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ABSTRACT 
 Rayleigh and Rayleigh-Ritz represent the two approximate analytical methods 
which can be used in this paper in order to study the characteristics of free transverse 
vibrations of cantilever beam in the two cases. The first one is at tapered thickness and 
constant width while the second case is at tapered width and. The free end of the 
cantilever is sharp in both cases and is of different values of length. The study selects 
the value of thickness at clamped end (hc) and change the values of width at this end 

(wc) with thickness ratio which equals to ( =
hc
wc 0.1 – 5 ). The second case on the other 

hand, can select the value of width (wc) at clamped end then change the thickness (hc) 

at ratio ( =
wc
hc 0.1 – 5 ). Through out the results, it is shown that the cantilever beam at 

tapered thickness has natural frequency lesser than that of tapered width of the same 
length and at the same dimensions of clamped end, the natural frequency decrease with 
increasing the length of cantilever beam also with decreased the value of tapered 
thickness or tapered width according to this study. In case of different values of tapered 
width for the same length of beam and the same value of thickness at clamped end  the 
cantilevers have the same value of frequency, also the cantilevers  have constant 

frequency at tapered thickness for different values of (
hc
wc ), while in the case of tapered 

width the frequency increases with increasing the value (
wc
hc ) for the same (wc) and at 

the same length of cantilever beam.               
 

Key words: Transverse vibrations, cantilever beam, tapered thickness, Tapered 
width. 

الاهتزازات الحرة المستعرضة في العتبة الناتئة المتدرجة 
الخلاصة 

في هذا البحث تم استخدام طريقة رايلي وطريقة رايلي ريتز حيث إنهما يمثلان الطرق التحليلية 
التقريبية لدراسة خصائص الاهتزازات الحرة المستعرضة للعتبة الناتئة وفي حالتين، حيث ان الحالة 
الأولى عند سمك متدرج وعرض ثابت بينما الحالة الأخرى  فإنها عند عرض متدرج وسمك ثابت 
و النهاية الحرة تكون حادة في كلتا الحالتين وعند أطوال مختلفة للعتبة الناتئة. تضمنت الدراسة 

   لهذه(wc)    العرض  والقيام بتغيير قيم hc)  (اختيار قيمة معينة للسمك عند النهاية المثبتة
= ( 5 – 0.1تساوي إلى  لنسبة  النهاية مع السمك

hc
wc    الأخرى  الناحية . من)  
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 عند (hc)عند النهاية المثبتة بعدئذ تغيير السمك  (wc)في الحالة الثانية تم   اختيار قيمة العرض
= ( 5 – 0.1النسبة

wc
hc تبين من خلال النتائج بان العتبة الناتئة ذات السمك المتدرج تمتلك تردد ). 

طبيعي اقل مما عليه من العتبة ذات العرض المتدرج عند نفس الطول المحدد وكذلك عند نفس الأبعاد 
للنهاية المثبتة وكذلك فان التردد الطبيعي يقل مع زيادة طول العتبة وكذلك عند تقليل قيمة السمك المتدرج 
أو العرض المتدرج وفقا للحالة المدروسة. عند قيم مختلفة للعرض المتدرج لنفس الطول للعتبة وعند نفس 

قيمة السمك للنهاية المثبتة فان العتبة تمتلك نفس التردد الطبيعي وكذلك فان العتبة تمتلك تردد طبيعي 
)( ثابت عند السمك المتدرج ولقيم مختلفة

hc
wc بينما في حالة العرض المتدرج فان  التردد  يزداد مع زيادة ، 

)(القيمة 
wc
hc عند نفس (wc).وعند نفس الطول للعتبة  

LIST OF SYMPOLS 

A Arbitrary constant. 
Ac Area of cross section of beam at clamped end (mP

2
P).  

A(x) Area of cross section of beam at section x (mP

2
P).  

C Arbitrary constant. 
CR1R Arbitrary constant. 
CR2R  Arbitrary constant. 
E Modulus of elasticity (N/mP

2
P). 

F(t) Harmonic force (N). 
hc Thickness of beam at clamped end (cm). 
h(x) Thickness of beam at part of length (x) (cm). 
L Length of beam (m). 
Ic Second moment of area at clamped end (mP

4
P). 

I(x) Second moment of area at part of length(x) (mP

4
P). 

K Total stiffness of cantilever beam (N/m). 
m Total mass of beam per unit length (Kg/m). 
m(x) Mass of beam per part of  length x (Kg/m). 
T(t) Kinetic energy (J). 
t  Time (sec). 
V(t) Stain energy (J). 
wc width of beam at clamped end (cm). 
w(x) Width of beam at part of length(x) (cm). 
x Length of part of beam (m) 
Y(x) Transverse displacement mode. 
YRrR(x) Mode shape of order r. 
YP

'
P(x) First derivative of displacement mode. 

ρ Density of material of beam (kg/mP

3
P). 

ωR1R Natural frequency of beam at mode 1 (rad/sec). 
ωRrR Natural frequency of beam at mode r (rad/sec).  
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1. INTRODUCTION 
 Designs of engineering applications need to know the nature of vibration in structures 
in order to avoid the failure in the work and insure the stability of structures. Cantilevers are 
necessary in many engineering structures which used as resonator sensor have been already 
reported in the literature. Wange, 1967 used analytical method to solution the differential 
equation of motion in term of hyper geometric series, the beam in rectangular cross section for 
any positive power variation of thickness. Timoshenko, 1974 provided the necessary 
information for studied on geometry influences on free, forced, linear and/or nonlinear 
vibration of such cantilever. Wright, 1982 presented study in an analytical solution for free 
vibration in term of power series by Frobenius method for tapered width & constant thickness 
was dedicated to beam of one end sharp. Frieman and Kosmatka, 1992 presented an exact 
stiffness matrix of a nonuniform beam based on the flexibility–stiffness transformation 
approach. They included shear deformation effects in bending stiffness matrix of tapered 
members, so that it could be applied to Bernoulli–Euler and Timoshenko Beam. Pepplewell, 
1996 proposed for finding the free vibration of non uniform beam having material or cross 
sectional discontinuities, intermediate spring supports, or non classical end supports. Ismail, 
2000 In this study, transverse vibrations of a beam made of two materials and with a variable 
cross section were investigated. Dimensionless natural frequency values of the system were 
found by the Rayleigh-Ritz approach. Moreover, the energy amounts of the system 
accumulated per unit mass were calculated. The results were given in tables for comparison. 
Maiti, 1999 studied beam of constant thickness with tapered width to find characteristics of 
vibrations in power series by Frobennius method. Chan, 2003 his studies show that the 
stiffness of a tapered member will be reduced significantly due to the axial compression and 
shear deformation in certain cases where used Chebyshev polynomial approach to solve the 
second-order differential equation with variable coefficients. To develop a theoretical approach 
for second order inelastic analysis of steel frames of tapered members with slender web. 
Caruntu 2005, used analytical method to study the characteristics of beam in orthogonal 
polynomials, beam of parabolic thickness variation with particular boundary conditions. 
Dumitru, 2007 This paper deals with transverse vibrations of nonuniform homogeneous 
beams and plates. Classes of beams and axisymmetrical circular plates whose boundary value 
problems of free transverse vibrations and free transverse axisymmetrical vibrations, 
respectively, can be reduced to an eigenvalue singular problem (singularities occur at both 
ends) of orthogonal polynomials, are reported. The geometry consists of parabolic thickness 
variation, with respect to the axial coordinate for beams, and with respect to the radius for 
plates. Dumirtu, 2009 In this work, the fourth differential equation of motion factories into a 
pair of second order differential equations in term hypergeometric functions, and frequency 
equation resulting from cantilever boundary conditions, are reported. The exact of natural 
frequencies and exact mode shapes are found for sharp parabolic cantilevers by solving the 
frequency equation.   

This paper, the approximate methods can be used to study the characteristics of 
transverse vibration of cantilever beam in tapered thickness in the first case and tapered 
width in the second case at sharp free end which has different dimensions ratio for 
clamped end in different values of length of cantilever beam.   

 
2. THEORETICAL ANALYSIS 
 Derivation the equation of free transverse vibration of cantilever beam of linear tapered 
thickness of length L, with the following properties at section x; m(x) is the mass per unit 
length, A(x) is the cross-section area, I(x) is the moment of inertia and h(x) is the thickness, as 
in Fig.(1-a).  
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                                     L 
                                          L 
  
            
  Fig.(1-a):Cantilever beam of tapered thickness                 Fig.(1-b): Cantilever beam of tapered width 
 

Fig.(1): Tapered cantilever beam 
 

             
xL

xh
L
hc

−
=

)(                                                                                                                       (1) 

After simplified above relation yields:- 

             )1()(
L
xhxh −=                                                                                                                 (2 ) 

 In tapered thickness, A(x) =Ac(1-x/L),where Ac is represented the area of cross section at 
clamped end, therefore m(x)=m(1-x/L), where m is the mass per unit length and equal to ρ*Ac 
and I(x) = Ic(1-x/L)P

3
P, where  Ic = wc*hcP

3 
P/ 12. 

Now the procedure of Rayeigh-Ritz can be application to derive the natural frequency 
for transverse motion of tapered thickness of cantilever beam. For the cantilever beam, guess 
for Yr(x) a function that equal zero at x=0 and at the free end, the deflection and slope must be 
not equal zero. Let us use the two simple terms approximately. 

Yr(x) = C1 y1(x) + C2 y2(x)      [ Benoraya, 1998 ].                                        (3)                        

Yr(x)
32

21 





+






=

L
xC

L
xC                                                                                   (4) 

The strain energy of a bending beam is given by 

dx
x

YxIEtV
L 2

2

2

0
)(

2
1)( 











∂

∂
= ∫                                                                                    (5) 

 And the kinetic energy is given by 

  dx
t
YxmtT

L












∂

∂
= ∫ 2

2

0
)(

2
1)(                                                                                          (6) 

 can be written  V(t) and T(t) as a function shown bellow after using the product 
solution, y(x,t) = Y(x) F(t)  

  ( ) dxYxIEtFtV
L 2''

0

2 )()(
2
1)( ∫=                                     (7)  

  ( )dxYxmFtT
L

2

0

2..
)()(

2
1)( ∫=                                                                                     (8) 

 
Substitute equation (4) or its  derivatives  in above equations (7&8) and F(t) is harmonic, say  
A cos ωt, and simplified them can  obtain:- 

( ) dxYxIEAV
L 2''

0

2
max )(

2
1

∫=                                                                                  (9) 

w(x) 

x L-x 

hc 
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( )dxYxmAT
L

2

0

2 )(
2
1max ∫=                                                                                  (10) 

 when derivative  the above two equations  w.r.t. C1&C2  will  obtain 

∑
=

=
∂

∂ 2

1
1

1

max

j
jj ck

c
V                                                                                               (11) 

∑
=

=
∂

∂ 2

1
2

2

max

j
jj ck

c
V                                                                                               (12) 

and ∑
=

=
∂

∂ 2

1
11

max

j
jj cm

c
T                                                                                              (13 ) 

∑
=

=
∂

∂ 2

1
12

max

j
jj cm

c
T                                                                                               (14) 

Where c1 & c2 are represented arbitrary constants of eigenvector. 
and  k11=E Ic/L3  ,  k12= k21 = 3 E Ic/ 5L3 ,  k22 = 3 E Ic/ 5L3 , m11=m L/30 , m12=m21= m L/42 
and m22=m L/56.   
 Now at the same procedure of tapered width of cantilever beam in Fig.(1-b) except 
w(x) =w(1-x/L) and I(x)= Ic(1-x/L), therefore  the final relations as shown bellow :-   
k11=2E Ic/L3  ,  k12= k21 = 2 E Ic/ L3 ,  k22 = 3 E Ic/ L3 , m11=m L/105 , m12=m21= m L/42 and 
m22







−

−

12
2

12

11
2

11

mk

mk

ω

ω

=m L/56. From all above relations can  write in matrix form as 







−

−

22
2

22

12
2

12

mk

mk

ω

ω  








2

1
c
c  = 








0
0                                                                    (15) 

or in general matrix notation as : 
 [ ] [ ][ ] { } { }02 =− cMK ω                                                                                     (16 ) 
The evaluation of this determinant provides us with estimateion of the two natural frequency 
ω1

2 and ω2
2

)
2

cos
L
xπ

, since we have used a two term approximate solution resulting in a two degree of 
freedom approximate system.    
 Applying the Raliegh method after choosing a function which must accept the 
conditions of clamped – free ends, therefore we can  select the function of the first mode as 
shown below. 

 Y(x) = C (1 -   [Benaroya, 1998]                                                                    (17) 

∫











=

L
dx

dx
YdxIEV

0

2

2

2
)(

2
1                                                                                                   (18)  

[ ]∫=
L

dxxYxmT
0

2
2

)()(
2
ω                                                                                                    (19) 

  
In Ryliegh method the square of natural frequency equals to the ratio of potential energy to the 
kinetic energy, therefore substitutes the second derivative of equation (17) in equation (18) and 
substitute directly equation (17) in the equation (19) then simplify it in order to obtain the 
natural frequency of tapered cantilever beam into two cases as shown below : 
 

For tapered thickness   
m
IcE

L2
477.51=ω                                                                                    (20)  

 

And for tapered width   
m
IcE

L2
746.71=ω                                                                                   (21) 
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Finally in order to obtain the mode shape must return to equation (15) where 








2

1
c
c  represented 

the  eigenvectors, can be found it after solving the 2*2 determinant { } { }MK 2ω−  =0 at natural 

frequency which vanished it, then we obtain the values 






























1
2
1

1
2

1
c
c

or
c
c  and substitute this 

values of eigenvector into equation (4) at different value of length (x) to find the displacement 
of mode shape  . 
 
3. RESULTS  AND  DISCUSSION: 

. The trend of present-day structures is to be lightweight and to avoid resonant 
frequencies. Table (1) shows the comparison of the natural frequency of the first mode for 
transverse free vibrations of different length of beam between the Rayleigh method in the 
present work and the exact method in (Dumitru, 2009) at clamped-free boundary for 
tapered parabolic thickness and constant width. The Rayliegh method predicts the natural 
frequency higher than the exact method. Now the results based on the main properties of 
material E=200 Gpa, ρ=2700 Kg/mP

3
P, figures (2 to 5) show that the first mode of vibration of 

tapered thickness as a function of the ratio (wc/hc) of cantilever beam obtained by the Rayleigh 
method and the Rayleigh – Ritz method for variation values of clamped thickness in different 
values of length of beam.. It is clearly seen that the Rayleigh method predict natural frequency 
is higher than Rayleigh-Ritz method. This figures show the natural frequencies remain constant 
as the ratio (wc/hc) increases at the same thickness (hc) and the same length of beam. It may be 
observed that the natural frequency increases with increasing the value of tapered thickness at 
clamped end and decreasing the length of beam. This behaviour can be explained the strain 
energy of structure increased with increasing the thickness and decreasing the length that cause 
increasing the stiffness of beam therefore caused increasing the natural frequency. In the other 
hand mathematically from eq.(20) the natural frequency changes as a function with (hc) that is 
appears as constant value in this function for this case therefore the natural frequency becomes 
constant. Figures (6 to 9) show the first mode of vibration of tapered width as a function of the 
ratio (hc/wc) of cantilever beam obtained by the Rayleigh method and the Rayleigh – Ritz 
method for variation values of clamped width in different value of length of beam. also 
Rayleigh method predict natural frequency higher than Rayleigh-Ritz method. It can be noted 
that the natural frequency increases with increasing the ratio of (hc/wc),  increasing the value 
of tapered width and decreasing the length of beam because in the tapered width the strain 
energy increases greater than the increasing of kinetic energy that is caused increasing the 
natural frequency in this case. Figures (10 to 17) show the natural frequency of the first two 
modes as a function of length of beam for variable value of thickness (hc) and variable width 
(wc) for tapered thickness and tapered width respectively. Those figures show the natural 
frequency decreased with increasing the length of beam resultant of decreasing the stiffness of 
beam and increasing the mass with increasing the length., also at any value of ratio into two 
cases the difference between modes at length greater than (2 meters) becomes very small and 
the natural frequency remains constant because of the stiffness of structure decreased opposite 
increasing the mass and the structures become stability. Figures (18 to 21) show the effect of 
different values of length on the natural frequency where as at a variable ratio of (wc/hc) & 
(hc/wc) for tapered thickness and tapered width respectively, where in the tapered thickness the 
difference between lines remain constant at increasing the ratio (wc/hc) while in the tapered 
width the difference between curves increase with increasing the ratio (hc/wc) at different  
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values of length because of the strain energy increase at high value of ratio (hc/wc) on the other 
hand the stiffness decreases at increasing the length of cantilever but the mass increase with 
increasing the length that is causes increasing the kinetic energy therefore the level of natural 
frequency decreases at different values of length. Figures (22&23) can be concluded that the 
main features of the mode shapes associated with the first two natural frequencies as a 
function of different length of beam for tapered thickness and tapered width. It can be 
noted also that the behavior of modes of vibrations of tapered thickness inverse that in the 
tapered width, the displacement of motion equal zero at clamped end, and maximum in the free 
end at both cases. In tapered thickness the difference between motion at different values of 
thickness (hc) is small while in the tapered width the different reaches to zero at different 
values of width (wc). 
 
4.CONCLUSIONS: 

To conclude the present study can be summarized as follows the cantilevers beam at 
tapered width have natural frequencies higher than that in the tapered thickness at the same 
length and at the same cross section area in the clamped end accordingly the frequencies 
increases with increasing the thickness or width in the tapered thickness or tapered width 
respectively at the same length of beam. The cantilever of tapered width in variable value of 
(wc) have the same frequency at constant value of (hc).  
 
Table(1): Natural frequency (rad/sec) of  transverse vibrations of the beam at tapered parabolic 

thickness.   
  

hc (m) wc/hc Length (m) R.M Exact method Difference δ % 
0.05 1 1 416.6 401 3.7 % 

= = 2 105 101 3.8 % 
= = 3 46.3 44 3.45 % 

0.1 = 1 833.2 804 3.5 % 
= = 2 208.3 201 3.5 % 
= = 3 92.58 89.33 3.5 % 

 
δ=[(Rayliegh method– Exact method)/ Rayliegh method]  *100% 
Parabolic thickness; h(x)=(1-x2/L2), 
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Fig.(2): Natural frequency of 1st. mode as a 
function of wc/hc  for tapered  thickness at 
half meter length for hc=5cm. 

Fig.(3): Natural frequency of 1st. mode as a 
function of wc/hc  for tapered  thickness at 
one meter length for hc=5cm. 

Fig.(4): Natural frequency of 1st. mode as a 
function of wc/hc  for tapered  thickness at half 
meter length for hc=10cm. 

Fig.(5): Natural frequency of 1st. mode as a 
function of wc/hc  for tapered  thickness at half 
meter length for hc=10cm. 
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Fig.(8): Natural frequency of 1st. mode as a 
function of hc/wc  for tapered width at half meter 
length for wc=10cm. 

Fig.(9): Natural frequency of 1st. mode as a 
function of hc/wc  for tapered width at one meter 
length for wc=10cm. 

Fig.(6): Natural frequency of 1st. mode as a function 
of hc/wc  for tapered width at half meter length for 
wc=5cm. 

Fig.(7): Natural frequency of 1st. mode as a 
function of hc/wc  for tapered width at one meter 
length for wc=5cm. 
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Fig.(10): Effect different length of C.B. on the 
first  two modes of vibration at hc=5cm for any 
value of wc/hc using R-Ritz method. 

Fig.(11): Effect different length of C.B. on the 
first  two modes of vibration at hc=10cm for any 
value of wc/hc using R-Ritz method. 

Fig.(12): Effect different length of C.B. on the 
first  two modes of vibration at wc=5cm & hc/ 
wc=0.4 R-Ritz method. 

Fig.(13): Effect different length of C.B. on the first  
two modes of vibration at wc=10cm & hc/ wc=04 
R-Ritz method. 
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Fig.(14): Effect different length of C.B. on the 
first  two modes of vibration at wc=5cm & hc/ 
wc=1. 

Fig.(16): Effect different length of C.B. on the 
first  two modes of vibration at wc=5cm & hc/ 
wc=2. 

Fig.(15): Effect different length of C.B. on the 
first  two modes of vibration at wc=10cm & hc/ 
wc=1. 

Fig.(17): Effect different length of C.B. on the 
first  two modes of vibration at wc=10cm & hc/ 
wc=2. 
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Fig. (18): Natural frequency as a function of 
thickness ratio of different value of length for 1st 
mode at hc=5cm using R-Ritz method 
 
 
 
 
 
 
 
 
 
 
 

    
 

 

Fig. (19): Natural frequency as a function of 
thickness ratio of different value of length for1st 
mode at hc=10cm using R-Ritz method 
 
 
 
 
 
 
 
 
 
 
 

    
 

 

Fig. (20): Natural frequency as a function of 
thickness ratio of different value of length for 1st 
mode at wc=5cm using R-Ritz method 
 
 
 
 
 
 
 
 

Fig. (21): Natural frequency as a function of 
thickness ratio of different value of length for 
1st mode at wc=5cm using R-Ritz method 
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Fig. (22-a) 
 
 
 
 
 
 
 
 
 
 
 

    
 
 

Fig. (22-b) 
 
 
 
 
 
 
 
 
 
 
 

    
 
 

Fig. (22-c) 
 
 
 
 
 
 
 
 
 
 
 

    
 

Fig. (22-d) 
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Fig.(22a–f):Mode shapes associated with the first two of natural frequency of tapered 
thickness of cantilever beam for different values of length 

Fig. (22-e) 
 
 
 
 
 
 
 
 
 
 
 

    
 

 

Fig. (22-f) 
 
 
 
 
 
 
 
 
 
 
 

    
 

 

Fig. (23-a) 
 
 
 
 
 
 
 
 
 
 
 

    

Fig. (23-b) 
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Fig.(23a–f):Mode shapes associated with the first two of natural frequency of 
 tapered width of cantilever beam for different values of length 

Fig. (23-c) 
 
 
 
 
 
 
 
 
 
 
 

    
 

 

Fig. (23-d) 
 
 
 
 
 
 
 
 
 
 
 

    
 

 

Fig. (23-e) 
 
 
 
 
 
 
 
 
 
 
 

    
 

Fig. (23-f) 
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