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ABSTRACT

Rayleigh and Rayleigh-Ritz represent the two approximate analytical methods
which can be used in this paper in order to study the characteristics of free transverse
vibrations of cantilever beam in the two cases. The first one is at tapered thickness and
constant width while the second case is at tapered width and. The free end of the
cantilever is sharp in both cases and is of different values of length. The study selects
the value of thickness at clamped end (hc) and change the values of width at this end

(wc) with thickness ratio which equals to ( %: 0.1 -5). The second case on the other

hand, can select the value of width (wc) at clamped end then change the thickness (hc)
at ratio ( %: 0.1 -5). Through out the results, it is shown that the cantilever beam at

tapered thickness has natural frequency lesser than that of tapered width of the same
length and at the same dimensions of clamped end, the natural frequency decrease with
increasing the length of cantilever beam also with decreased the value of tapered
thickness or tapered width according to this study. In case of different values of tapered
width for the same length of beam and the same value of thickness at clamped end the
cantilevers have the same value of frequency, also the cantilevers have constant

frequency at tapered thickness for different values of (\;]V—g ), while in the case of tapered

width the frequency increases with increasing the value (\:—z ) for the same (wc) and at

the same length of cantilever beam.

Key words: Transverse vibrations, cantilever beam, tapered thickness, Tapered
width.
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LIST OF SYMPOLS
A Arbitrary constant.
Ac  Areaof cross section of beam at clamped end (m?).
A(X) Areaof cross section of beam at section x (m?).
C Arbitrary constant.
Ci Arbitrary constant.
Cz Arbitrary constant.
E Modulus of elasticity (N/m?).
F(t) Harmonic force (N).
hc Thickness of beam at clamped end (cm).
h(x)  Thickness of beam at part of length (x) (cm).
L Length of beam (m).
Ic Second moment of area at clamped end (m®).
I(x)  Second moment of areaat part of length(x) (m®).
K Total stiffness of cantilever beam (N/m).
m Total mass of beam per unit length (Kg/m).
m(x) Mass of beam per part of length x (Kg/m).
T(t) Kinetic energy (J).
t Time (sec).
V(t) Stainenergy (J).
wc  width of beam at clamped end (cm).
w(x) Width of beam at part of length(x) (cm).
X Length of part of beam (m)
Y(X) Transverse displacement mode.
Y (x) Mode shape of order r.
Y'(x) First derivative of displacement mode.
p Density of material of beam (kg/m°).
®1 Natural frequency of beam at mode 1 (rad/sec).
or Natural frequency of beam at mode r (rad/sec).
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1. INTRODUCTION

Designs of engineering applications need to know the nature of vibration in structures
in order to avoid the failure in the work and insure the stability of structures. Cantilevers are
necessary in many engineering structures which used as resonator sensor have been already
reported in the literature. Wange, 1967 used analytical method to solution the differential
equation of motion in term of hyper geometric series, the beam in rectangular cross section for
any positive power variation of thickness. Timoshenko, 1974 provided the necessary
information for studied on geometry influences on free, forced, linear and/or nonlinear
vibration of such cantilever. Wright, 1982 presented study in an analytical solution for free
vibration in term of power series by Frobenius method for tapered width & constant thickness
was dedicated to beam of one end sharp. Frieman and Kosmatka, 1992 presented an exact
stiffness matrix of a nonuniform beam based on the flexibility—stiffness transformation
approach. They included shear deformation effects in bending stiffness matrix of tapered
members, so that it could be applied to Bernoulli—Euler and Timoshenko Beam. Pepplewell,
1996 proposed for finding the free vibration of non uniform beam having material or cross
sectional discontinuities, intermediate spring supports, or non classical end supports. Ismail,
2000 In this study, transverse vibrations of a beam made of two materials and with a variable
cross section were investigated. Dimensionless natural frequency values of the system were
found by the Rayleigh-Ritz approach. Moreover, the energy amounts of the system
accumulated per unit mass were calculated. The results were given in tables for comparison.
Maiti, 1999 studied beam of constant thickness with tapered width to find characteristics of
vibrations in power series by Frobennius method. Chan, 2003 his studies show that the
stiffness of a tapered member will be reduced significantly due to the axial compression and
shear deformation in certain cases where used Chebyshev polynomial approach to solve the
second-order differential equation with variable coefficients. To develop atheoretical approach
for second order inelastic analysis of steel frames of tapered members with slender web.
Caruntu 2005, used analytical method to study the characteristics of beam in orthogonal
polynomials, beam of parabolic thickness variation with particular boundary conditions.
Dumitru, 2007 This paper deas with transverse vibrations of nonuniform homogeneous
beams and plates. Classes of beams and axisymmetrical circular plates whose boundary value
problems of free transverse vibrations and free transverse axisymmetrical vibrations,
respectively, can be reduced to an eigenvalue singular problem (singularities occur at both
ends) of orthogonal polynomials, are reported. The geometry consists of parabolic thickness
variation, with respect to the axia coordinate for beams, and with respect to the radius for
plates. Dumirtu, 2009 In this work, the fourth differential equation of motion factories into a
pair of second order differential equations in term hypergeometric functions, and frequency
equation resulting from cantilever boundary conditions, are reported. The exact of natural
frequencies and exact mode shapes are found for sharp parabolic cantilevers by solving the
frequency equation.

This paper, the approximate methods can be used to study the characteristics of
transverse vibration of cantilever beam in tapered thickness in the first case and tapered
width in the second case at sharp free end which has different dimensions ratio for
clamped end in different values of length of cantilever beam.

2. THEORETICAL ANALYSIS

Derivation the equation of free transverse vibration of cantilever beam of linear tapered
thickness of length L, with the following properties at section x; m(x) is the mass per unit
length, A(x) is the cross-section area, 1(x) is the moment of inertia and h(x) is the thickness, as
inFig.(1-a).
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Fig.(1-a):Cantilever beam of tapered thickness Fig.(1-b): Cantilever beam of tapered width
Fig.(1): Tapered cantilever beam

he _ heo
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After simplified above relation yields:-
h(9=h @-) 2)

In tapered thickness, A(x) =Ac(1-x/L),where Ac is represented the area of cross section at
clamped end, therefore m(x)=m(1-x/L), where m is the mass per unit length and equal to p*Ac
and I(x) = Ic(1-x/L)3, where Ic = wcrhc®/ 12.

Now the procedure of Rayeigh-Ritz can be application to derive the natural frequency
for transverse motion of tapered thickness of cantilever beam. For the cantilever beam, guess
for Yr(x) afunction that equal zero at x=0 and at the free end, the deflection and slope must be
not equal zero. Let us use the two simple terms approximately.

Yr(x) =Clyl(x) + C2y2(x) [ Benoraya, 1998 ]. 3
X 2 X 3
Yr(x) =C1(Ij + CZ(I] (4)
The strain energy of a bending beam is given by
1k o2y )
V(t)_E(j) E1(X) (ax_zj dx (5)
And the kinetic energy is given by
1k FRY% 5
TO=3 i M) — |dx (6)

can be written V(t) and T(t) as a function shown bellow after using the product
solution, y(x,t) = Y (x) F(t)

L
V(t):%Fz(t)j El(x)(\(")2 dx (7)
0
1 =0of 2
W=7 (B)2] M v?)ox ®)
0

Substitute equation (4) or its derivatives in above equations (7& 8) and F(t) is harmonic, say
A cos ot, and simplified them can obtain:-
1,k 2
Vinax :EA2£ EI(x)(Y ) dx 9)
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1 L
T max=> AZI m(x) (Yz)dx (10)
0
when derivative the above two equations w.r.t. C1&C2 will obtain
oVmax 2
=Y kyic; 11
6C1 =1 1) CJ ( )
2
ov max:Zkzjcj (12)
602 =1
oTmax 2
oTmax 2
= C 14
e J_Z:lml,c j (14)

Where c1 & c2 are represented arbitrary constants of eigenvector.
and k11:E |C/L3 , k12: k21 =3Elc/ 5L3 , k22 =3EIlc/ 5L3 , M11=Mm L/30 , M=M= M L/42
and my;=m L/56.

Now at the same procedure of tapered width of cantilever beam in Fig.(1-b) except
w(x) =w(1-x/L) and I(x)=Ic(1-x/L), therefore thefinal relations as shown bellow :-
k11:2E |C/L3 , k12: k21 =2EIc/ L3 , k22 =3EIc/ L3 , M11=M L/105 , M=M= M L/42 and
myx=m L/56. From all above relations can write in matrix form as

Ky —o2my  kyp — 02 mlﬂ {01} _ {O} (15)

Kip—0? My kpp—w?my, | (€2 0
or in general matrix notation as :
[[K]-02M]] fc}-0) (16)
The evaluation of this determinant provides us with estimateion of the two natural frequency
®1% and ®,?, since we have used a two term approximate solution resulting in a two degree of
freedom approximate system.
Applying the Raliegh method after choosing a function which must accept the

conditions of clamped — free ends, therefore we can select the function of the first mode as
shown below.

Y(X)=C(1- cos;z—l)_() [Benaroya, 1998] (17)
1k a2y |’
VZE(j)Eux)LX—Z} dx (18)
w2 L
T= 7] m(x) [Y (x)]? dx (19)
0

In Ryliegh method the sgquare of natural frequency equals to the ratio of potential energy to the
kinetic energy, therefore substitutes the second derivative of equation (17) in equation (18) and
substitute directly equation (17) in the equation (19) then simplify it in order to obtain the
natural frequency of tapered cantilever beam into two cases as shown below :

For tapered thickness a)lz% % (20)
And for tapered width 601:% % (21)
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1

Finally in order to obtain the mode shape must return to equation (15) where {E } represented
2

the eigenvectors, can be found it after solving the 2* 2 determinant ‘{ Kl-0?{M }{ =0 at natural

1 cl
frequency which vanished it, then we obtain the values {c_z }or {E} and substitute this
cl 1

values of eigenvector into equation (4) at different value of length (x) to find the displacement
of mode shape .

3. RESULTS AND DISCUSSION:

The trend of present-day structures is to be lightweight and to avoid resonant
frequencies. Table (1) shows the comparison of the natural frequency of the first mode for
transverse free vibrations of different length of beam between the Rayleigh method in the
present work and the exact method in (Dumitru, 2009) at clamped-free boundary for
tapered parabolic thickness and constant width. The Rayliegh method predicts the natural
frequency higher than the exact method. Now the results based on the main properties of
material E=200 Gpa, p=2700 Kg/m?, figures (2 to 5) show that the first mode of vibration of
tapered thickness as a function of the ratio (wc/hc) of cantilever beam obtained by the Rayleigh
method and the Rayleigh — Ritz method for variation values of clamped thickness in different
values of length of beam.. It is clearly seen that the Rayleigh method predict natural frequency
is higher than Rayleigh-Ritz method. This figures show the natural frequencies remain constant
asthe ratio (wc/hc) increases at the same thickness (hc) and the same length of beam. It may be
observed that the natural frequency increases with increasing the value of tapered thickness at
clamped end and decreasing the length of beam. This behaviour can be explained the strain
energy of structure increased with increasing the thickness and decreasing the length that cause
increasing the stiffness of beam therefore caused increasing the natural frequency. In the other
hand mathematically from eq.(20) the natural frequency changes as a function with (hc) that is
appears as constant value in this function for this case therefore the natural frequency becomes
constant. Figures (6 to 9) show the first mode of vibration of tapered width as a function of the
ratio (hc/wce) of cantilever beam obtained by the Rayleigh method and the Rayleigh — Ritz
method for variation values of clamped width in different value of length of beam. also
Rayleigh method predict natural frequency higher than Rayleigh-Ritz method. It can be noted
that the natural frequency increases with increasing the ratio of (hc/wc), increasing the value
of tapered width and decreasing the length of beam because in the tapered width the strain
energy increases greater than the increasing of kinetic energy that is caused increasing the
natural frequency in this case. Figures (10 to 17) show the natural frequency of the first two
modes as a function of length of beam for variable value of thickness (hc) and variable width
(wc) for tapered thickness and tapered width respectively. Those figures show the natural
frequency decreased with increasing the length of beam resultant of decreasing the stiffness of
beam and increasing the mass with increasing the length., also at any value of ratio into two
cases the difference between modes at length greater than (2 meters) becomes very small and
the natural frequency remains constant because of the stiffness of structure decreased opposite
increasing the mass and the structures become stability. Figures (18 to 21) show the effect of
different values of length on the natural frequency where as at a variable ratio of (wc/hc) &
(hc/wc) for tapered thickness and tapered width respectively, where in the tapered thickness the
difference between lines remain constant at increasing the ratio (wc/hc) while in the tapered
width the difference between curves increase with increasing the ratio (hc/wc) at different
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values of length because of the strain energy increase at high value of ratio (hc/wc) on the other
hand the stiffness decreases at increasing the length of cantilever but the mass increase with
increasing the length that is causes increasing the kinetic energy therefore the level of natural
frequency decreases at different values of length. Figures (22& 23) can be concluded that the
main features of the mode shapes associated with the first two natural frequencies as a
function of different length of beam for tapered thickness and tapered width. It can be
noted also that the behavior of modes of vibrations of tapered thickness inverse that in the
tapered width, the displacement of motion equal zero at clamped end, and maximum in the free
end at both cases. In tapered thickness the difference between motion at different values of
thickness (hc) is small while in the tapered width the different reaches to zero at different
values of width (wc).

4.CONCLUSIONS:

To conclude the present study can be summarized as follows the cantilevers beam at
tapered width have natural frequencies higher than that in the tapered thickness at the same
length and at the same cross section area in the clamped end accordingly the frequencies
increases with increasing the thickness or width in the tapered thickness or tapered width
respectively at the same length of beam. The cantilever of tapered width in variable value of
(wc) have the same frequency at constant value of (hc).

Table(1): Natural frequency (rad/sec) of transverse vibrations of the beam at tapered parabolic

thickness.
hc (m) wc/he | Length (m) R.M Exact method | Difference 6 %
0.05 1 1 416.6 401 3.7%
= = 2 105 101 3.8%
= = 3 46.3 44 3.45 %
0.1 = 1 833.2 804 35%
= = 2 208.3 201 35%
= = 3 92.58 89.33 3.5%

6=[(Rayliegh method— Exact method)/ Rayliegh method] *100%
Parabolic thickness; h(x)=(1-x*/L?),
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Natural frequecy : wi (rad/sec)
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Fig.(2): Natural frequency of 1%. mode as a
function of wc/hc for tapered thickness at
half meter length for hc=5cm.
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Fig.(4): Natural frequency of 1%. mode as a
function of wc/he for tapered thickness at half
meter length for hc=10cm.
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Fig.(3): Natural frequency of 1¥. mode as a
function of wc/hc for tapered thickness at
one meter length for hc=5cm.
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Fig.(5): Natura frequency of 1%. mode as a
function of wc/he for tapered thickness at half
meter length for hc=10cm.
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Natural frequency wl (rad/sec)

Natural frequency : wl (rad/sec)

Tapered wickh: we=5cm; L =0.5m
—— Rayleigh method
—4&— Rayleigh Ritz method
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Fig.(6): Natural frequency of 1%. mode as a function
of hc/we for tapered width at half meter length for
wec=5cm.
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Fig.(8): Natural frequency of 1¥. mode as a
function of hc/wce for tapered width at half meter
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Fig.(9): Natural frequency of 1¥. mode as a
function of hc/wc for tapered width at one meter
length for we=10cm.
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6000
Tapered thickness ; hc=5cm
) —a=—  1st. mode
5000 —9 —4— 2nd. mode

12000
Tapered thickness ; hc=10cm
i —— 1st. mode
10000 —9 —4— 2nd. mode
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Length of cantilever beam: L (m) Length of cantilever beam : L(m)

Fig.(10): Effect different length of C.B. on the
first two modes of vibration at hc=5cm for any
value of wc/he using R-Ritz method.

Fig.(11): Effect different length of C.B. on the
first two modes of vibration at hc=10cm for any
value of wc/he using R-Ritz method.
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Length of cantilever beam: L (m) Length of cantilever beam: L (m)

Fig.(13): Effect different length of C.B. on the first
two modes of vibration at wc=10cm & hc/ wc=04
R-Ritz method.

Fig.(12): Effect different length of C.B. on the
first two modes of vibration at we=5cm & hc/
wc=0.4 R-Ritz method.
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Fig.(14): Effect different length of C.B. on the
first two modes of vibration at we=5cm & hc/

we=1.

22000

20000 —

18000 —

Natural frequency :wr (rad/sec)

Tapered wicth : we=5cm ; heiwe=2

—— 15t mode
—4— 2nd. mode

05

10

15 20 25 30
Length of cantilever beam : L(m)

Fig.(16): Effect different length of C.B. on the
first two modes of vibration at we=5cm & hc/

wc=2.
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Fig.(15): Effect different length of C.B. on the
first two modes of vibration at we=10cm & hc/

we=1.
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Fig.(17): Effect different length of C.B. on the
first two modes of vibration at we=10cm & hc/

wc=2.
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Fig. (18): Natural frequency as a function of
thickness ratio of different value of length for 1%

mode at hc=5cm using R-Ritz method
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Fig. (20): Natural fregquency as a function of
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Fig. (19): Natura frequency as a function of
thickness ratio of different value of length for1®
mode at hc=10cm using R-Ritz method
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Fig. (21): Natura frequency as a function of
thickness ratio of different value of length for
1% mode at we=5cm using R-Ritz method
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Fig.(22a—f):Mode shapes associated with the first two of natural frequency of tapered
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