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Abstract 

In this paper, the viscoelastic and viscoplastic behavior of polyethylene (PE) 

pipe is studied and analyzed using Space-time finite element method (FEM). The 

(FEM) is achieved for Maxwell model and then the program is developed in three 

dimensions (two-dimension in space and one dimension in time) and applied to (PE) 

pipe under pressure loading. The time dependent partial differential equations 

describing the viscoelastic deformation of (PE) pipe under pressure loading for 

Maxwell element is solved using variational Galerkin continuous method in an 

integral process using time slabs. As a result of this study, the FEM in viscoelastic 

Maxwell model used to predict the relaxation modulus give accurate result compared 

to analytical which used Prony series. The stress increases to large values at the first 

stage of applied pressure loading and then decrease with increasing time. The 

viscoplastic surface density of micro crack is increasing function with increasing 

plastic strain. 
 

 البولي اثيلين ادةلماللزج - اللزج و اللدن -ليل التصرف المرنفي هذا البحث، تم دراسة وتح
استخدمت طريقة العناصر . الزمن- باستخدام طريقة العناصر المحددة الفضاء صناعة ألأنابيبمة في المستخد

تطوير البرنامج وتطبيقه لنموذج ماكسويل في ) بعدين في الفضاء وبعد واحد للزمن( ثية الأبعاد المحددة الثلا
مدة على الزمن التي تصف المعادلات التفاضلية المعت .على أنابيب البولي اثيلين وتحت شروط أحمال الضغط

اللزج لأنابيب البولي اثيلين تحت تأثير أحمال الضغط لعناصر ماكسويل المتوازية تم حلها -التشوه المرن
 طريقة العناصر لقد وجد من النتائج أن. باستخدام طريقة كلاركن المستمرة بعمليات تكامل لشرائح الزمن

 بالطرق ةلحساب معامل الاسترخاء تعطي نتائج جيدة مقارن تاللزج والتي استخدم- للتصرف المرنالمحددة
الإجهاد يزداد إلى قيمة عالية خلال المرحلة الأولى من تسليط الضغط ثم .  باستخدام متسلسلة برونيةالتحليلي

الكثافة السطحية اللزجة اللدنة للشقوة السطحية هي دالة تزايدية مع زيادة الانفعال . يتناقص مع زيادة الزمن
  . للدنا
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Introduction 
      Polyethylene (PE) is a diverse polymer material used in many product and 
applications. This diversity is due to the material’s ability to be produced with a wide 
range of properties and characteristics such as: chemical and corrosion resistance, 
excellent hydraulic properties, lightweight, flexible and durable …etc [1].  
     Polyethylene is commonly used for the fabrications of gas or water pipes, in 
pressurized and non-pressurized applications. It has been proven effective for 
underwater, underground, above-ground, surface, as well as floating applications.  
     Failure mechanism of (PE) pipe can be occurs under pressure loading. The pressure 
loading increases deformation in (PE) pipe material and over time can often cause 
problems since it decrease the ability to withstand fracture (the creep rupture, slow or 
rapid crack propagation and stresses relaxation). 
     The determination of viscoelastic and viscoplastic behaviors of PE-pipe is 
complicated work. Oyen M. [2] used Boltzman hereditary integrals to generate 
displacement–time solution for loading at constant rate and creep following ramp 
loading in spherical and conical pyramidal viscoelastic material. Kolarik J. [3] studies 
on creep behavior of high density polyethylene cycloolefin copolymer blends and 
develop a predictive format appropriate for the creep of binary blends with co-
continuous components showing non-linear creep. Orlik J. [4] develops a numerical 
procedure to study the problems of hereditary viscoelasticity using two-dimension 
space-time finite element method. Lemaitre [5] develops a good approach for 
viscoplastic material analysis.  
       The purpose of this paper is to develop the space-time finite element method 
(FEM) program in three dimensions and applied to (PE) pipe under pressure loading. It 
is indicated that the result obtained from FEM are a good agreement with the result 
obtained from analytical method.   
Viscoelasticity of Polyethylene Pipe  
     Polyethylene pipe is viscoelastic construction material. Due to its molecular nature, 
its exhibits the characteristic of viscous flow and elastic deformation. Viscoelastic of 
polyethylene make it display time-dependent material properties and sensitive to the 
rates of deformation and loading. The time dependent response of PE pipe to pressure 
loading gives PE pipe unique resilience and resistance to sudden [6]. 
        The viscoelasticity nature of polyethylene results in two unique engineering 
characteristics that employed in the design of HDPE water or gas piping system. These 
are creep and stress relaxation.   
      Creep is the time dependent viscous flow component of deformation. It refers to the 
response of polyethylene over time to a constant static load. Stress relaxation, when 
polyethylene pipe is subjected to a constant strain (deformation of specific degree) that 
is maintained over time, the load or stress generated by the deformation slowly 
decrease over time. The Stress relaxation reduced modulus of elasticity of PE pipe 
since it increase the strain [3]. 
Numerical Analysis By Using Generalized Maxwell Model 
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     The behavior of viscous material is usually assumed to be restricted to devatoric 
strains and stresses (the volumetric components are purely elastic). The generalized 
visco-elastic Maxwell model shown in Fig.1. This model consists of an arbitrary 
number of Maxwell elements (spring and dashpot arranged in parallel). The stress in 
the spring is proportional to the strain, while the stress in the dashpot is proportional to 
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the strain rate. The material parameters are shear moduli p , and viscosity parameter 

, where p =  1, 2, … M as shown in Fig.1, where the spring and dashpot symbols 

are used for deviatoric quantities. [6]. 
p

 
 
 
     
 
 
 
 
 
 
 
  
    
 
 In the three dimensions, space-time FEM formulations for viscoelastic PE pipe can be 
summarizing as follows: 
      The total deviatoric stresses and strain are [7]: 

           … (1)  

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e2SS
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Where, 
P = 1, 2, 3…    , M 
   The Deviatoric strain  of the P-the serial spring can be considered as an internal 

variable of the constitutive equations. 
pe

       Eq.2 can be written in the following form: 
0eee ppp                                                                                                       … (3) 

where, 

p

p
p 


  

      The total tensors of volumetric strain ( ): 
0ppp                                                                                                      … (4) 

 The displacement is defined as: 
0uuu ppp                                                                                                    … (5) 

 The strains are defined as: 

u5                                                                                                                     … (6) 

p
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u                                                                                                               …  (7) 
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Fig.1 Maxwell  Model 
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     The total stress ( ) is the sum of viscoelastic deviatoric (eq.1) and elastic mean 
( ) parts and given as the following:  


Io

IS o  
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                                                                                                       … (8) 

     For plain strain state, the tensors E and Ep can be write in the following matrix: 
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The following boundary conditions are applied: 
)t,r(uu     For )t(x u ,   T,0t

)t,r(tn.   For )t(x u ,   T,0t

u U   ,    u ∩  
0)0,r(u i    ,   0)0,r( i 

.Pr)0,r( i   ,   and  Tt0 
     The system of differential equations can be transformed into the following one with 
respect to the variables (u) and (up) as followers: 
                                                                                                                       … (9) 0LZ 
Where, 

 uu...u...uuz mp21
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    The deviatoric components  found from integrate the differential eq.3 with the 

initial condition given: 
pe

 

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d
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e),r(e)t,r(pe p   … (10) 

And obtained the following integral differential form of constitutive eq.3 for 
viscoelastic materials: 
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The displacement is given by: 


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t

0

t   

 Non - Symmetric Continuous Galerkin Method in the three Dimensional Case      
     The Galerkin method allows to transform differential to the simplest form and to get 
approximated solutions. In three-dimension case by multiplying Eq.9 with a test 
function    and integrating over the space-time domain [8]: 

 
0dtLZd

T,0




                                                                                          … (13) 

Where, z  (0, T) and   = 0 on  u . 

Then, for the choice of   : 
                                                                                                          … (14) 21 *
Where, 

1  = 
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… (12) 
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  From eq.9, eq.13 and eq.15 it follows: 
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Where, 
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    For solving Eq.15 by finite element method, the standard finite element 
approximation for displacement used as:   
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And the general systems of equations can be written in the form: 
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   The Eq.16 is solving use iterative solver within parallel calculation to determine the 
displacement. After calculation displacement we use eq.6 and eq.8 to obtain the strain 
and stresses. 
     The appendix A contains analytical method to calculating strains and stresses in 
HDPE pipe, which is depending on experimental results.  
 
Viscoplastic of the Polyethylene Pipe 
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    If the viscoplastic is localize in PE- pipe then it can be extended originally plasticity 
constitutive relation for time-independent plasticity to viscoplastic. It gives the von 
mises equivalent stress which is sufficient to estimate the damage if the stresses is 
known.    The damage law in viscoplastic material [5] used scalar isotropic damage 
variable (D) to define the surface of micro defects in any plane of representative 
volume element and this gave as follows: 
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      For plain strain conditions,  and  the elastic strain matrix, 

plastic strain matrix and stress matrix are: 
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    For comparison a result, we us program developed by Lemaitre [5] which is called 
damage 2000. 
 
Pipe Specimen Properties and FEM Meshes 
      Most polyethylene pipe now made from high density polyethylene material (HDPE) 
since the smooth inside surface maintains its exceptional flow characteristics [9]. The 
(HDPE) pipe specimen and meshes are shown in Fig.2 and Fig.3 with the following 
dimensions:  

//
i 8.10D     (27.43 cm) 

//
o 12D       (30.48 cm) 

//6.0t          (1.525 cm) 
Pr.  =  5 MPa. 
     The elastic and voscoelastic properties:  
Elastic spring modulus  = 108 Pa. 

Viscosity modulus  s..Pa1010
Bulk modulus =  1.8 * 109  Pa. 
Density  =  955 Kg/ m3. 
Length of pipe  =  236.2//  (600 cm).  
X = 116 MPa. 
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Fig.2 Polyethylene pipe specimen 
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Fig.3 Space time finite element 

meshes for polyethylene pipe.  

Δ 

    
 
 
 
 
 
   
Due to symmetry only half pipe will be meshed using 8-node hexahedral linear 
element. The element shape is shown in Fig.4. The total numbers of element used for 

analysis are 300 elements. The boundary conditions for the time interval  
where n = 0, 1, 2 …8. Appendix B contains shape function for this element [11]. 

n10t0 

 

X

Y 
 
 
 
 
 
 
 t 
 
 Fig.4 Eight- node hexahedral element 
Results and Discussion 
     Using the presented formulation based on continuous Galerkin method, the space-
time finite element method discretization can be used to calculate displacements, 
stresses and strains. The stresses are divided by constant rate of applied strain to 
convert it to the relaxation modulus. Fig.5 shown logarithmic relaxation modulus vs. 
logarithmic time results from FEM and analytical method. As indicated there is very 
good agreement between them, also it can be seen the relaxation modulus decrease as 
time increase and the relation of decrease relaxation modulus is not linearly. 
     Fig.6 plot stresses vs. time dependent, as indicated there is a very good agreement 
between the two methods used for analysis. It can be seen that the stresses reach 
maximum values after pressure loading is applied and then decrease with increasing 
time. 
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     Fig.7 radial stresses were plotted against radial strain for PE pipe. It is apparent from 
figure there are very good agreement between FEM results and analytical result. It can 
be seen that the stresses dependence on strain as well as time and there is larger stresses 
during primary stage of the loading and then the stresses increase with small values 
with increasing strain. 
       A numerical solution for the displacements in the x-axis and y-axis is shown in 
Fig.8. For an evaluation of the solution accuracy of space-time finite element, 
numerical values of displacements is compared with the analytical. As indicated there 
is good closeness between results obtained from FEM and analytical method.  
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Fig.5 Relaxation modulus verses time for (PE) pipe. 
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 A viscoplastic structure calculation by   a finite element analysis gives the histories of 

the plastic strain . The damage evolution is obtained by simple time integration of 

the damage law this shown in Fig.9. As shown, the surface density of micro cracks (D ) 
is increasing function with increasing plastic strain rate. This, the damage of 

polyethylene pipe can be caused by exceeding the   critical strain state i.e. when  = 

0.1, ( ) reach maximum value and crack begin to initiate and propagation in 
polyethylene pipe thickness. 
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Fig.6 Stresses verses time for polyethylene pipe. 
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 Fig.9 Surface density of micro-cracks against plastic 

strain for vicoplastic case. 

 
 
Conclusions 
        Based on the preceding studies, the following conclusions are reaches: 
1- The finite element program included pressure loading is developed and applied for 
viscoelastic polyethylene pipe. 
2- The FEM program gives accurate results for relaxation modulus, stresses strain and 
displacement compared to analytical results. 
3- The results indicated that the relaxation is not linear with the applied stresses and the 
stresses suddenly increase to maximum values at the primary stage of loading. 
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4- For viscoplastic case, the relation between surface density of micro-cracks (D) and 
plastic strain rate is non-linear interaction curve. 
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Appendix 
A- Analytical Methods for calculate Strain and Stresses 
      The time dependent strain history can be represented by [12]: 

2oo1o
H)tt(2tH    … (18) 

Where, 
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o2

  : Heavside step function. 

    The stresses depend on time only is giving by: 


ooo
)(hE)t(  

     
oo

t
10

1i
i

)(h]e1[E i 





                                                                                    … (19) 

  Where, 

o
o a1

1
)(h


    

1429.50a   
    The stresses dependent on time and  
strain can be given by: 


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                                                                                   … (20)  

Where, 
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2i10i
 ,   i  =  1,  2, 3,  …  10. 

     The relaxation modulus is define by Prony series [11]: 








10

1i

t

io
)e1(EE)t(E

i
                                                                                  ... (21)  

where, 
     The Prony constants can be finding from stress relaxation test. This gives in Ref. 
[13] in detail. For PE100 pipe are gives as followers: 

571141E     .Psi

   395742E  .Psi

410123E     .Psi

257004E    .Psi

245965E    .Psi

85806E     .Psi
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36208E    .Psi

41919E       .Psi

793810E    .Psi

269685oE  .Psi  

B- Shape Function for 8-node Element  
     The shape function for 8–node hexahedral element in the intrinsic coordinates 
(  ,, ) are given by [11]: 

)1)(1)(1(),,(N1   

)1)(1(),,(N2   

)1(),,(N3   

)1()1(),,(N4   

 )1)(1(),,(N5  

 )1(),,(N6  

 ),,(N7  

 )1(),,(N8  

Where, 

exL

x
  

eyL

y
  

ezL

t
  

Nomenclature 

p : Shear modulus. 

p : Viscous parameter. 

M: Number of the simple Maxwell element.  
S: Total deviatoric stresses.  

oe  : Total deviatoric strain. 

pe : Deviatoric strain of the P-the serial spring. 

u : Total spring displacement. 

pu : Total serial spring displacement. 

K: Bulk modulus. 
E and Ep: Forth order tensor of the elastic module. 

.Pr : Pressure loading in MPa. 
r : Any radius of pipe (m). 

iN : Matrix shape function. 
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ixa  and : Vector of the nodal displacement in the x and y directions. iya
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ne : Number of element 

pc : Coefficients of scale parameter. 

e
.stafk  and : Stiffness matrix. e

.symk

B: Matrix contains the derivative of the element shape function.   

o : Rate of strain during loading. 

ot : Unloading time in (s). 

t  : Time of  loading in (s). 

oE  and : Instantaneous modulus of material and Prony constants. iE

D: Scalar isotropic damage. 
P : Accumulated plastic strain rate. 
Y: Strain energy density release rate. 
h: Crack closure parameter. 
S: Damage strength. 
n : Damage exponent. 

.eq : Von-misses equivalent stress. 

ijX : Back stress. 

R   and   :  Norton’s parameter. b

exL ,  and : Element length side in the X, Y and t directions. eyL ezL

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


