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Abstract: A common characteristic of Mycoplasma diseases is their chronicity, Mycoplasma 

spp. infection have been frequently associated with upper respiratory infections, chronic lung 

disease , asthma, meningeal encephalitis, mastitis, arthritis, heart problems, sterility, bone 

problems , oviduct dysfunctions and death in human and different animal species. In former 

years, changeable expression of membrane antigens has been detected in a number of 

Mycoplasma spp., resulting in the assumption that immune prevarication may be an important 

part of the their infection and pathogenesis. It has been determined how the attachment 

organelle, which mediates the complicated interactions between various adhesins and auxiliary 

adhesion proteins to mediate the critical first stage of cytoadherence to respiratory tract 

epithelium. Additionally, it has been demonstrated that inflammatory cytokines cause tissue 

damage by intracellular localization, direct cytotoxicity, and activation of the inflammatory 

cascade via Toll-like receptors (TLRs), and inflammosome activation, which causes air passage 

inflammation. All of these play crucial roles in the infectious process. This paper seeks to 

provide a thorough assessment of recent developments in our understanding of Mycoplasma 

pathogenesis with the understanding of its virulence mechanisms. 
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Introduction: Mycoplasma is the tiniest 

and most unpretentious cell wall-free 

parasitic prokaryote, with the capacity for 

self-reproduction (1). It produces ammonia 

and induces inflammatory cytokines in 

immune and non-immune cells similarly to 

Helicobacter pylori (2). Human genital 

Mycoplasmas were recovered with a 

substantial percentage as single infections 

and/or mixed infections (3, 4). Also, 

increasing prevalence of antimicrobials 

resistant such as macrolide-resistant in M. 

pneumoniae has become a significant 

problem, which may possibly cause further 

severe and even extra-pulmonary infections 

(5), Dogs in Iraq have been found to have 

Mycoplasma spp. (6). In Basrah governorate 

of Iraq, infected dogs with Mycoplasma 

hemocanis, caused emaciation with the 

possibility of death among infected dogs (7). 

 Feline mycoplasmosis  may cause 

negative consequences that could result in 

the death (8), in same context Haemotrophic 

Mycoplasmas might terminated with highly 

mortalities of infected sheep of Basrah 

governorate (9), while (10) found 16.6% M. 

agalactiae in sheep showed signs of mastitis 

based on molecular PCR.  

However, Mycoplasmosis in 

newborn calves was detected in Basrah, 

Iraq, and might lead to huge economic 

losses, therefore, periodic examination of 

adult and pregnant cows should be advised. 

(11). A significant increase lymphocyte, and 

macrocytic hypochromic type of anemia 

caused by Mycoplasma wenyonii infection 

in cattle of Basrah governorate (12) 

 Many avian species, such as broiler 

and layer breeds of chickens, turkeys, 

pigeons, sparrows, finches, falcons, and 

other bird species are susceptible to the 

avian mycoplasmosis (13,14). Mycoplasma 

infections are widespread and are the cause 

of significant financial losses for the global 

poultry industry (14). Several world states 

with modern design poultry facilities have 

enucleated Mycoplasmas from commercial 

chickens and breeder flocks; however, avian 

mycoplasmosis still a real problem in Iraq 

(15,16), although M.gallisepticum 

prevention and control by only biosecurity 

measurements is difficult to achieve 

Mycoplasma free flock; however, M. 

gallisepticum vaccines have been used 

positively in these circumstances to 

minimize the occurrence and spreading of 

Mycoplasma (17).   
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MYCOPLASMA GENOME 

The fact that Mycoplasmas have the 

shortest genomes among bacterial species is 

assumed to be the result of degenerative 

evolution, which has reduced genome size 

from a common gram-positive progenitor 

through time (18, 19). 

 The size of Mycoplasma genome is 

differed from species to another , by using 

restriction enzymes the genome size of 

Mycoplasma genitalium was determined, is 

considered among the smallest genomes 

ranged from 577 to 590 kb, and is 1 /4 

smaller than M. pneumoniae genome (20). 

While the genome size of many M. 

gallisepticum strains, both virulent and 

attenuated strains approximately 1 Mbp (21, 

22), with 23 to 40 mol% G+C. (23), 

however, the genomic size of  Mycoplasma 

penetrans was 1359 kb (24). Despite the 

small size, Mycoplasma maintained its 

ability to synthesize DNA,RNA and every 

protein needed to support its persistence and 

survival (25). The estimated number of 

important genes ranged from 256 to 422 

depending on the species taken into account 

and the approach or method (26; 27; 28 ). 

In addition to 20 completed genomes 

in the class of Mollicutes, (21;29; 30; 31; 

32), the genomic DNA of 12 different 

Mycoplasma species has been fully 

sequenced and recorded in GenBank such as 

M. gallisepticum strain Rlow (21), M.

hyopneumoniae and M. synoviae (33), M. 

haemofelis (29), M. pneumonia (30), M. 

wenyonii strain Massachusetts (34), M. 

gallinaceum (31), M. genitalium (32) and 

others. The majority of the mollicutes have 

two rRNA cistrons, while a small number of 

species seem to have just one rRNA cistron,  

that codes for a specific polypeptide in 

protein synthesis mechanism (35).  

Regarding M. gallisepticum, two  

gene families, pMGA (vlhA) (21), and pvpA 

(36, 37), translate and encode the primary 

membrane proteins, as immunogenic 

proteins (38) Mycoplasma can be influenced 

by the variations in the expression of pMGA 

and mgc1 and mgc3 cytoadhesin genes, 

nevertheless, pMGA genes play a chief role 

in antigenic variants production and the 

capability of M. gallisepticum to alter the 

expression of their antigenic determinants is 

believed to be an essential mechanism for 

immune evasion or eluding, host 

acclimation, and long last persistence (39). 

One of the primary forces behind 

microbial innovation was the occurrence of 
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horizontal gene transfer (HGT) and was 

enables the transfer of substantial gene 

groups, referred to as genomic islands (GIs), 

between bacteria (25). But Mycoplasma was 

not taken into account until the 1990s Due to 

the small size of their genome and the 

prevalent evolutionary theory, which was 

exclusively based on sequential gene losses 

(40). However, HGT has appeared in a 

number of gene clusters, certain of which 

encode virulence elements in Mycoplasmas 

(41). For example, two loci were found in 

the M. agalactia strain 5632 by Island 

Viewer 4. (42) that code for Vpma family 

surface proteins (43), are involved in 

immune evasion and colonization (44, 45).  

ANTIGENIC STRUCTURE 

About two-thirds of the components 

of the membrane are made up of proteins, 

with the remaining lipids having different 

molecular weights (40). The high frequency 

of antigenic variety and the capacity for 

outer surface protein phase divergence are 

universal characteristics of many pathogenic 

Mycoplasmas, which facilitate immune 

evasion. (46). For instance, in terms of 

pathogenicity, transmissibility, and 

immunogenicity, for instance, M. 

gallisepticum isolates differ greatly from 

one another in accordance with phenotypic 

and genotypic features (47). The key 

membrane proteins on the surface of the 

organism, known as adhesins, are the 

virulence factors, they play a crucial 

function in attaching to the host epithelial 

cell receptors, allowing Mycoplasma to 

colonize and subsequently start the infection 

process (48). In general, these components 

(surface lipoproteins) are typically related to 

antigenic diversity, tissue attachment, 

gliding motion activity, and the 

transportation of nutritive ingredients (49). 

In M. gallisepticum the GapA 

protein is the primary cell adhesin able to act 

in synchrony with additional cytoadherence 

associated proteins CrmA, (21, 50, 51). and 

Mgc2 protein which confines to the 

attachment process (52), as showed by some 

studies, both GapA and CrmA are the most 

essential for pathogenicity of M. 

gallisepticum enabling strong adherence to 

the epithelial respiratory tissues (53,54), and 

also responsible for hemadsorption (55). 

with additional cytoadherence associated 

proteins which are connected to phase 

diversity pMGA (21), and pvpA proteins 

(36, 37). 
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Another lipoprotein that has been 

linked to M. gallisepticum's pathogenicity is 

Mycoplasma specific lipoprotein A (MslA) 

(22). Additionally, MG1142 homology to 

OsmC-like protein has a role in the 

virulence of M. gallisepticum and survival 

by increased resistance of hydroperoxide in 

the host tissue (56). 

PROGRAMMED CELL DEATH 

There are a variety of ways for 

Mycoplasma to evade the host's innate and 

adaptive immune systems, these include 

biological mimicry, capsules, complement 

inhibition, latent forms hidden within 

phagosomes, hypervariable antigenicity, 

phase variance, blocking phagolysosome 

fusibility, and inducing apoptosis in immune 

cells (57). In addition, it is capable of 

mutation in small repeat sequences of the 

DNA strand (25), As a result, there is a 

decrease in the ability of immune system to 

detect Mycoplasma, which leads to 

increased resistance and a longer survival 

period (58). The membrane lipoproteins of 

Mycoplasma, or pathogen associated 

molecular patterns (PAMPs), have the 

capacity to bind to the Toll-like receptors 

(TLRs), which are part of pattern 

recognition receptors (PRRs), or body cell 

receptors of the natural immune system, are 

essential for recognizing invasive 

microorganisms and initiating the natural 

and adaptive immune response processes, 

which are expressed by B and T 

lymphocytes, monocytes, macrophages, 

neutrophils or heterophils, dendritic cells, 

fibroblasts, endothelial and epithelial cells, 

(59), also a pathogen sensitizes cytosolic 

receptors called nucleotide-binding 

oligomerization domain like receptors 

(NOD) (60), act as microbial sensor for 

provoking antimicrobial immune response 

(61), pro-inflammatory cytokine secretion is 

stimulated in part by the NF-κB pathway, 

which is controlled by the TLRS 1 and 2 

(62), however, M. pneumoniae was proved 

to stimu,ate NF-κB through TLR1, TLR2, 

and TLR6. (63). Due to the interaction 

between TLRs and Mycoplasma PAMPs, 

Mycoplasmas stimulate the macrophages' 

ability to lyse cells, and increase IL-8 

secretion by bronchial epithelial cells (64), 

while Shimizu and copartners showed 

increased in production of TNF-α with M. 

genitalium infection (62), in another study 

M. genitalium infection cause the release of

IL-6, IL-8 and secretion of granulocyte- 

monocsyte (GM-CSF) and granulocyte 

colony-stimulating factor (G-CSF) was 
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considerably increased, so the infection may 

result in persistent inflammation of affected 

tissues (65). Moreover, as stated by Chen 

and colleagues they demonstrated 

substantial reduction of the CD8+ 

lymphocytes in the thymus of infected 

chickens with M. gallisepticum, in addition 

to decreased DNA and mitochondrial 

function of thymus (66), in addition, the 

inflammasome is activated in the chicken 

thymus by reactive oxygen species (ROS), 

PAMPs, or Damage-associated molecular 

patterns (DAMPs), it is also believed that 

the TLR-2/MyD88/NF-κB signaling 

pathways play a role in this process (66).   

Additionally, according to Li and 

colleagues (2019) (67), M. gallisepticum can 

inhibit autophagocytosis, a mechanism that 

eliminates damaged components, and induce 

oxidative stress and apoptosis in thymus 

tissue cells. Additionally, maybe there is no 

interception to assuming that Mycoplasma 

follows the same mechanism as the rest of 

the bacteria in terms of being rich in 

lipoproteins, as it has been proven that 

bacterial lipoproteins are able to induce the 

release of adenosine triphosphate (ATP) 

from host cells responding to pathogenic 

infections (68) and accumulate near the 

inflamed tissues (69 De Marchi etal., 2019), 

which in turn causes inflammation and is 

linked to cell cytotoxicity or apoptosis as a 

result of ATP binding to cell membrane 

protein called purinergic P2X7 receptors  

(70,71), by inducing the inflammasome, a 

group of proteins that causes the maturation 

and release of pro-inflammatory cytokines 

as well as the release of reactive nitrogen 

and oxygen, which is followed by the 

release of IL1 and IL18, which contribute to 

the inflammation process (70). Also 

activated P2X7R induces apoptosis by 

activating caspases 3 and 7 following a 

massive Ca+2 intake (72) and leading to the 

up regulation of IL-1expression (73).  

INFECTIOUS PROCESS 

Here we will explain the infection 

process of one of the types of Mycoplasma 

that infects poultry. Concerning M. 

gallisepticum, cell adhesion to the chicken 

tracheal epithelium is caused by capsular 

components (blebs or tip structures) (74), 

which is followed by epithelial penetration 

and cilia dysfunction (17). Almost all 

chicken populations are commonly affected 

by M. gallisepticum infection, though the 

intensity and duration of the illness vary 

depending on the season and age (75). 

Additionally, M. gallisepticum colonization 
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can become more severe due to prior 

damage to respiratory epithelial layers 

caused by a number of concurrent 

pathogens, including viruses such the LPAI 

subtype H3N8 virus (76), or subtype H9 

(77), Newcastle virus (ND) (57), infectious 

bronchitis virus (IB) (78), or E. coli (79), as 

well as immunodepression, unfavorable 

environmental factors like poor ventilation, 

subtle temperature changes, and numerous 

other stressors (75), leading to complex 

chronic respiratory infections (80) with 

significant morbidity and mortality rates and 

low weight, particularly during colder 

months. 

Most susceptible birds to severe 

infection are malnourished birds and those 

who live in houses with high levels of 

ammonia and nitrites, which in turn damage 

and destroy the mucous membranes. and 

decrease macrophage and natural killer cell 

activity, all these factors facilitate M. 

gallisepticum colonization and increase the 

severity of the infection (82). Age also has a 

significant impact on the severity of 

Mycoplasmosis, for example, while 

chickens are infected with M. gallisepticum 

when they are younger than 4 weeks they 

develop a more serious disease (57).  

Mycoplasmas can persist in one 

primary host for a long time, making 

diseased hosts the main sources of 

Mycoplasmas, i.e, long-lasting carrier status 

is a common characteristic (75). In addition, 

cysteine proteases (CysP) of M. 

gallisepticum were confirmed to degrade 

IgG and present another practical way for a 

protracted period of the livability of M. 

gallisepticum, leading to the chronic nature 

of infection and carrier status of chicken 

(83). 

As previously demonstrated by 

several studies, the attachment through sialic 

acid residues of the epithelial cells 

respiratory tract and colonization are 

prerequisites for the pathogenic processes 

and robust immune response, and some hints 

of evidence may suggest that lesions of the 

respiratory system are fundamentally caused 

by the host immunity and inflammatory 

response during infection rather than by 

direct effect of Mycoplasma toxins or 

membrane elements (84), early interactions 

between M. gallisepticum and pulmonary 

epithelial cells, which promote macrophage 

cell migration, inflammatory cytokine 

production, and chemokine gene expression, 

may be related to the initiation of the 

inflammatory response and the progression 
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of lesions (85). As a result of cellular 

infiltrations and edema in the trachea, M. 

gallisepticum infections result in epithelial 

necrosis and exfoliation, ciliostasis, and de-

ciliation, as well as increased epithelial 

thickness (76). It has been demonstrated that 

M. gallisepticum invades non-phagocytic

host cells (86), producing toxic byproducts 

for the host immune system, including 

hydrogen peroxide and nitric oxide, which 

damage host epithelial cells (72) and 

negatively affect the function and integrity 

of epithelial cells as well as the B and T cell 

functions (87). Although, most 

Mycoplasmas are extracellular (88) 

however, M. gallisepticum and, M. 

penetrans M. pneumoniae, M. genitalium 

can invade and survive in host cells as well 

as M. fermentans can reside in non-

phagocytic cells (89). 
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موت خلايا المضيف المبرمج والعملية الخمجية للمفطورات

ػلاء ػثذ انؼشٌش ػثذ 
1,2

، ػهً ػثٕد انؼٍذاًَ 
1

، احًذ جاسى َؼًّ 
3

.فزع الاحٍاء انًجٓزٌح ٔانطفٍهٍاخ/ كهٍح انطة انثٍطزي/ جايؼح انثصزج - 1

.فزع الايزاض ٔايزاض انذٔاجٍ /كهٍح انطة انثٍطزي/جايؼح انقادسٍح -2

.ٔحذج الايزاض انًشرزكح /كهٍح انطة انثٍطزي/جايؼح انقادسٍح  -3

الخلاصة

انسًح انًشرزكح فً ايزاض انًفطٕراخ ًْ انحانح انًشيُح نلإصاتح ٔقذ ارذثطد ايزاض انًفطٕراخ تانرٓاتاخ 

ئح انًشيُح ، ٔانزتٕ انقصثً ، ٔانرٓاب انذياؽ انسحائً ، ٔانرٓاب انعزع ، ٔانرٓاب انًفاصم ، انجٓاس انرُفسً ، ٔأيزاض انز

ٔيشاكم انقهة ، ٔانؼقى ، ٔيشاكم انؼظاو ، ٔاظطزاتاخ قُاج انثٍط ، ٔانًٕخ فً انثشز ٔإَٔاع انحٍٕاَاخ انًخرهفح. ٔنقذ ذى 

نًعٍف ، ٔانرً ذرٕسػ انؼذٌذ يٍ انرفاػلاخ انًؼقذج تٍٍ يخرهف ذحذٌذ كٍفٍح ػًم تٍُح ػعً الارذثاغ تخلاٌا انكائٍ انحً ا

انًٕاد انًسؤٔنح ػٍ الارذثاغ اظافح انى تزٔذٍُاخ الانرصاق انًساػذج انصإٌَح نرسٍٓم انًزحهح انحزجح الأٔنى يٍ الانرصاق 

انرسًى انخهٕي انًثاشز ، ٔذُشٍػ انخهٕي تظٓارج انجٓاس انرُفسً أ انرُاسهً. ٔقذ شثد أٌعًا أٌ انرٕاجذ داخم انخلاٌا ، ٔ

، ٔانرً ذسثة ذطٕر افاخ الأَسجح انُاجًح ػٍ انسٍرٕكٍُاخ  (TLRs) يساراخ الاحذاز الانرٓاتٍح يٍ خلال انًسرقثلاخ

الانرٓاتٍح ، ٔذُشٍػ الاَفلاسٕو ، انذي ٌسثة انرٓاب انقُٕاخ انرُفسٍح انؼهٍا ، حٍس كهٓا ذهؼة أدٔارًا حاسًح فً انرسثة فً 

ٕر َٔشؤ انًزض. ذسؼى ْذِ انًزاجؼح إنى ذقذٌى ذقٍٍى شايم نهرطٕراخ الأخٍزج فً فًُٓا لإيزاظٍح انًفطٕراخ يغ فٓى ذط

 .آنٍاخ ظزأذٓا

زيجيٕخ انخلاٌا انًث ,: انًفطٕراخ، انؼًهٍح انخًجٍحالمفتاحية الكلمات


