On lpha -Replete Semi–Groups on Semi–Topological Groups

ALI ABDUL- M.S.AHMAD

Department of Mathematics, College of Education, University Of Tikrit, Tikrit, Iraq

Abstract:

The aim of this paper is to introduce α -replete semigroup, deals in some type of topological groups investigation some properties their images under homomorphism using the work of W. Gottschalk(1955)[5],Coven(1969)[4],Al-Kutaibi (1996)[1],Al-Kutaibi (1997)[2].

Introduction:

Let X be topological space and A be any subset of X, let A° , \overline{A} and A° denote the interior set, closure and complement of A respectively. A is called α - open set (α - open) in X if and only if $A \subset A^{\circ - \circ}$ [6], the complement of an α -set is called α -closed set.

Definition:-

Let X be topology space and $A \subset X$ then A called α -compact (αC) if and only if for every α -open cover for A has finite subcover.

Remark:-

Through out this paper we mean by AL(G) to be the set of all topological ,semi-topological ,feebly topological , irresolute topological , feebly irresolute topological group $[\ 1\]$.

Definition:-

Let A be a subset of $G \in \operatorname{AL}(G)$, then A called α -replete (αR) if and only if for every α -compact (αC) K subset of G there exist $g_1,g_2\in G$ such that $g_1Kg_2\subset A$.

Remark:-

1- A semigroup $A \subset G \in AL(G)$ is said to be (αR) if for every (αC) K subset of G there exists $g \in G$ such that $gK \subset A$ or $Kg \subset A$ [2].

2- If $G \in AL(G)$ then G is (αR) semigroup in G.

Proposition:-

Let A be αR subset of $G \in AL(G)$ then gA and Ag are αR subset of G for every $g \in G$.

Proof :- Let $g \in G$, since A is αR subset of G for every αC subset K of G there exists $g_1,g_2 \in G$ such that $g_1Kg_2 \subset A$ then $g.g_1Kg_2 \subset gA$.

Let $m=g.g_1$, $m\in G$ hence $mKg_2\subset gA$ and so gA is αR in G .

by the same way we prove Ag is αR in G.

Corollary:-

If A is αR subset of $G \in AL(G)$ then every bilateral translate [3] of A (g_1Ag_2) is αR subset of $G \lor g_1,g_2 \in G$.

Proposition:-

If A and B are semi-group of $G \in AL(G)$ such that $A \subset B$ and A is αR then B is αR .

Proof: since A is αR semigroup, for every αC subset K of G there exist $g \in G$ such that $gK \subset A$ since $A \subset B$, $gK \subset B$ then B is αR .

Corollary:-

If A and B are αR semigroup of $G \in AL(G)$ then $A \cup B$ is αR semigroup of G.

Remark:-

If A,B are αR subset of $G \in AL(G)$ such that $A \cap B \neq \phi$ then $A \cap B$ is not αR subset of G in general the following example shows that .

Example:-

Let G = R and $(-\infty,0]$, $[0,\infty)$ are αR subset of G but $(-\infty,0] \cap [0,\infty) = \{0\}$ and $\{0\}$ is not αR in G.

Proposition:-

If A,B are αR semigroup of $G\in AL(G)$ then $A\times B$ is αR semigroup of $G\times G$ with the direct product .

Proof :- since A,B are semigroup of G then $A\times B$ is semigroup of $G\times G$ since A and B are αR in G. for every K_1 , K_2 αC subset of G there exist $g_1,g_2\in G$ such that $g_1K_1\subset A$ and $g_2K_2\subset B$. Let K be αC subset of $G\times G$ such that $K\subset K_1\times K_2$ then

$$(g_1 \cdot g_2) \cdot K \subset (g_1 \cdot g_2) K_1 \times K_2$$

= $g_1 K_1 \times g_2 K_2$
 $\subset A \times B$

and $(g_1, g_2) \in G \times G$ thus $A \times B$ is αR subset of $G \times G$.

Proposition:-

If G and H are irresolute (feebly irresolute) topological group and $f:G\to H$ is an onto irresolute (feebly irresolute) homomorphism [1] and A is αR semigroup of H then $f^{-1}(A)$ is αR semigroup of G.

Proof :- since A is semigroup in H, $f^{-1}(A)$ is semigroup in G [5] let K be αC subset of G, f(K) is αC subset of H, since A is αR in H there exist $h \in H$ such that $hf(K) \subset A$, since f is onto there exist $g \in G$ such that f(g) = h, then $f(g)f(K) \subset A$ and since f is homomorphism $f(gK) \subset A$ thus $gK \subset f^{-1}(A)$ and hence $f^{-1}(A)$ is αR in G.

References:

1. Al-kutaibi , S.H. , On some type of topological group , Jurnal of the college of education , Al-Mustansiriyah University , No 9 , 1996 .

- 2. Al-kutaibi , S.H. , on semi-syndetic and feebly syndetic subsets, to a appear in the jurnal of the college of education Tikrit University , 1997 .
- 3. Al-Sukaini, M.S., Admissible sets in topological dynamics, M.Sc, Al-Mustansiriyah University, (1997).
- 4. Ethan , M.C. , P. Recursion and transformation groups having an equicontinuous replete semi-group , Mathematical system theory , Vol.3 No 2 (1969) .
- 5. Gohschalk , W.H. , Topological dynamics , American Mathematical Society , Collequim Publication : Vol.36 , Americal Mathematical society providence (1955) .
- 6. Mashhour , A.S. , Hasanein , I.A. , and Deeb , S.N., α -continuous and α -open mappings , 41 (3-4) ,1983, 213-218 .

في شبه الزمرة lpha - المفعمة في الزمرة شبه تبولوجية

علي عبد المجيد شهاب احمد

قسم الرياضيات، كلية التربية، جامعة تكريت، تكريت، جمهورية العراق

الملخص:

(١٩٥٥)[5] ، وكـوفن (١٩٦٩)[4] ، والكتبي (١٩٩٦)[1] ، والكتبي (١٩٩٧)[1] .

يهدف البحث إلى تقديم تعريف شبه الزمرة α – المفعمة ودراستها في بعض أنواع الزمر التبولوجية ، واستقصاء بعض العمليات عليها وصورها تحت تأثير الهوموموروزم ، مستعملين بعض المفاهيم التي قدمها كوستجوك