Electrolytic conductivity for Tetra Aqua 1,10-Phenanthroline Nickel (II) Chloride in Mixtures of Methanol and Water at Different Temperatures

Yasir O.Hameed* Omar A.Shareef Shyma'a H.Abdul Rahman

Chemistry Department, College of Science, Mosul University

Abstract

Electrolytic conductivities of mixed ligand complex of Ni(II) in binary mixtures of methanol and water have been measured at 288.15-308.15 K. The limiting molar conductances (Λ_0) and the ion association constants (K_A) of the electrolytes have been evaluated by analysis of the conductance data using the Lee and Wheaton conductivity equation. Thermodynamics of association processes have also been studied and the coulombic forces are found to play a major role in the association processes. Walden product $(\Lambda_0 \eta_0)$ have also been calculated for each solvent composition. A linear relationship was found to exist between the logarithm of the association constant (log K_A) and the reciproced of the dielectric constant (1/D) of the medium which indicate the tendency of the association of ions.

Key word : Conductivity , 1,10 Phenanthroline complex , Lee-Wheaton equation

Introduction

To obtain more information about electrolytic solution and ion-solvent interactions and their implication on ionic association and to determined the specific influence of solvent properties and ion size on the association process we have studied the association of the complex above in a series of methanol-water mixtures. The association behaviour of some examples of the available data are shown as follow:

Preise measurements of electrical conductances of solutions of potassium picrate, potassium tetraphenyl borate at temperatures 288.15-308.15 K have been reported. The conductance data have been analyzed by the 1978 Fuoss conductance-concentration equation. Thermodynamics of the association processes have also been studied⁽¹⁾. Electrolytic conductivities of dilute solutions of Ni(II), Cd(II), Mg(II) and Cu(II) sulfate in binary mixtures of methanol and water have been measured at 293.15 K. The (Λ_0) and (K_A) have been evaluated by using Lee-Wheaton equation⁽²⁾. The conductivity of several alkali metal thiocyanates in water-methanol mixtures was measured at 25 °C. The data were analyzed using the Lee-Wheaton theory for symmetrical electrolytes to obtain ion association constant (K_A) limiting molar conductivity (Λ_0) and limiting ionic conductivity in all the solvent systems⁽³⁾. Measurements of the electrical conductivity of the 2-(2,4-dichlorophenoxy compounds methyl-5-(3chlorophenyl)-1,3,4-oxadiazole and 2.5-di(2.4dichlorophenoxy methyl)-1,3,4-oxadiazole in mixture of methanol water as a solvent at different percentages were analyzed by using Lee-Wheaton equation the values of Λ_0 , K_A and R are calculated^(4,5).

Experimental

Tetra aqua (1,10-phenanathroline) nickel (II) chloride was prepared by mixing 2 mM of 1,10-phenanthroline in 10 cm³ of ethanol and 2mM of NiCl₂.6H₂O in 30 cm³ of

deionized water and refluxed for about 45 min on a water bath. On cooling and adding excess of absolute ethanol the complex was precipitated, filtered then washed with ice cold 50% ethanol and then recrystallized by slow cooling to 0 °C followed by addition of excess absolute ethanol. The product was dried under vacuum over anhydrous calcium chloride. Magnetic electronic spectral, (UV), infrared measurements used for analysis of the complex and also gas chromatography was used to determine water content and other organic impurities. Methanol was purified and dried by the methanol described by Perrin⁽⁶⁾ conductivity water was prepared by distilling twice distilled water with specific conductance of 2×10^{-6} µs. Conductivity measurements were made using Jenway PCM3 conductivity meter with frequency range of 50 Hz-1KHz and accuracy of 0.01 µs. The cell constant for the conductivity cell was measured using the method of Jones and Bradshaw⁽⁷⁾, 0.01 M KCl solution was prepared from potassium chloride (BDH reagent) recrystallized three times from conductivity water and then dried at (760) Torr and 500 °C for 10 hrs. The cell constant was checked regularly and found to be 1.14 cm⁻¹

A general method has been used for measuring the conductance of the electrolyte. The conductivity cell was washed, dried and then weighed empty and kept at any temperature (± 0.1 °C) using a water-circulating ultra thermostat type VH5B radiometer. A certain amount of solution was injected into the conductivity cell and the conductivity of the solution was measured. Another known amount of the solution was added and the measurement was repeated as before. Generally (14) additions have been made.

Results and discussion

We have measured the conductivity of tetra agua (1,10phenanthroline) nickel (II) chloride in a mixture of methanol water at different percentages and temperatures and analyze the data by using Lee-Wheaton equation for unsymmetrical electrolytes which is an extended form of the Debye-Hukel equation for the calculation of molar (or equivalent) conductance, association constant and main distance between ion in solution of electrolytes⁽⁸⁾. The measured equivalent conductivities for different molalities of the complex solution are shown in Table 1. The electrical conductivity of the desired complex have been studied in methanol-water mixture at different temperatures to investigate the dependence of the ion association behaviors on the properties of the complex ion. The data were treated using L-W method in which a wide temperature range for electrolyte solution can provide detailed information concerning ion-ion and ionsolvent interaction especially from thermodynamic point of view⁽⁹⁾.

For an unsymmetrical electrolyte MX_2 ionizing to M^{2+} and X^- the possible association equilibria are:

$$M^{2-} + X^{-} \xrightarrow{K_A^{(1)}} MX_2$$
(1.11)

$$MX^{-} + X^{-} \xrightarrow{K_{A}^{(2)}} MX^{+}$$
.....(1.12)

Thus, three ionic species are present in the solution which are M^{2+} , MX^{+} and X^{-} . All such solutions are in effect "mixed electrolyte" since the ion pair MX^{+} is a conducting species.

$$\Lambda_{\text{equiv.}} = \sum_{i=1}^{S} |z_i| m_i \lambda_i / C$$

This equation is derived as follows:

$$\begin{split} &\lambda_{i} = f \; (\; \lambda_{i}^{o} \;, \, \epsilon K, \, R) \\ &\sigma_{i} = i \lambda_{i} \; / \; 1000 = |Z_{i}| \; m_{i} \lambda_{i} \; / \; 1000 \\ &\text{and} \; \sigma_{solu.} = \sum_{i=1}^{s} |\; C_{i} \\ &s \end{split}$$

or 1000
$$\sigma_{\text{solu.}} = \sum_{i=1}^{s} |C_i \lambda_i|$$

and
$$\Lambda_{solu.} = \sum_{i=1}^{S} |z_i| m_i \lambda_i / \sum C_i$$

where (s) is the number of ionic species, σ is specific conductance, C stoichiometric equivalent concentration, λ_i , m_i , C_i and z_i are the equivalent conductance, molar free ion concentration, equivalent concentration and charge of the species respectively, thus for 2:1 associated salts

$$\Lambda_{MX2} = f \; (\; \lambda^o_{M^{2^+}} \; , \; \lambda^o_{MX^+} \; , \; \lambda^o_{X^-} \; , \; \; K^{(1)}_A \; , \; K^{(2)}_A \; , \; R)$$

where R is the average center to center distance for the ion pairs, a multi parameter "least square" curve-fitting procedure is used to give the lowest value of curve fitting parameter $\sigma(\Lambda)$ between the experimental and calculated points. An iterative numerical method which was found to be very successful has been used to find the minimum $\sigma\Lambda^{(7)}$.

$$\sigma \Lambda = \left\{ \sum_{n=1}^{NP} \left(\Lambda_{calc.} - \Lambda_{exp.} \right)^2 / NP \right\}^{1/2}$$

A computer program is used to analysis the concentration conductivity measurements in which the input data are $(T,\,D,\,\eta)$ where T is the temperature in Kelvin, D and η are the dielectric constant and viscosity (poise) of the solvent at that temperature.

The conductivity-concentration data for the studied complex in different percentage at different temperatures are shown in Table (1 A-E). The plot of equivalent conductance (Λ_0) against the square root of the molar concentration ($C^{1/2}$) are shown in Figures (1A-E). From Table and Figure (1) it can be seen clearly that the equivalent conductivity (10) decrease with increasing water percent suggesting an increasing tendency of the ions for association into ion pairs, and increasing hydrogen bonding and viscosity of the mixed solvent, except for 90% methanol, were the equivalent conductance increase due to the polarity of methanol and gradually increase of dielectric constant for each percentage.

The values of K_A (Table 2) decrease with increasing temperature, this may be attributed to the short range interaction and the hydrogen bonding formed at low temperature. And this will lead to increasing λM^{2+} for each percentage , also the value of K_A increase as water percentage increase due to H-bonding formation and increasing viscosity till 50% when the nutralanity between H-bonding and dielectric constant accurse The results of the distances parameter R show that the complex electrolytes form solvent separated ion pairs and the results show that R values are almost more than (30 A°) which means that the cation is separated by solvent molecules from the anion.

Plot of K_A values against the composition of the solvent mixture at 25 °C as an example are shown in Fig. (2). The variation of the association constant with the dielectric constant (D) of the solvent mixtures is presented as a plot of pK_A values against log D in Fig. (3). pK_A values are shown to decrease with increasing values of the dielectric constant suggesting an increasing tendency of the ions for association into ion-pairs. It is assumed that atrue chemical reaction occurs The standard enthalpy of the ion association reaction (ΔH^o) are evaluated by the following:

 $\ln K = -\Delta H^{o} / RT + C$

The plot of $\ln K_A$ against 1/T is shown a linear relation (Fig. 4).

The standard entropy of ion-pair formation is a linear combination of two variables:

$$\Delta S^{o} = (\Delta H^{o} - \Delta G^{o}) / T$$

Gibbs energy had to be estimated from the relationship: $\Delta G^{o} = -RT \ln K$

Results of the calculation are gathered in Table (3). It is well known that addition of an electrolyte to a solvent causes some structural changes due to the rupture of the bonds between solvent molecules from one side and to the interaction of ions with each other and with solvent molecules from the other side⁽¹¹⁾. The negative entropy provides a good indication of ionic association which has an ordering effect on the solution. The solvation effect i.e interaction of the ions with the solvent molecules may exert on the solution structure in the same manner leading relatively to a negligible decrease in the entropy as temperature increase and increase with increasing water percentage⁽¹²⁾.

The enthalpy of activation according to the activated complex theory is a result of the energies being expended for the destruction of solvent-solvent bonds and the formation of solvent-ion bonds. As can be noticed from Table (3), ΔH° decrease with increasing water percentage due to the broken of ion-ion bond in solution as a result of increasing dielectric constant of the solvent⁽¹³⁾. Finally the values of ΔG are negative which indicate the reaction is spontaneous.

If Stoke's law were obeyed in a system the value of the Walden product $(\Lambda_o\eta_o)$ would be constant only if the effective radius of the ion remains the same in the different media. Since most ions are solvated in solution to different extent, the dimensions of the moving unit will undoubtedly vary to some extent and exact constancy of the conductance-viscosity product is not to be expected⁽¹⁴⁾. This is the case in the behaviour of the

present system as indicated in Fig. (5) where the cations are expected to suffer various degrees of salvation with increasing amount of methanol in the methanol-water mixtures. Hemes⁽¹⁴⁾ suggested that the major deviation in

the Walden product is due to the variation of the electrochemical equibilirium between ions and the solvent molecules with the composition of the mixed polar solven.

Table (1-A): The equivalent conductivities ($\Omega^{\text{-1}}$.cm².equiv⁻¹) with molar concentration for [Ni(phen)(H₂O)₄]Cl₂ in 100% methanol at different temperatures

Conc. x 10 ⁵ M	T=288 K	T=293 K	T=298 K	T=303 K	T=308 K
1.960	7.7, £17	197,•75	190,750	۱۸۰,٤٣٨	111,089
3.846	7.7,777	197,761	195,551	11.,772	174,797
5.660	۲۰۳,۱۸٤	197,071	198,087	179,977	۱۸۸,۲۸٥
7.407	۲۰۳,۰٦۳	197,877	197,777	179,797	111,779
9.909	7.7,775	190,977	117,005	179,775	۱۸۸,۲۰۲
10.714	۲۰۲,۳٦۸	190,919	۱۸٥,٦١٤	۱۷۸,٦٥٣	114,189
12.228	۲۰۲,۳۸۰	190,12.	110,587	١٧٨,٤٤٥	۱۸۸,۰۷٤
13.793	7.1,957	198,977	110,071	۱۷۸,۱۲٦	۱۸۷,٦٨٠
15.254	7.1,971	198,877	110,012	174,171	124,049
16.666	۲۰۰,۹۹۸	198,808	110,717	177,180	144,047
18.032	7 , ۸٧٢	198,707	۱۸٤,٦٨٨	177,105	۱۸٦,۱۱٦
19.354	199,717	191,777	۱۸۲,۸۸٦	177,0.7	١٨٤,٥٦٠
20.634	190,085	۱۸۸,٦٤٩	141,775	۱٦٧,٥٨٦	174,
21.875	۱۸۳,۸۰٤	14.,7	177,957	17.,770	171,950
23.076	177,077	۱۷٦,۲۳٤	१०२,६२४	101,178	۱٦٨,٤٠٢

Table (1-B): The equivalent conductivities ($\Omega^{\text{-1}}$.cm².equiv⁻¹) with molar concentration for [Ni(phen)(H₂O)₄]Cl₂ in 90% methanol water mixtures at different temperatures

Conc. x 10 ⁵ M	T=288 K	T=293 K	T=298 K	T=303 K	T=308 K
1.960	779,1	775,575	715,975	715,119	717,977
3.846	777,777	777,777	۲۱٤,۸۹٦	۲۱۳,٤٠٨	۲۱۳,٤٠٨
5.660	777,777	777,710	712,897	717,70.	717,70.
7.407	777,712	771,0.7	712,700	717,.77	717,127
9.909	777,708	77.,٣	715,119	717,779	۲۱۲,۰٤٠
10.714	777, 5 . 5	711,707	717,777	711,77.	۲۱۱,۷۸۰
12.228	777,771	۲۱۵,٦٨٨	۲۱۳,٤٠٨	777,177	711,507
13.793	770,798	۲۱۰,۸٤٣	717,777	71.,	۲۱۰,۷٤٨
15.254	775,1.1	۲۰۷,۳٤١	717,997	۲۰۸,۲۷۸	۲۰۸,۲۷۸
16.666	777,717	7.7,075	711,759	۲۰٦,۰۷۹	7.0,101
18.032	777,777	7,	710,777	۲۰٤,۲۸۸	۲۰۳,۲۲٤
19.354	۲۱۸,۱۹٦	197,758	۲۰۹,٤١٨	199,٣٨٦	۲۰۰,٦٤٠
20.634	۲۱۰,۸٤٣	190,078	۲۰۷,۷٦٥	198,918	197,997
21.875	7.1,2	198,757	7.1,2	۱۸۳,۲۷٤	۱۸۸,۳۱٦
23.076	۱۸۰,۸۰٤	197,777	1/19/191	11.,.07	171,917

Table(1-C): The equivalent conductivities ($\Omega^{\text{-1}}$.cm².equiv⁻¹) with molar concentration for [Ni(phen)(H₂O)₄]Cl₂ in 80% methanol water mixtures at different temperatures

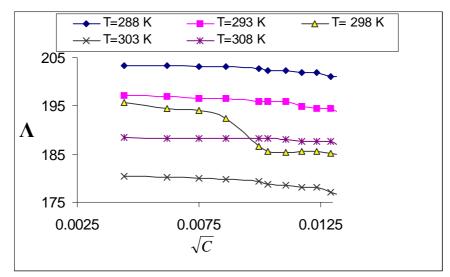
Conc. x 10 ⁵ M	T=288 K	T=293 K	T=298 K	T=303 K	T=308 K
1.960	175,508	171,12.	177,107	100,777	1 £ 9 ,
3.846	171,777	171,071	177,797	100,157	1 £ 9,7 7 7
5.660	171,171	171,180	177,797	108,981	1 6 9 , 7 • 1
7.407	17.,987	171,1.9	177, £10	105,414	1 £ 9 , 1 £ 1
9.909	17.,570	17.,571	177,777	105,187	۱٤٨,٧٦٢
10.714	١٥٩,٨٣٦	۱٦٠,٣٧٨	171,971	105,511	۱٤٨,٧١٦
12.228	101,707	109,127	۱٦٠,٨٤٠	108,877	1 54,440
13.793	۱۵۷,۸۰٦	109,17.	171,077	107,700	1 27,17 •
15.254	107,770	109,17.	171,777	104,717	1 £ 7, 1 % •
16.666	104,716	۱۵۸,۳۷۸	17.,70.	107,77.	1 £ £ , ٧ • £
18.032	107,757	101,1	۱٦٠,٣٧٨	101,54.	154,717
19.354	104,7	104,49 £	109,987	100,098	12.,200
20.634	104,149	१०४,२४६	109,987	150,977	185,759
21.875	104,184	107,7.5	109,777	187,9.5	119,7%.
23.076	107,.7.	107,.7.	१०२,१२८	1.9,757	1,077

Table(1-D): The equivalent conductivities $(\Omega^{\text{-1}}.\text{cm}^2.\text{equiv}^{\text{-1}})$ with molar concentration for $[Ni(phen)(H_2O)_4]Cl_2$ in 70% methanol water mixtures at different temperatures

Conc. x 10 ⁵ M	T=288 K	T=293 K	T=298 K	T=303 K	T=308 K
1.960	105.638	112.561	114,0.5	118.902	175,.77
3.846	1.7,91	117,875	117,18.	۱۱۸,۸۹۸	۱۲۳,۷۱۸
5.660	1.1,4	111,997	117,977	117,41.	177,7
7.407	1,18.	111,919	117,707	117,10.	177,177
9.909	۹۷,۳۰۸	۱۱۱,۸۲٦	110,817	117,017	177,.72
10.714	90,.77	111,77 £	115,775	۱۱٦,۲۸۰	175,7
12.228	98,907	111,717	115,555	117,101	۱۲۲,۰۲۸
13.793	98,707	110,991	115,757	110,98.	177,791
15.254	97,198	11.,110	۱۱۳,۸۸۳	۱۱٤,٦١٨	177,177
16.666	۸٧,٥٨٤	1.7,975	117,177	۱۱۳,۲۸۸	171,744
18.032	٧٨,٥٤٠	1.0,571	1.4,077	111,. ٧٨	171,1.0
19.354	٧١,٦٠٤	1,071	1.7,09.	1.5,707	17.,107
20.634	٥٥,٨٦٢	91,9.7	1.1,494	1 , 9 1 7	118.422
21.875	٤١,٦١٦	٧٦,٩٠٨	98,7.5	ለ ٤,٨٦٤	117,18.
23.076	79,177	٧٠,١٢٠	٧٦,٩٠٨	٥٢,٠٢٠	111,7715

Table(1-E): The equivalent conductivities $(\Omega^{\text{-1}}.\text{cm}^2.\text{equiv}^{\text{-1}})$ with molar concentration for $[Ni(phen)(H_2O)_4]Cl_2$ in 50% methanol water mixtures at different temperatures

Conc. x 10 ⁵ M	T=288 K	T=293K	T=298 K	T=303 K	T=308 K
1.960	٩٦,٨٨٤	٩٨,٨٦١	99,٣١٨	1.7,008	11.,0.9
3.846	97,101	91,107	٩٨,٣٦٧	1.5,798	1.9,777
5.660	90,011	٩٨,٠٢٢	٩٨,٠٢٢	۱۰٤,٦٨١	1.9,717
7.407	98,770	97,719	97,719	1.2,809	۱۰۸,۳۲٤
9.909	97,57.	۹٦,٢٨٨	90,777	1.5,7.5	1.7,9.0
10.714	9.,٤٦١	90,777	98,90.	1.7,8.7	۱۰٦,۱۱۸
12.228	۸۳,۸٤٤	90,890	9 £ , 7 7 Å	1.7,7.5	1.5,707
13.793	۸۳,٥٨٣	90,1	98,917	1,£99	1.5,07.
15.254	۸۳,٥٨٣	95,751	97,198	99,897	1.4,940
16.666	۸۲,۲۲٦	97,777	۸۹,٤٨٨	99,797	۱۰۲,۸۱٦
18.032	٧٩,٠١٦	9٣,٦٣٦	۲۲,۲۸	99,790	99,٨٥٨
19.354	٧٤,٦١٣	97,777	۸۰,٤٣٠	97,712	90,.15
20.634	٧٣,٨٨٢	97,709	٧٨,٥٢٠	۹۰,۸۸۲	9.,£97
21.875	٧٢,٩٨١	۸۲,۸۹۲	٧٦,٩٣٠	۸۸,٦٣٠	ለ ٦,٤٩٦
23.076	٧٠,٥٣٠	٧٦,٩٠٨	٧٥,٣٢٠	۸٥,٥٣٠	۸٥,٦٠٤


Table (2): Values of λM^{+2} , K_A , R, dielectric constant and viscosity of the complex at different percentages and temperatures.

Temp. K	$\mathbf{K}_{\mathbf{A}}$	RAº	λM^{+2}	D	η		
	100 % Methanol						
288.15	780	70	146	40.0	0.00623		
293.15	760	70	155	36.31	0.00597		
298.15	750	70	160	32.62	0.00544		
303.15	700	70	170	29.81	0.00516		
308.15	650	70	180	27.0	0.00483		
		90 %	Methanol		•		
288.15	465	38	240	44.19	0.00673		
293.15	368	38	245	40.88	0.00638		
298.15	290	34	250	37.22	0.00581		
303.15	254	38	271	34.48	0.00513		
308.15	205	34	275	31.78	0.00500		
		80 %	Methanol		•		
288.15	900	70	110	48.39	0.00725		
293.15	800	70	120	45.07	0.00679		
298.15	700	70	160	41.82	0.00582		
303.15	680	70	135	39.16	0.00565		

308.15	660	70	140	36.56	0.00529		
	70 % Methanol						
288.15	1320	50	120	52.58	0.00772		
293.15	1280	50	130	49.45	0.00721		
298.15	1250	50	135	46.42	0.00640		
303.15	1220	50	140	43.83	0.00598		
308.15	1200	50	150	41.34	0.00553		
	50 % Methanol						
288.15	1000	70	50	60.97	0.00880		
293.15	950	70	55	58.21	0.00805		
298.15	920	70	59	55.40	0.00710		
303.15	900	70	64	53.87	0.00657		
308.15	880	70	70	50.19	0.00600		

Table (3) : Thermodynamic parameters $(\Delta H^o,\,\Delta G^o,\,\Delta S^o$) of the complex in different solvent composition

Temp K	ΔG° KJmole ⁻¹	ΔS° K cal.mole ⁻¹	ΔH° K cal.mole ⁻¹		
	100 % Methanol				
288.15	-3.799	-84.088			
293.15	-3.849	-82.483	1		
298.15	-3.908	-80.902	-28.029		
303.15	-3.932	-79.488	1		
308.15	-3.951	-78.137	1		
		90 % Met	hanol		
288.15	-3.504	-12.101			
293.15	-3.428	-12.154	1		
298.15	-3.358	-12.185	-6.991		
303.15	-3.322	-12.102	1		
308.15	-3.247	-12.149	1		
		80 % Met	hanol		
288.15	-3.881	2.172			
293.15	-3.880	2.132	1		
298.15	-3.867	2.052	-3.255		
303.15	-3.914	2.173	1		
308.15	-3.961	2.291			
		70 % Met	hanol		
288.15	-4.099	11.313			
293.15	-4.154	11.123			
298.15	-4.209	11.121	-0.893		
303.15	-4.265	11.119			
308.15	-4.325	11.137			
	50 % Methanol				
288.15	-3.941	10.432			
293.15	-3.979	10.383	-0.935		
298.15	-4.027	10.370]		
303.15	-4.083	10.384]		
308.15	-4.136	10.387]		

 $Fig~(1-A): plot~of~equivalent~conductivities~against~Square~root~of~concentration~for~[Ni(phen)(H_2O)_4]Cl_2~in~100\%~methanol~at~different~temperatures$

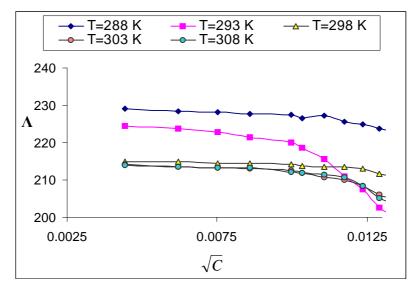


Fig (1-B): plot of equivalent conductivities against Square root of concentration for $[Ni(phen)(H_2O)_4]Cl_2$ in 90% methanol-water mixture at different temperatures

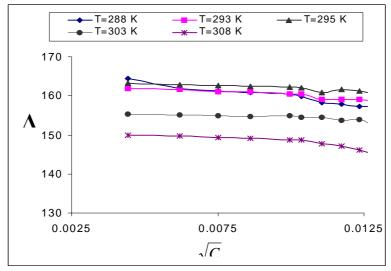


Fig (1-C) : plot of equivalent conductivities against Square root of concentration for $[Ni(phen)(H_2O)_4]Cl_2$ in 80% methanol-water mixture at different temperatures

Fig (1-D): plot of equivalent conductivities against Square root of concentration for $[Ni(phen)(H_2O)_4]Cl_2$ in 70% methanol-water mixture at different temperatures

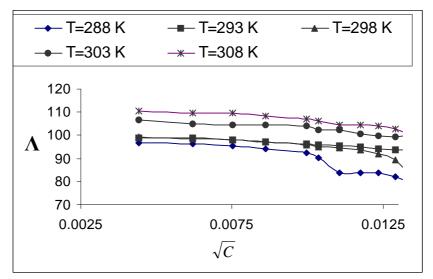


Fig (1-E): plot of equivalent conductivities against Square root of concentration for $[Ni(phen)(H_2O)_4]Cl_2$ in 50% methanol-water mixture at different temperatures

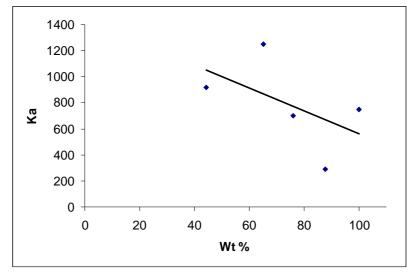


Fig (2) : Plot of K_A versus the composition of solvent mixtures at 298 K

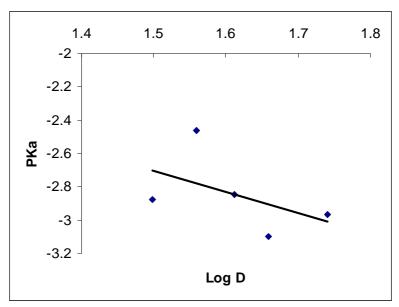


Fig (3): Variation of PK_A values of the complex in methanol-Water Mixtures at 298 k with dielectric constant of the mixtures (Log D

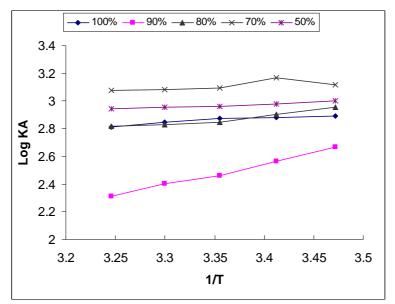


Fig (4): plot of Log K_A against 1/T for the Complex at different solvent composition

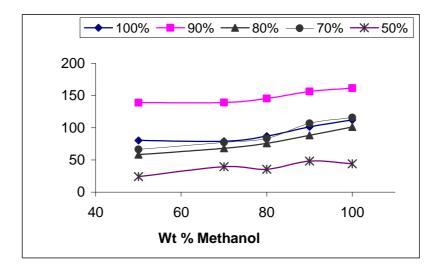


Fig (5) : Walden products $(\Lambda_o \ \eta_o)$ for the complex in methanol-water mixture plotted versus the composition of the mixture at different temperatures

References

- P.J.Victor , P.K. Muhri , B.Das and D.K. Hazra , J. Phys. Chem., , 103(50) , (1999), 11227-11233
- 2. N.G.Tsierkezos and I.E.Molinou , J. Chem.Eng. Data , 45(5), (2000) , 819-822.
- 3. K.K.Nippon , Chemical Soc. Japan , (3), (1999) ,203-206.
- 4. B.A. Akrawi , Raf. Jour. Sci, 13, 1, (2002) , 63-70
- 5. A.A.Al-Sattar, Raf. Jour. Sci., 13, 3, (2002), 9-18.
- W.L.F.Armarego , D.D.Perrin, "Purification of Laboratory Chemicals". 4 th Edit., (1998) , p. 199.
- 7. G.Jones and B.C.Bradshow , J.Amer.Chem.Soc. 55 , (1933) , 1780-1784.

- 8. W.H. Lee and R.J.Wheaton , J. Chem. Soc. Faraday Trans. II, 74 , (1978) ,743.
- 9. W.H. Lee and R.J.Wheaton.. Part 3". J. Chem. Soc. Faraday Trans. II, 75, (1979), 1128.
- A.H.Naema ,Iraq J. of Chem., Vol. 28, No. 1,(2002).
- 11. P.W.Atkines "Physical Chemistry". 3rd Ed., Oxford University Press, (1986).
- Abdul-Majeed M., Banan A.A. and Yasser O.H., Muta Journal for research and studied ,Vol. 11, No. 5. (1996).
- 13. K.J. Laidler, "Chemical Kinetics". 2nd Ed., McGraw-Hill Inc., New York, (1965).
- 14. P. Hemmes ,,J.of physical chemistry .vol 78, No 9 , (1974) , 907-909.

التوصيل الكهربائي للمركب $Ni(phen)(H_2O)_4]Cl_2$ في مزيج من الميثانول والماء بدرجات حرارية مختلفة

ياسر عمر العلاف و عمر عادل شريف و شيماء هاشم عبد الرحمن قسم الكيمياء ، كلية العلوم ، جامعة الموصل، العراق، جمهورية العراق

الملخص

تم قياس التوصيلية الالكتروليتية لمعقد النيكل (II) الحاوي على مزيج من الليكند في مذيب مزدوج مكون من الميثانول والماء بنسب مختلفة تتراوح بين (0.0-1.0-1.0) ميثانول في درجات حرارية بين (0.0-1.0-1.0) ميثانول في درجات حرارية بين المكافئة عند التخفيف مطلقة . حيث تم قياس التوصيلية المو لارية المكافئة عند التخفيف اللانهائي (0.0-1.0-1.0) و وثابت التجمع الايوني (0.0-1.0-1.0) و المسافة بين الايونيات في المحلول(0.0-1.0-1.0) و تم تحليل النتائج التوصيلية باستخدام معادلة ليويون وحسبت كذلك الدوال الثرموداينيمكية لعملية التجمع ألايوني ووجد

ان القوى الكولومية هي التي تلعب دوراً هاماً في عملية التجمع الايسوني وكذلك حسب ناتج فالدن (Λ_0 η_0) لكل مكون من المذيب حيث اعطى علاقة خطية بين لوغارتيم ثابت التجمع الايوني ($Log\ K_A$) ضد مقلوب ثابت العزل (1/D) للوسط والذي يبين ميل الايونات الى التجمع في المحلول والتذاوب الكاتيوني والى التفاعلات ذات المديات القصيرة للتداخل والتي تحصل بين الايونات و جزيئات المذيب .