
Engineering and Technology Journal 40 (04) (2022) 516- 526

Engineering and Technology Journal
Journal homepage: https://etj.uotechnology.edu.iq

516
http://doi.org/10.30684/etj.v40i4.1679
Received 15 April 2020; Accepted 3 June 2020; Available online 25 April 2022
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Proposal Framework to Light Weight Cryptography Primitives

Mustafa M. Abd Zaid , Soukaena Hassan
Computer Sciences Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.
*Corresponding author Email: mustafamajeed2014@gmail.com

H I G H L I G H T S A B S T R A C T
• Light weighting encryption algorithm is the

best solution for IoT networks
• All cryptography primitives (block, stream,

hashing, asymmetric) must be light weighted.
• Lightweight importance in time will decrease

and complexity and randomness still same.
• Lightweights encryption save energy and

computation consuming of smart devices.

 Due to manufacturing cost and portability limitations, the computing power,
storage capacity, and energy of the Internet of Things (IoT) hardware are still
slowly developing. From above, the proposed security system based on encryption
must consider the resources, time, memory used, and the lifespan of related
sensors. In addition, some applications need simple encryption, especially after the
emergence of IoT and the Web of Things (WoT). Providing solutions suitable for
resource-constrained devices can be achieved by using lightweight cryptography.
In this paper, building a framework that includes proposals for producing
lightweight security algorithms for cryptography primitives was highly
recommended. For the block cipher, some suggestions have been applied to an
example of block encryption, Advance Encryption Standard 128 (AES-128), to
produce lightweight AES-128. For lightweight stream cipher, the system applied
the proposals on Ronald Rivest Cryptography algorithms (RC4). Rivest–Shamir–
Adleman (RSA) algorithm is used to produce a lightweight asymmetric cipher by
key partition and using the Chinese Remainder Theorem (CRT) in the decryption
process to produce a lightweight RSA algorithm. Several proposals have been used
for hash functions, the most important of which is reducing the number of rounds
and simplifying the functions in SHA-256. Depending on the proposed framework,
all the produced lightweight algorithms passed the National Institute of Standards
and Technology (NIST) statistical tests for test randomness. The produced
algorithms showed better processing time than standard algorithms, less memory
usage for a lightweight version of each standard algorithm, and higher throughput
than standard algorithms.

A R T I C L E I N F O

Handling editor: Rana F. Ghani
Keywords: Lightweight
 Cryptography
LWAES-128
LWRC4
 LWRSA
 LWSHA-256
NIST

1. Introduction
The increasing number of people who use internet-accessed devices, especially those with the high enhancement of artificial

intelligence, such as smartphones, brings more technical difficulties regarding many issues such as the encryption and decryption
processes [1, 2]. LWC (Light Wight Cryptography) is a research field that has developed in recent years to offer such
cryptographic security characteristics [3, 4]. LWC works with the constraint potentiality to devices, especially in terms of energy
consumption, communication bandwidth, execution time, and RAM size. LWC can define as a trade-off between cryptography
and lightweight [5]. Many cryptographers suggest such lightweight characteristics in a lightweight block cipher, stream cipher,
specially developed hash functions, and one-pass authenticated encryption [6]. The efficient implementation of Radio-Frequency
Identification (RFID) tags, sensors in wireless sensor networks and more specifically, in small to medium internet-enabled
appliance that expected to flood the market especially in the IoT era [1, 7]. LWC is affected by three main factors; cost, security
[8, 9], and efficiency. The lightweight cipher-based standardization has not been applied in the market; however, ordinary or
extraordinary (novel) designs of LWC should consider those practical factors [8]. This paper handles a proposed framework of
the primitives regarding the LWC and generates strategies for employing the standardization of LWC algorithms in the current
work.

2. Related work
This section discusses similar work that deals with Lightweight cryptography primitives algorithms

https://etj.uotechnology.edu.iq/
http://doi.org/10.30684/etj.v40i4.1679
http://creativecommons.org/licenses/by/4.0
mailto:mustafamajeed2014@gmail.com
https://etj.uotechnology.edu.iq/journal/editorial.board?edbc=7782
https://orcid.org/0000-0001-8116-5170

Mustafa M. Abd Zaid &Soukaena Hassan Engineering and Technology Journal 40(04) (2022) 516-526

517

2.1 Aes lightweight related work
In 2018, Pratthiba et al. [7], designing of an LWC and securing a suitable IoT-based application substitution box (S-box)

were the significant points targeted by the present work. The 4×4 S-box built the structure was sub-designed into two Galois
Filed GF-based finite fields (FFs); (24) and ((22)2). The FF-constructed S-box was developed recognizing inversional multi-
processors (IMPs) and follow-up steps of affine transformation (AT). The IMP-structural-enhanced versions performed in the
((22)2)-based GFs. However, (24) -constructed GFs are considered the main fields for the induction of the AT. The (24)-((22)2)
generated isomorphic mapping maintained in the (24)-related primitive elements. It was noticed that sub-pipelining was
enhanced by the designed combinational architecture of the finite field S-box.

2.2 Rsa lightweight related work
In 2017, Sahu et al. [10] presented an RSA-algorithm-based system with increased potential security. The security highlight

proposed is the standard RSA-algorithm-based end of "n" and insertion of a new number f in the place of n—this replacement is
used in both private and public keys. Mathematical factorization attacks are prone to the RSA algorithm, and eliminating n with
f makes the process very hard to factorize it and get the original numbers, i.e., p and q. Despite a slight increase in time
complexity, this modification makes the algorithm more secure.

2.3 Rc4 lightweight related work
In 2017, Maity et al. [11] proposed a lightweight stream cipher algorithm providing some security levels such as Grain-128.

Original RC4 and other types of stream ciphers regarding short-timed session-based wireless applications inserting Lightweight
Pseudo-Random Generation Algorithm (LPRGA) instead of RC4. Original PRGA shows a better NIST-based output keystream
than that from PRGA for less than 30,000bits. Related keystream sequences enhance Wireless Sensors Networks (WSNs), almost
all mobile transactions, and ad hoc networks, plus better security levels. However, a longer processing time than those from
RC4-based PRGA was recognized. Interestingly, the cost was less in the proposed system with high-quality performance levels
of hardware-constructed wireless devices.

2.4 Sha-256 lightweight related work
In 2016, Bussi et al. [8] proposed a lightweight hash, the simple fundamental thought of LWC, satisfied with 'Neeva-hash'

providing a unique security requirement at a collision resistance of 2112. Neeva-hash depends on friendly permutation with
sponge cycle mode, which gives required security and extraordinary efficiency in RFID technology and can utilize in many
applications. Some factors such as a heuristic proof of differential characteristics, bit variance test, and near-collision resistant
test were used to evaluate the system.

3. General description of Proposal
Lightweight algorithms were hypothesized using cryptographic primitives as examples for the proposed framework. The

standard algorithms were altered to meet the requirements of constrained devices. A general description of a proposed framework
was discussed in this section. An example for each type of cryptography primitives was given to convert it to a lightweight
version. This paper proposes a framework to produce lightweight algorithms needed in a constrained environment for all
primitives of cryptography. In the evaluation step, statistical tests are done to check if the ciphertext will be random. The
statistical tests evaluation step is not enough in deciding if the algorithm is lightweight or not. Other important evaluations must
be done, such as measuring time and memory used. The proposed framework is shown in Figure 1.

3.1 Proposal to Lightweight symmetric block cipher (AES)
To overcome the issue of computational overhead and high calculation, we break down AES (Advanced Encryption

Standard) and modify it to diminish the algorithm’s calculation. So we designed and implemented a lightweight AES-128
algorithm. The essential plan is to alter AES-128 to give better security to the information and less calculation. The modified
AES-128 algorithms acclimate to giving the best encryption and decryption speed. The length of the key and block is specified
as a standard AES algorithm. To defeat the issue of high computation, we have proposed an alternative lightweight design for
both forward and inverse MixColumns operation required in the AES implementation and integrated it with the AddRound key
step to reduce the memory used. A modified proposal for ShiftRows step by combining (ShiftRows and ShiftColumns). The
three steps used for lightweight AES algorithms included in LWAES algorithms are:

 SubBytes
 Modified ShiftRows
 Mix columns & AddRoundKey

Substitution bytes stay unaffected as it is in the standard AES.

Mustafa M. Abd Zaid &Soukaena Hassan Engineering and Technology Journal 40(04) (2022) 516-526

518

Figure 1: The proposed framework of lightweight cryptography primitives

3.1.1 Modified shiftrows
In the modified ShiftRow cyclical moving process for the key matrix in each row and column, the arrays' rows and columns

are rotated by a specific number of byte positions to expand diffusion more than in the standard AES algorithm. Figure2-shows
modified ShiftRows operation.

3.1.2 Mixcolumns & addroundkey
In this step, we combine the modified MixColumns operation with the AddRoundKey operation. The bytes of the column

are mapped into another esteem in a MixColumn step, which is an element of every one of the four bytes in that column. The
following matrix is shown in Figure 3- transformations characterized for each component the amount of the item matrix of one
column and one-row parts.

Mustafa M. Abd Zaid &Soukaena Hassan Engineering and Technology Journal 40(04) (2022) 516-526

519

Figure 2: Modified ShiftRows

Figure 3: MixColumn Matrix

For this situation, the multiplications and individual additions are performed in GF (28). The equation above can be
implemented more efficiently to eliminate the shifts and conditional XORs.Utilizing the identity {03} ⨁ y = ({02} ⨁ y) y, now
MixColumns equation can modify as follows:

 tmp = 𝑐𝑐𝑐𝑐𝑐𝑐0,𝑗𝑗 ⨁ 𝑐𝑐𝑐𝑐𝑐𝑐1,𝑗𝑗 ⨁ 𝑐𝑐𝑐𝑐𝑐𝑐2,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐3,𝑗𝑗 (1)

 𝑐𝑐𝑐𝑐𝑐𝑐′
0,𝑗𝑗=𝑐𝑐𝑐𝑐𝑐𝑐0,𝑗𝑗 ⨁ tmp⨁[(𝑐𝑐𝑐𝑐𝑐𝑐0,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐1,𝑗𝑗)*2] (2)

 𝑐𝑐𝑐𝑐𝑐𝑐′
1,𝑗𝑗=𝑐𝑐𝑐𝑐𝑐𝑐1,𝑗𝑗 ⨁ tmp⨁[(𝑐𝑐𝑐𝑐𝑐𝑐1,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐2,𝑗𝑗)*2] (3)

 𝑐𝑐𝑐𝑐𝑐𝑐′
2,𝑗𝑗=𝑐𝑐𝑐𝑐𝑐𝑐2,𝑗𝑗 ⨁ tmp⨁[(𝑐𝑐𝑐𝑐𝑐𝑐2,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐3,𝑗𝑗)*2] (4)

 𝑐𝑐𝑐𝑐𝑐𝑐′
3,𝑗𝑗=𝑐𝑐𝑐𝑐𝑐𝑐3,𝑗𝑗 ⨁ tmp⨁[(𝑐𝑐𝑐𝑐𝑐𝑐3,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐0,𝑗𝑗)*2] (5)

We can combine modified MixColumns with the AddRound key to get fewer repetitions. In the decryption process, the

inverse MixColumn transformation is used in the decryption process. The sum of products of components of one row and one
column forms each component in the product matrix. In this situation, the multiplications and individual additions are generated
in GF (28). The MixColumns on an individual column-based transformation j (0≤ j≤ 3) of state can be defined as:

Inverse MixColumn equation is formulated to simplify as:

tmp =09*(𝑐𝑐𝑐𝑐𝑐𝑐0,𝑗𝑗 ⨁ 𝑐𝑐𝑐𝑐𝑐𝑐1,𝑗𝑗 ⨁ 𝑐𝑐𝑐𝑐𝑐𝑐2,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐3,𝑗𝑗)
 𝑐𝑐𝑐𝑐𝑐𝑐′

0,𝑗𝑗=𝑐𝑐𝑐𝑐𝑐𝑐0,𝑗𝑗 ⨁ tmp⨁[(𝑐𝑐𝑐𝑐𝑐𝑐0,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐2,𝑗𝑗)*2]*2⨁ (𝑐𝑐𝑐𝑐𝑐𝑐0,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐1,𝑗𝑗) ∗ 2]
 𝑐𝑐𝑐𝑐𝑐𝑐′

1,𝑗𝑗=𝑐𝑐𝑐𝑐𝑐𝑐1,𝑗𝑗 ⨁ tmp⨁[(𝑐𝑐𝑐𝑐𝑐𝑐1,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐3,𝑗𝑗)*2] ⨁ (𝑐𝑐𝑐𝑐𝑐𝑐1,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐2,𝑗𝑗) ∗ 2]
𝑐𝑐𝑐𝑐𝑐𝑐′

2,𝑗𝑗=𝑐𝑐𝑐𝑐𝑐𝑐2,𝑗𝑗 ⨁ tmp⨁[(𝑐𝑐𝑐𝑐𝑐𝑐0,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐2,𝑗𝑗)*2] ⨁ (𝑐𝑐𝑐𝑐𝑐𝑐2,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐3,𝑗𝑗) ∗ 2]
𝑐𝑐𝑐𝑐𝑐𝑐′

3,𝑗𝑗=𝑐𝑐𝑐𝑐𝑐𝑐3,𝑗𝑗 ⨁ tmp⨁[(𝑐𝑐𝑐𝑐𝑐𝑐1,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐3,𝑗𝑗)*2] ⨁ (𝑐𝑐𝑐𝑐𝑐𝑐3,𝑗𝑗⨁ 𝑐𝑐𝑐𝑐𝑐𝑐0,𝑗𝑗) ∗ 2] (6)

Mustafa M. Abd Zaid &Soukaena Hassan Engineering and Technology Journal 40(04) (2022) 516-526

520

Finally, we combine the MixColumns operation with the AddRound Key in the same step to reduce the number of repetitions.

The decoding method follows the same measures as encoding but uses opposite phase keys. The decryption of the suggested
method functions by applying the opposite of all four activities of the earlier mentioned. The InvSubBytes (Inverse SubBytes)
step is done on the received data by applying the same steps on the original AES-128, then modified InvShiftRows (Inverse
ShiftRows and ShiftColumns) so that each data row returns to its original position. Then InvMixColumns (Inverse MixColumns)
step is done. Finally, the result is XORed with the next round’s generated key. Notice that the key will be in the inverse mode.
In other words, it starts with key[10] and ends with key[0].

3.2 Proposal for Lightweight symmetric stream cipher(RC4)
We produce an efficient stream cipher algorithm that is lightweight compared to the original RC4. The proposed algorithm

brings down the cost of computational overhead compared with the conventional stream cipher like RC4. The suggested
lightweight algorithm is sufficiently secure for utilization in many low-term wireless application sessions. For the creation of the
random initial permutation 𝑆𝑆, utilizing the algorithm key Stream Algorithm (KSA) (first algorithm) belongs to RC4, but we also
supplant the PRGA of RC4 new PRGA (lightweight PRGA). Lightweight PRGA is utilized for keystream creation from the
entry permutation (𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏) result from Key Stream Algorithm (KSA). The keystreams generated from this LPRGA will be XORed
with the successive bits of a plaintext message to produce the required ciphertext message.

3.3 Proposal for Lightweight symmetric stream cipher (RSA)
In this sub-section, we propose a lightweight RSA (LWRSA) algorithm. The proposed scheme includes improving the RSA

technique by proposing a technique that has speed enhancement on the RSA key generation/decryption sides. A new
component."𝑠𝑠𝑛𝑛" was added to increase the complexity of the RSA algorithm. So, the key generation time must be decreased, and
the analytical difficulty of the variable “N” must be increased because of the presence of three prime numbers rather than two.

3.4 Proposal for Lightweight hash function (SHA-256)
In this section, a lightweight hash suggests for the SHA-256 algorithm. Many lightweight cryptographic algorithms have

been developed, and also existing algorithms are modified in terms of resource constraint environments. The proposed scheme
is based on SHA-256, with different structures and some modifications inside the functions. In addition, full adder arrays (FA’s)
were used to increase the complexity of the output hash. Figure 4 - shows the proposed LWSHA-256.

Figure 4: Proposed LWSHA-256

 Reducing the number of steps to 24. Hence, the message expansion becomes

 𝑊𝑊𝑊𝑊 = �
𝑀𝑀𝑊𝑊 𝑓𝑓𝑐𝑐𝑓𝑓 0 ≤ 𝑊𝑊 < 16

𝜎𝜎1(𝑊𝑊𝑊𝑊 − 2) ⊕ 𝑊𝑊𝑊𝑊 − 7 ⊕ 𝜎𝜎0(𝑊𝑊𝑊𝑊 − 15) ⊕ 𝑊𝑊𝑊𝑊 − 16 𝑓𝑓𝑐𝑐𝑓𝑓 16 ≤ 𝑊𝑊 < 24 (7)

 Propose SHA-256 uses only 24 sequences of sixty-four constant, 𝐾𝐾0
256, 𝐾𝐾1

256,… 𝐾𝐾24
256

 Initialize the eight acting factors, A, B, C, D, E, F, G, and H, with the (j − 1) 𝑠𝑠𝑠𝑠 hash.
 Use the same functions in SHA-256 with some modifications to it

Using Ch and Maj as an alternative of SHA1

 𝐶𝐶ℎ(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = (𝑐𝑐^(𝑎𝑎&(𝑏𝑏^𝑐𝑐)) (8)

Mustafa M. Abd Zaid &Soukaena Hassan Engineering and Technology Journal 40(04) (2022) 516-526

521

 𝑀𝑀𝑎𝑎𝑊𝑊(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = (𝑎𝑎 & 𝑏𝑏) | (𝑐𝑐 &(𝑎𝑎|𝑏𝑏)) (9)

Use Σ1 and Σ0 as in standard SHA-256

 ∑ 𝑎𝑎 256
0 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2(𝑎𝑎)⨁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅13(𝑎𝑎)⨁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅22(𝑎𝑎) (10)

 ∑ 𝑎𝑎 256
1 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅6(𝑎𝑎)⨁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅11(𝑎𝑎)⨁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅25(𝑎𝑎) (11)

Modify α1 and α0 by removing Shift right

 𝜎𝜎0
256(𝑎𝑎) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅7(𝑎𝑎)⨁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅18(𝑎𝑎)⨁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅3(𝑎𝑎) (12)

 𝜎𝜎1
256(𝑎𝑎) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅17(𝑎𝑎)⨁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅19(𝑎𝑎)⨁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10(𝑎𝑎) (13)

4. Experiments and Results
In the networking world, more and more internet facilities will connect devices rather than people together. Many of these

devices have powerful processors and are fully capable of using a cryptographic algorithm that looks similar to those used in
desktop PC’s. While other connected devices use tremendously low-power microcontrollers, which can only afford fractions of
their power percentage to afford security, thus using similar cryptography algorithms may cause very high-power consumption
and incur latency. Therefore, several tests are run on each of the encrypted test cases to ensure that they are strong enough to
prevent hacking by ensuring the randomness of its characters instead of the original data. The execution and results of the
proposed system will be explained in detail in this section.

4.1 Encryption keys test
We applied NIST statistical randomness tests for two sets of keys, and each set contains six keys. The first set consisted of

random keys of size 128-bit, and the other set of keys was size 256-bit. Table1 shows the set of one of the keys used to encrypt
AES128 and LWAES128.

Table 1: Two Sets Of Keys

Key number Set1(128-bit) Set2(256-bit)
1 MbQeThWmYq3t6w9z SgVkXp2s5v8y/B?E(H+MbQeThWmZq3t6
2 (G+KbPeShVmYp3s6 aNdRgUkXn2r5u8x/A?D(G+KbPeShVmYq
3 A%D*G-KaPdSgVkXp F)J@NcRfUjXnZr4u7x!A%D*G-KaPdSgV
4 7w!z%C*F-JaNdRgU $B&E)H@McQfTjWnZq4t7w!z%C*F-JaNd
5 q3t6w9z$C&F)J@Nc v8y/B?E(H+MbQeThWmYq3t6w9z$C&F)J
6 VmYq3t6w9z$B&E)H PeShVmYq3t6w9z$B&E)H@McQfTjWnZr4

A fine random number produced was identified by the p-value. If the p-value was over 0.01, the procedure was recognized

as a random process; otherwise, a non-random procedure was decided. The results of applying the NIST statistical tests on the
keys showed the success of almost all tests. The best key applied in NIST statistical tests for set1 is (Key5), which revealed the
best randomness. The system used different text, case files of different sizes (plaintext, first one was the short-text (704) bits
named TX1, the second one was of medium size about (32768) bits called TX2, and the final one named TX3 which was about
(65536) bits (TX3)) utilized for encryption in different variations of the algorithms.

4.2 Nist statistical tests
Statistical test results demonstrated successful output of the two tested algorithms showing adequate statistical tests with

good randomness for all tested algorithms. Table 2- shows NIST tests applied to standard and lightweight algorithms using the
key5 of the second set. In this sub-section, the statistical tests are used to measure the randomness of ciphertext for each three
text files using key5 of set one. The results of statistical tests regarding the ciphertext of the standard and modified algorithms
show the success of all tests (where p=0.01), as shown in Table 2, the tests applied to the three different plaintext files.

Mustafa M. Abd Zaid &Soukaena Hassan Engineering and Technology Journal 40(04) (2022) 516-526

522

Table 2: Results of NIST Tests Applied standard and lightweight algorithms

Algorithm File Frequency
test

Frequency
within block

Run
test

Longest run
of ones in
block

Discrete
Fourier
Transform

Serial
Test

AES-128 Tx1 0.508 0.288 0.49 0.72 0.61 0.27
Tx2 0.04 0.21 0.043 0.55 0.39 0.507
Tx3 0.2 0.02 0.3 0.31 0.114 0.21

LWAES1-128 Tx1 0.377 0.48 0.15 0.84 0.06 0.85
Tx2 0.18 0.75 0.25 0.64 0.03 0.58
Tx3 0.4 0.35 0.31 0.408 0.646 0.69

LWAES2-128 Tx1 0.462 0.18 0.73 0.409 0.48 0.633
Tx2 0.48 0.105 0.32 0.82 0.78 0.39
Tx3 0.52 0.15 0.23 0.116 0.355 0.42

RC4 Tx1 0.76 0.85 0.82 0.99 0.23 0.072
Tx2 0.68 0.9 0.33 0.28 0.93 0.42
Tx3 0.69 0.67 0.12 0.75 0.62 0.92

LWRC4 Tx1 0.61 0.59 0.26 0.52 0.56 0.64
Tx2 0.23 0.59 0.49 0.932 0.64 0.47
Tx3 0.7 0.2 0.32 0.4 0.87 0.49

RSA 64bit 0.282 0.283 0.771 0.08 0.146 0.6
80bit 0.447 0.07 0.786 0.514 0.245 0.152
128bit 0.042 0.085 0.311 0.937 0.146 0.695

LWRSA 64 bit 0.949 0.825 0.146 0.455 0.771 0.778
80 bit 0.527 0.276 0.761 0.535 0.146 0.1
1024bit 0.569 0.558 0.562 0.84 0.771 0.9

SHA-256 Tx1 0.21 0.44 0.08 0.35 0.038 0.21
Tx2 0.45 0.73 0.87 0.17 0.13 0.45
Tx3 0.66 0.47 0.86 0.76 0.28 0.66

LWSHA256 Tx1 0.8 0.58 0.99 0.93 0.73 0.8
Tx2 0.7 0.25 0.62 0.64 0.81 0.7
Tx3 0.8 0.59 0.52 0.41 0.7 0.8

4.3 Other performance metrics of Lwaes
Once assured that everything was working fine, encryption time, decryption time, encryption throughput, decryption

throughput, avalanche effect, memory used, and correlation coefficient between standard algorithms and Lightweight algorithms
were done. As shown in Table3, the lightweight algorithm's encryption and decryption time are less than standard algorithms for
the three files. This is evident by increasing file size. These values applied on TX1, TX2, and TX3 are presented in Table 3. The
throughput for proposed lightweight algorithms is perfect for TX3 and better for TX2 and TX1 compared to standard algorithms.
The avalanche effect for proposed algorithms in TX1 is the best among all tested files. The proposed algorithms show less
memory used in comparison with standard algorithms.

Table 3: Comparing lightweight algorithms with standard algorithms

Algorithm File Encryption
time(second)

Decryption
time(second)

Encryption
Throughput
(KB/sec)

Decryption
Throughput
(KB/sec)

Avalanche
Effect

Memory
used

Correlation
coefficient

AES-128 Tx1 0.0265 0.0286 3.24 3.004 0.503 32768 0.0303
Tx2 0.42 0.43 9.52 9.3 0.43 32768 0.016
Tx3 1.39 1.43 5.75 5.63 0.457 32768 0.0023

LWAES1-
128

Tx1 0.0098 0.0202 8.76 4.25 0.662 28672 0.0357
Tx2 0.157 0.356 25.47 11.23 0.431 28672 0.0002
Tx3 0.49 1.15 16.32 6.95 0.464 28672 0.0023

LWAES2-
128

Tx1 0.005 0.012 17.188 7.161 0.654 8192 0.037
Tx2 0.098 0.207 40.81 19.32 0.419 8192 0.0096
Tx3 0.301 0.647 26.57 12.36 0.459 8192 0.008

RC4 Tx1 0.00037 0.0019 232.27 45.231 0.00121 12288 0.016
Tx2 0.0047 0.0052 851.06 769.23 0.2545 12288 0.0002
Tx3 0.0116 0.0123 689 650 0.454 12288 0.00236

LWRC4 Tx1 0.00034 0.0004 253 214.85 0.529 4096 0.015
Tx2 0.0022 0.0023 1818 1739 0.222 4096 0.0044
Tx3 0.0067 0.0068 1194 1176 0.4615 4096 0.00492

RSA 64bit 1.47 0.088 0.095 0.084 0.514 24576 0.055
80bit 1.62 0.113 0.1036 0.097 0.50 24576 0.062
1024bit 2.9 0.147 0.119 1.07 0.5103 24576 0.049

LWRSA 64 bit 0.294 0.087 0.00298 2.68 0.53 12288 0.0197
80 bit 0.39 0.076 0.0029 3.44 0.5 12288 0.0099
1024bit 0.375 0.117 0.00307 41.69 0.518 12288 0.0127

SHA-256 Tx1 0.0031 - 30 - 0.654 - -
Tx2 0.04 - 39 - 0.6383 - -
Tx3 0.118 - 43 - 0.6383 - -

LWSHA256 Tx1 0.002 - 44 - 0.66 - -
Tx2 0.028 - 55 - 0.637 - -
Tx3 0.0948 - 55 - 0.655 - -

Mustafa M. Abd Zaid &Soukaena Hassan Engineering and Technology Journal 40(04) (2022) 516-526

523

5. Conclusions
Cryptography systems never depend on an increase in the number of rounds, size of keys, and size of blocks to influence the

randomness. Lightweight cryptography is dangerous if not built to consider all constraints as it must balance the objectives trend
to memory, time, and throughput with security. Cryptographic primitives will force the lightweight to consider the way of light-
weighting. LWAES provides good security with low time memory usage by modifying the number of rounds, ShiftRows,
backward ShiftRows (inverse), and both forward and backward MixColumns (inverse) operations required in the AES. This is
combined with an AddRound key operation to reduce the time of encryption and decryption operations. LWRSA has less memory
usage compared to other asymmetric algorithms. It also provides speed enhancement in the RSA algorithm's key generation and
decryption sides. On the key generation side, using three prime numbers rather than two primes provides N with the same length
as the standard RSA but with fewer bits for prime numbers. On the other side, the speed of the decryption face has improved by
utilizing the idea of CTR (Chinese remainder theorem). LWRC4 algorithm is efficient; in other words, it is more cost-effective
than the standard RC4 and is faster. The generated output sequences of the proposed algorithm have passed the NIST suite of
statistical tests. This makes LWRC4, to a great degree, appropriate for actualizing secure correspondence in a wide range of
wireless applications like Wi-Fi Protocol Access (WPA), where devices are compelled by either cost, energy, or processing
ability. LWSHA-256 reduces the number of rounds used in standard SHA-256, uses different forms for functions, and modifies
the original scheme by inserting FAA in the scheme. This gave a different result compared to SHA-256. The results indicated
that the proposed algorithm has a better avalanche effect than standard SHA-256. It has passed the NIST test suite and is faster
than the traditional one. Therefore, the LWSHA-256 algorithm achieves most of the properties required for lightweight
cryptography.

Algorithm 1- Proposed LWAES-128 encryption

Input: plaintext, key
Output: ciphertext

Start
Step1: For each plaintext block do
Step2: state=AddRoundKey (XOR between block and key[0])
Step3: for i=1 to 9 do //can reduce to 6 in some situations.
Step4: SubBytes(state)
Step5: apply modified ShiftRows (state) //see Fig.2.
Step6: apply modified MixColumns& AddRoundKey (state, key[i])
Step7: end for
Step8: SubBytes(state)
Step9: apply modified ShiftRows(state)
Step10: AddRoundKey (state, key[10])
Step11:endfor
End

Algorithm 2- Proposed LWAES-128 decryption

Input: Ciphertext, key
Output: Plaintext

Start
Step1: For each ciphertext block do
Step2: state=AddRoundKey (XOR between block and key[10])
Step3: for i=9 to 1 do //can reduce to 6 in some situations.
Step4: InvSubBytes (state)
Step5: apply modified InvShiftRows(state)
Step6: apply modified InvMixColumns & AddRoundKey (state, key[i])
Step7: end for
Step8: InvSubBytes(state)
Step9: apply modified InvShiftRows(state)
Step10: AddRoundKey (state, key[0])
Step11:end for
End

Mustafa M. Abd Zaid &Soukaena Hassan Engineering and Technology Journal 40(04) (2022) 516-526

524

Algorithm 3 Proposed LWRC4 encryption/decryption

Input: planintext/ciphertext, key
Output: ciphertext/plaintext
Start
 // initialize 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏
Step1: for i=0 to 255
Step2: 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏[𝑊𝑊]=i
Step3: end for
 // KSA
Step4: set j=0
Step5: for i=0 to 255
Step6: j=j+𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏[𝑊𝑊]+key[I mod key_length] mod 255
Step7: swap (𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏[𝑊𝑊], 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏[𝑊𝑊])
Step8:end for
 //LPRGA
Step9: set j=255;i=0;t=0
Step10: For i = 0 to 255
Step11: t= (𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏[i]+ 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏 [j]+j) mod 256
Step12: j=i
Step13:i=𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏 [i]
Step14: 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏 [j] =t
Step15: Key_STREAM=𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏 [i] XOR 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏 [j]
Step16:End for
Step17:Ciphertext/Plaintext=Plaintext/Ciphertext ⨁ Key
End

Algorithm 4 Proposed LWRSA encryption/decryption
Input: plaintext(Pm)/ciphertext(Cm), Prime numbers 𝑝𝑝𝑛𝑛, 𝑞𝑞𝑛𝑛 and 𝑠𝑠𝑛𝑛
Output: ciphertext(Cm)/plaintext(Pm)
Start
 // key generator
Step1: Calculate N=𝑝𝑝𝑛𝑛×𝑞𝑞𝑛𝑛×𝑠𝑠𝑛𝑛.
Step2: φ(N) = (𝑝𝑝𝑛𝑛 -1)(𝑞𝑞𝑛𝑛 -1)(𝑠𝑠𝑛𝑛-1).
Step3: Chooses e, 1 < 𝑒𝑒𝑏𝑏 < φ (N) like that gcd (𝑒𝑒𝑏𝑏, φ (N)) = 1
Step4: Finds d such that 𝑒𝑒𝑏𝑏×d = 1 mod φ (N).
Step5: Finds 𝑑𝑑𝑝𝑝 such that 𝑒𝑒𝑏𝑏×𝑑𝑑𝑝𝑝 = 1 mod (𝑝𝑝𝑛𝑛 -1), 𝑑𝑑𝑞𝑞 such that 𝑒𝑒𝑏𝑏×𝑑𝑑𝑞𝑞 = 1 mod (𝑞𝑞𝑛𝑛 -1).
Step6: Finds 𝑄𝑄𝑖𝑖𝑛𝑛 such that
 // 𝑞𝑞𝑛𝑛 ×𝑄𝑄𝑖𝑖𝑛𝑛 = 1 mod 𝑝𝑝𝑛𝑛. if 𝑝𝑝𝑛𝑛 > 𝑞𝑞𝑛𝑛
 // 𝑝𝑝𝑛𝑛 ×𝑄𝑄𝑖𝑖𝑛𝑛 = 1 mod 𝑞𝑞𝑛𝑛. if 𝑞𝑞𝑛𝑛 > 𝑝𝑝𝑛𝑛
 //Public Key Ku=(𝑒𝑒𝑏𝑏, N) and Private key Kr=(𝑄𝑄𝑖𝑖𝑛𝑛, 𝑑𝑑𝑝𝑝, 𝑑𝑑𝑞𝑞 , 𝑝𝑝𝑛𝑛, 𝑞𝑞𝑛𝑛).
 // RSA encryption
Step7: Cipher text Cm = 𝑀𝑀𝑒𝑒𝑒𝑒𝑥𝑥 Mod N
 // RSA decryption
Step8: 𝑀𝑀𝑎𝑎 = 𝐶𝐶𝑑𝑑𝑝𝑝 mod 𝑝𝑝𝑛𝑛
Step9: 𝑀𝑀𝑏𝑏 = 𝐶𝐶𝑑𝑑𝑞𝑞 mod 𝑞𝑞𝑛𝑛
Step10: h= (𝑄𝑄𝑖𝑖𝑛𝑛×(𝑀𝑀𝑎𝑎-𝑀𝑀𝑏𝑏)) mod 𝑝𝑝𝑛𝑛
Step11: Me=𝑀𝑀𝑏𝑏+(h×𝑞𝑞𝑛𝑛) =plaintext
End

Mustafa M. Abd Zaid &Soukaena Hassan Engineering and Technology Journal 40(04) (2022) 516-526

525

Author contribution

All authors contributed equally to this work.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability statement

The data that support the findings of this study are available on request from the corresponding author.

Conflicts of interest

The authors declare that there is no conflict of interest.

References
[1] Omran, A. Performance Analysis of AES and LWAES Algorithms, Master, thesis, Iraqi Comm. Comput. Inform., 2018.

[2] O. Toshihiko, Lightweight Cryptography Applicable to Various IoT Devices, NEC Tech. J., 12 (2017) 67-71.

[3] R. García, I. A. Badillo, M. Sandoval, C. Feregrino, R. Cumplido, Acompact FPGA-based Processor for the Secure Hash
Algorithm SHA-256, Comput. Electr. Eng., 40 (2014)194-202. https://doi.org/10.1016/j.compeleceng.2013.11.014

[4] Ashton, K. ‘That Internet of Things, RFID Journal, New York, 22 (2009) 97-114.

[5] Höglund, R. Lightweight Message Authentication for the Internet of Things, Master’s Thesis, School of Information and
Communication Technology (ICT) KTH Royal Institute of Technology Stockholm, Sweden, 2014.

Algorithm 5 Proposed LWSHA-256
Input: Message M(M)
Output: Hash digits (256 bits)
Start
Process:
Step1: For i = 1 to N (N = padded message block numbers)
Step2: starts the eight values; A, B, C, D, E, F, G, and H, with the (j − 1) 𝑠𝑠𝑠𝑠 hash value: Intermediate hash value
(= the initial hash value when j = 1)
// Apply the SHA-256 function of compression to upgrade eight registers values
A, B, C, D, E, F, G, and H
Step3: Compute: 𝑊𝑊𝑊𝑊, 𝜎𝜎0

256(𝑎𝑎), 𝜎𝜎1
256(𝑎𝑎)

Step3: For i=1 to nb-rounds do
 Compute Ch(e,f , g), Maj(a,b, c), ∑ 𝑒𝑒 256

1 , ∑ 𝑎𝑎 256
0

 Compute:
s,c_in ←FA (h, ∑ 𝑒𝑒 256

1 , ch(e,f,g))
s1,c_in1← FA(k[i],w[i], ∑ 𝑎𝑎 256

0))
h←g
g←f
f←e
e,a0← FA(s,c_in1, ∑ 𝑎𝑎 256

0)
d←c
c←b
b←a
a←s1
 EndFor
Step7: The jth intermediate hash value H(j) can compute as:
 𝐻𝐻0

𝑗𝑗=a+𝐻𝐻0
𝑗𝑗−1

 𝐻𝐻1
𝑗𝑗=b+𝐻𝐻1

𝑗𝑗−1
𝐻𝐻2

𝑗𝑗=c+𝐻𝐻2
𝑗𝑗−1

𝐻𝐻3
𝑗𝑗=d+𝐻𝐻3

𝑗𝑗−1
𝐻𝐻4

𝑗𝑗=e+𝐻𝐻4
𝑗𝑗−1

𝐻𝐻5
𝑗𝑗=f+𝐻𝐻5

𝑗𝑗−1
𝐻𝐻6

𝑗𝑗=g+𝐻𝐻6
𝑗𝑗−1

𝐻𝐻7
𝑗𝑗=h+𝐻𝐻7

𝑗𝑗−1
 EndFor
Step9: result 256-bits message digest(hash) of the message M which is: 𝐻𝐻0

𝑗𝑗 , 𝐻𝐻1
𝑗𝑗 , 𝐻𝐻2

𝑗𝑗 , 𝐻𝐻3
𝑗𝑗 , 𝐻𝐻4

𝑗𝑗 , 𝐻𝐻5
𝑗𝑗 , 𝐻𝐻6

𝑗𝑗 , 𝐻𝐻7
𝑗𝑗

End

https://doi.org/10.1016/j.compeleceng.2013.11.014

Mustafa M. Abd Zaid &Soukaena Hassan Engineering and Technology Journal 40(04) (2022) 516-526

526

[6] Cryptrec Lightweight Cryptography Working Group, Lightweight Cryptography, Cryptographic Technol. Guideline, 2017.

[7] A. Prathiba , V. S. K. Bhaaskaran, Lightweight S-Box Architecture for Secure Internet of Things, Info., 9 (2018) 13
https://doi.org/10.3390/info9010013

[8] K. A. Bussi, Lightweight Hash Function, University of Delhi, INDIA, 2016.

[9] E.G. Ahmed, E. Shaaban, M. Hashem, Lightweight Mix Columns Implementation for AES, Proc. Int. Conf. Appl.info.
comm., (2013) 1790-5109.

[10] J. Sahu, V. Singh, V. Sahu, C. Chopra, An Enhanced Version of RSA to Increase the Security, J. Netw. Commun.
Emerg.Technol.,7 (2017)1-4.

[11] S. Maity, K. Sinha, B.P. Sinha, An Efficient Lightweight Stream Cipher Algorithm for Wireless Networks, IEEE Wirel.
Comm. Network. Conf., (2017) 1-6. https://doi.org/10.1109/WCNC.2017.7925562

https://doi.org/10.3390/info9010013
https://doi.org/10.1109/WCNC.2017.7925562

	1. Introduction
	2. Related work
	2.1 Aes lightweight related work
	2.2 Rsa lightweight related work
	2.3 Rc4 lightweight related work
	2.4 Sha-256 lightweight related work

	3. General description of Proposal
	3.1 Proposal to Lightweight symmetric block cipher (AES)
	3.1.1 Modified shiftrows
	3.1.2 Mixcolumns & addroundkey

	3.2 Proposal for Lightweight symmetric stream cipher(RC4)
	3.3 Proposal for Lightweight symmetric stream cipher (RSA)
	3.4 Proposal for Lightweight hash function (SHA-256)

	4. Experiments and Results
	4.1 Encryption keys test
	4.2 Nist statistical tests
	4.3 Other performance metrics of Lwaes

	5. Conclusions
	Author contribution
	Funding
	Data availability statement
	Conflicts of interest
	References

