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Abstract: 
In this paper an introduction to classical Lie point 

symmetry method is presented, review for of the role of 

this symmetries in solving partial differential equations . 

and then showing some recent results for the application 

of classical Lie point symmetry method to some 

nonlinear partial differential equations and determined 

the solvable Lie group generators of the point 

symmetries .  
Introduction : 
Sophus Lie pioneered the modern approach for studying 

and finding special solutions of systems of nonlinear 

partial differential equations (PDEs) at the end of the 

nineteenth century in1929. There’s still not general 

theory for finding analytical solutions to a nonlinear 

PDEs such in the case of linear ones, the application of 

group of transformations to study nonlinear PDEs has to 

be one of the powerful methods that answer this difficult 

problem this method have been developed in the past few 

years by Ovsyannikov 1982, Ibragimov(1994 -1996) and 

P.Olver 1986 , and others further remarks on the 

historical development of this subject and its applications 

to nonlinear models occurring in different research can 

be found for example in (Ames 1965),Bluman and COLE 

1969), Clarkson and Kruskal 1989), 

(Clarkson,1995),(Hydon 2000), (Stephani 1989). 

The theory of continues group  of transformations 

created by Lie become one of the most important tools 

for geometric and algebraic study of general nonlinear 

PDEs, and solve this PDEs by using their Lie group and 

continoues symmetry transformations and their 

invariance, and also the Symmetry analysis plays an 

important turn in the theory of differential equation. The 

original symmetry method for reduction of the order of 

ordinary differential equations (ODE) and reduction of 

the number of independent variable for both linear and 

nonlinear ( PDE.) probably the most useful point 

transformation of PDEs are those which form 

acontinouse Lie point symmetry group( the classical Lie 

point symmetry method(CLS)) the method for 

determining the symmetry group of differential equation 

is straightforward and described in several books as 

in[1,2,3,5,6,7,8,9,10,13,16,17] 

Although Lie point symmetries represent a very powerful 

tool, they can yield very lengthy calculations .in fact, 

interest in them and their generalizations has increased 

during the last twenty years because of the availability of 

symbolic computation packages. 

In order to apply the algorithm of (CLS), the use of 

symbolic manipulation programs has become imperative, 

such that a verity of packages have been developed for 

many computer algebra system a survey of these 

programs can be found in Herman 1994. For the 

computer system APLE, the programs ESOLV 

(CarminatiandVu2000), SYMMETRY (Hickman, 2001) 

and RIF (Reidand Wittkopf, 2001) contain routines for 

generating classical symmetries. This method is very 

successfully used in several branches of physics such as 

quantum filed theory, classical mechanics and physical 

chemistry.. 

In this paper we will provide an introduction to 

symmetry analysis, a review of the role of symmetries in 

solving partial differential equations is presented. This 

paper began with some definitions and theorems selected 

in order. 

Lie Point Symmetry Transformations: 

Lie Group of Transformations 

In this section we present the basics behind acontinouse 

transformations by only considering one parameter and n 

independent variable.[2,3,6,10,13,16]   

If we have x =(x1 ,x2 ,…..,xn ) in D  R ⁿ .the set of 

transformations 

xˆ = X(x,ε)           (1) 

Define for each x in D and parameter ε  in S  R, with the 

law of  composition of parameters ф(ε,δ) in S,forms A 

one– parameter Lie group of transformations G must be 

satisfy the following : 

1- for each ε in S the transformations are one to one and 

onto D. 

2- S with the law of composition ф forms a group G  . 

3- for each x in D, xˆ = x when ε = ε 0 corresponds to the 

identity of G  

4- if  xˆ = X(x,ε) and xˆ = X(x,δ) then xˆ = X(x, ф (ε, δ)). 

5- ε is a continues parameter, S is an interval in R, and ε 

= 0 corresponds to the identity element. 

6-  X  is infinity differentiable with respect to x in D and 

an analytical of ε in S  . 

7- ф (ε, δ) is an analytical function. 

We expand a one- parameter Lie group of transformation 

around the identity ε=0 

 
and let       

 
the transformation           xˆ = x + ε ξ(x)     (3) 

is called the infinitesimal transformation of the Lie group 

of transformations and the componts ξi(x) are called 

infinitesimals. The operator 

 
Is called the infinitesimal generator of the one-parameter 

Lie group of transformationsand called Lie group 

generator. 

The commentator, of two infinitesimal generator X1 and 

X2 is define as 

 [X1, X2] = X1X2- X2 X1 

and the commentator of any two infinitesimal generator 

of an γ-parameter Lie group of transformations is also a 



Lie group generator for one of its one – parameter 

subgroup. 

Where the Lie algebra ℓ is a vector space over some field 

ƒ with additional law of combination of elements in ℓ 

(the commentator) satisfying the properties .let Xα ,X 

β,Xγ ε ℓ 
1) [Xα ,X β ] = - [X β, Xα ] 

2) [Xα ,[X β,Xγ]]+ [X β,[Xγ, Xα ]]+ [Xγ,[Xα ,X β]] = 0 

With most importantly closure with respect to 

commutation. 

For example if we have the group of Rigid motion in 

R²[15] 

x* = x cosε1 – y sinε2 +ε3 

y* = x sinε1 + ysinε2 + ε3 

the corresponding infinitsimal generator are  

X1 = -yəx  + x əy ,       X2= əx ,     X3= əy 

The commutator table of its Lie algebra follows: 

X1     X2    X3     

X1     0     -X3    X2 

X2    X3    0      0     

X3    -X2   0      0   

Lie Group of symmetry Transformations 
The present section will present comprehensive method 

for differential equation via the use of symmetry groups. 

Symmetry group of differential equations transforms 

solutions of the system to other solutions.before 

attempting to determine the symmetry groups of systems 

of differential equations. 

Consider the system of lines : x = cy + d and the one-

parameter group of transformation, 

Gc:    (x,y)   (x+cd, y+d);  d € R ,c is constant. the lines 

are clearly Gc invariant  ,and so Gc is asymmetry group 

of the system of lines.  

The above example looks at symmetries of the solution 

of system of equatios.we can also examine the invariance 

of function, we said the surface F(x) = 0 is an invariant 

surface for a one- parameter Lie group of transformation 

if and only if  

F(xˆ) = 0   when      F(x) = 0     (5)  

For example the function f(x,y) = x – cy is an invariant 

function since  

f(x+cd,y+d) = f(x,y)     ,    d € R 

And we said the surface F(x) = 0 is an invariant surface 

for a one- parameter Lie group of transformation if and 

only if  

X F(x) = 0 when     F(x) = 0     (6) 

Where X is the Lie group generator. 

For the translation group Gc the infinitesimal generator is 

X= c əx+ əy. we found that the function f(x,y) = x – cy is 

an invariant function .the same conclusion can easily 

derived from the condition of infinitesimal invariance 

since : 

Xf = c əx(x-cy)+ əy(x-cy) = c-c = 0 

A one – parameter Lie group of transformation, which 

satisfies the invariance condition, given by(6) , is called a 

one – parameter Lie group of symmetry transformations. 

These symmetry transformation can be used successfully 

when solving PDEs and the methods are discussed in [ 

2,3]. 

Classical Lie Symmetries of PDEs: 

Symmetry analysis plays an impotent role in the theory 

of differential equations.the original symmetry method 

for reduction of the order of  ODEs and reduction of the 

number of independ and dependent variables for both 

linear and nonlinear PDEs is the classical Lie point 

symmetry method. 

The final topic to be addressed before studying the 

symmetries of differential equations is the process of 

prolongation. The prolongation is vector function from 

the space of the independent variable to the space U
n 

 , 

whose entries represent the values of f and all its 

derivatives up to order n. consider a system with two 

independent and one dependent variables then the space 

contains all partial derivatives of u 

(u,ux,uy,uxy,uxx,uyy). 

As an example ,the Laplace `s equation in the plane :uxx 

+ uyy = 0 the equation with coordinates 

(x,y,u,ux,uy,uxx,uxy,uyy). 

Now let we consider the one- parameter Lie group of 

transformation: 

x *  =xi+ ε ξi(x , u )+ Ο(ε ²)     (7) 

u * = u + ε η(x,u)+ Ο(ε ²) 

For i =1,….n acting on (x,u) – space  

An operator  

 
Is asymmetry of a PDE    F(x,u,ui,….) = 0 of order p if  

  
Where X

[p]
  is called the p th prolongation(extended) of 

the operator X . 

Especial case for one depended variable and two 

independed variable 

xi * =xi+ ε ξ i(x1,x2 , u )+ Ο(ε ²) 

u * = u + ε η(x1,x2 , u )+ Ο(ε ²) 

 

 
                                                                      [2] 

the extended  ηi , ηij   (i,j=1,2) are in [4,13 ] then  

X
[2]

   has the form: 

 

 
the condition of invariance (the symmetry condition)  

 
yields alinear system of PDEs in the functions { ξ1 , ξ 2  

,…, η } which is called the system of determining 

equations  which is solved to obtained an infinitesimals 

Lie group of symmetries. 

To find the similarity reduction and particular solutions 

to the PDE we solve the charistristic equation  

 



and by several integrals we obtain the similarity solution 

which reduce the PDE to which is called the principle 

ODE. 

Examples: 

Classical Lie Group Symmetry of Kadomtsev – 

Petviashili(KP) equation. 

The eq 

 
Which is one the equations frequently examined in 

connection with solution procedures for non-linear 

models.this equation arises in several physical 

applications ranging from surface waves of rectangular 

canals to applications in plasma physics. 

The point symmetries of the (KP)eq. Were examined in 

[18],   

In expanded form Kp eq. In (10) has the operator  

 
and we can written the prolongation(extended) of the 

operator X of fourth prolongation , 

 
the symmetry condition of eq (13) yields alinear system 

of PDEs in the functions{ξ1,ξ 2  , ξ3 , η } which is called 

the system of determining equations  whose solution is 

obtained in terms of arbitrary functions f1(t),f2(t),f3(t),as: 

 
hence we obtained an infinitesimal Lie group of  

symmetries. 

To find similarity reduction and particular solutions to 

the KP eq  we drive subgroup ,let 

f1 (t)= k5 t +k6 t + k7, 

f2(t)=k3t +k4    

f3(t)=k1t+k2 

yields aseven Lie algebra with basis 

X ={2T,0,0,1}  ,X ={1,0,0,0} ,  X={-Y,6T,0,0} , 

X={0,1,0,0}   , X={6tx-y ,12ty,9t ,012tu+3x}  , 

 X= {x,2y,3t,-2u}   ,    X={0,0,1,0} 

Classical Lie Group Symmetry of the CMKdV-II 

Equation 

The complex modified Korteweg-de Vries-II (CMKdV-

II)  [18] 

w t – 6 | w |² w x  +  w xxx   = 0            (15) 

we first let  w= u+iv and separate real and imaginary 

partsin (15) and obtain the system 

u t – 6 (u² +v²)u x + u xxx   = 0 

 v t – 6 (u² +v²)v x + v xxx   = 0             (16) 

we consider the one- parameter Lie group transformation 

of (x,t,u,v) given by 

x* = x+ε ξ1(x,t,u) + Ο(ε ²), 

t* = t +ε ξ2(x,t,u) + Ο(ε ²), 

u* = u+ε η1 (x,t,u)  + Ο(ε ²), 

v* = v +εη2 (x,t,u) + Ο(ε ²) 

the system in eq.(16)admits Lie group with generators 

 X1 = əx      ,  X2= ət     , X3= v ə-u əv  , X4 = x əx+3t ət  

- uəu - v əv  

The nonvanishing commutators are  [X1,X4]=X1     

,[X2,X4]=3X 

Hence acommutator table can be formed as follows: 

X1     X2    X3    X4 

X1      0      0      0       X1 

X2       0      0     0     3X2 

X3      0      0     0       0 

X4   -X1   -3X2  0      0 

Classical Lie Group Symmetry of Nonlinear 

Model of the Heat equation  

The inhomogeneous nonlinear heat equation in the form 

[12] 

 
1- when f(x)=x

p
 and g(x) = x

m
 , then eq.(17) become  

 
Classical symmetries determines transformation, the 

corresponding generator of the it is written as         

 
and the condition of invariance is 

 
is the second prolongation of the vector field X  and   η

x
 , 

η
t
 , η

xx
 are expressed in terms of ξ , τ , η and their 

derivatives.  From eq.(19) and from the coefficient of the 

various monomials of u. we get the following set of 

determining equations 

ξ = ξ( (x) ,τ = τ (t )  ,η= η ( u ) 

 m ξ -mx ξx +q x² ξxx =0                (20) 

 nη –nuηu – qu²ηuu=0 

 
and by solving eqs(20) we get : 

ξ( (x)= [2c2 +c1(1-n-q)]x/r  , τ (t )= 2c2t +c3 ,  η ( u )=-

c1u                 

where    c1 ,c2,c3 are arbitrary constants and  r=p-m+q+1  

. then we have vector field 

 
2-when f(x)=a² = constant and g(x) =1 , then eq.(17) 

become  

 
the equations was in (21)has the solution in eqs.(20) 

itself at p=m=0 ,i.e., 

ξ( (x)= [2c2 +c1(1-n-q)]x/(q+1) , τ (t )= 2c2t +c3 , η ( u 

)=-c1u 

and the vector field  



 
Classical Lie Group Symmetry ofa one 

dimensional Porous Medium Equation 

We consider the one dimensional porous medium 

equation [11] 

 
Lie Point Symmetry of the eq.(22) with the exception of 

the case where n=-1 , has been classified in [12]where 

the symmetry generator is 

 
The symmetry of eq.(22) summarized in the following 

table:  

    n    μ    (ξ , τ , η ) 

 X1 

X2 

X3 

 

 

 

arbitrary 

(0,1,0) 

(x,2t,0) 

(0,nt,-u) 

X 4  

 -2,-1,0 

   3n+4 

= ―― 

    n+2 

 -n/(n+2)    -2(n+1)/(n+2) 

((n+2)x     , 0 ,-2 x    u) 

X5 =-1 =1 (xlnx,0,2(lnx-1)u) 

The Lie Group Symmetry Algebra for Some 

Nonlinear PDEs 

1- the Boussinesq equation in [17] 

 utt  + u uxx   +  (ux) ² + uxxxx  = 0 

 the Lie algebra are  

X1 = x əx +2t ət –2u əu ,     X2= əx  ,    X3= ət 

2- the Burgers equation in [7]  

ut  + u ux  = uxx = 0  

the Lie algebra are 

 X1 = ət ,  X2= əx , X3= t əx+ əu  , X4 = 2t ət + x əx - 

uəu , X5= t² ət+ x əx -  u əu 

3- Kolmogorov-petrovskii-piskunov equation in 

[17] 

ut = uxx + u (1-u)(u-a)  ,       -1<  a <  1 

the Lie point symmetries                     

X1  = ət     , X2= əx 

4- Nonlinear Wave equation in [14] 

utt = uuxx 

the Lie point symmetries 

X1  = ət   , X2= əx,   X3  =t ət+ x əx  ,  X4 = t ət  -2uəu 

5-Zabolotskaya-Khokhlov equation in [15]  

uxt –(uux)x-uyy = 0 

the Lie point symmetries 

X1  = ət  , X2= əx,   X3  = əy  ,  X4 =y əx+2təy  , X5  =t 

ət +x əx +y əy  

 X6 =4t ət+2x əx+ 3yəy -2uəu   ,   X7  =t əx-əu 
 

Discussion: 
Clearly the method of symmetry analysis of differential 

equations allows one to rigorously constrain the solution 

set of a particular problem, thereby simplifying it and 

facilitating the search for solution. Using the method 

developed by Lie, the equations are seemingly forced to 

reveal their symmetries. Obviously much more can be 

done using symmetry analysis than was demonstrated in 

the paper, however hopefully this glimpse will whet the 

reader1s appetite for more. 
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 تطبيق تناظر زمرة لي على المعادلات التفاضلية الجزئية اللاخطية
 مها فالح جاسم

 قسم أنظمة الحاسبات، المعهد التقني، كركوك، جمهورية العراق
 

 الملخص:
في هذا البحث مقدمه عن طريقة تماثل لي الاعتيادية قدمت ومراجعة لدور 
تماثل لي الاعتيادية في حل المعادلات التفاضلية الجزئية.وبعد ذلك عرضنا 

بَعْض النَتائِجِ الأخيرةِ لتطبيقِ طريقة تماثل لي الاعتيادية لبعض المعادلات 
التفاضلية الجزئية اللاخطية.

 
 


