0.125m) 
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Fig.(6): Effect the inlet fluid velocity  on the natural frequency with different Curved angle 
 

Young's modules(200Gpa), Density of pipe(8000Kg/m3), Density of fluid(1000Kg/m3),  pipe 
outside diameter(30mm), pipe wall thickness(3mm),pressure(100kpa)  and pipe radius curved 

(3m) 
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Fig.(7): Effect the location of spring at curved pipe on the critical velocity with varying  
curved pipe angle     

Young's modules (200Gpa), Density of pipe (8000Kg/m3), Density of fluid (1000Kg/m3), pressure 
(100kpa) and pipe radius curved (2m), thickness of pipe (t=5mm) ,out diameter (OD=50mm) 

and  stiffener  spring (107 N/m) 
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Fig.(8): Effect the inlet fluid velocity on the natural frequency with varying   
angle of spring location 

curved pipe angle  (a=900 and b=1800) 
Young's modules (200Gpa), Density of pipe (8000Kg/m3), Density of fluid (1000Kg/m3), pressure 

(100kpa) and pipe radius curved (2m), thickness of pipe (t=5mm) ,out diameter (OD=50mm) 
and  stiffener  spring (107 N/m) 
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