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ASTRACT 
 

A suggested solution for dynamic analysis of stiffened and un-stiffened laminated 
plates is presented in this work. The First order laminated plate theory is used. The equations 
of motion are solved by using the modal analysis of forced vibration for multi degrees of 
freedom. The applied load for this study aresine, rectangular, expansion, ramp and triangular 
pulses. The method of applied these loads is centrally and uniformly distributed across the 
plate. 

The deflection and stresses for each layer are presented for stiffened and un-stiffened, 
symmetrical and un-symmetrical, cross ply and angle ply, laminated composite plate with 
respect to the plate side-to-thickness ratio, aspect ratio, material orthotropy, and lamination 
scheme, number of layer of laminated plate, number of stiffeners, high to width of stiffener 
ratio, high of stiffener, the width of stiffener, and the stiffener properties. 

The results are very close compared with finite elements method using ANSYS 
program and withReddy 1982.  
 

 
الخلاصة :- 

مقوات. حيث تم في هذا البحث ال تم اقتراح حل تحليلي للتصرف الديناميكي للصفائح المتراكبة المقوات والغير 
) Modal Analysis). تم حل المعادلات العامة للحركة عن طريق استخدام نظرية ال(FSDTاستخدام نظرية ال(

للاهتزاز متعدد درجات الحرية بتأثير احمال متغيرة مع الزمن. حيث تم تسليط حمل ديناميكي متغير مع الزمن من نوع 
)Transient Load على شكل موجة جيب، مستطيلة، دالة لوغاريتمية، مثلثة (من قيمة صفر ال قيمة اخرى)، او دالة (

مثلثة الشكل. حيث تم تسليط هذا الحمل على الصفيحة بطريقتين، متمركز في المنتصف او موزع بصور منتظمة على 
الصفيحة. 

 الازاحة والاجهادات لكل طبقة من طبقات الصفيحة تم ايجاد للصفائح المقوات والغير المقوات (المتناظرة والغير 
متناظرة، للطبقات المتعامدة الالياف والمائلة الالياف) بتاثير نسبة طول الصفيحة للسمك، طول الصفيحة للعرض، نسبة 

خواص الصفيحة، زاوية الالياف للصفيحة، عدد الطبقات للصفيحة، عدد اجزاء التقوية، نسبة ارتفاع الى عرض اجزاء 
التقوية، ارتفاع اجزاع التقوية، عرض اجاء التقوية، وخواص اجزاء التقوية. 

 النتائج تبين تقارب جيد مقارنة مع نتائج طريقة العناصر المحددة المستخدمة عن طريق استخدام برنامج 
 ).Reddy 1982) ومقارنة مع الابحاث السابقة (ANSYSال(
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INTRODUCTION 
 

The composite plates have high stiffness-to-weight ratio, and flexible anisotropic 
property which can be tailored through variation of the fiber orientation and stacking sequence, 
Fiber-reinforced laminated composites are finding increasing applications, and therefore, the 
stress and deformation characteristics of composite plates are receiving greater attention. 

With the increased application of composites in high performance aircraft, the studies 
involving the assessment of the dynamic response of laminated composite-structure designers 
are also increased. 

Much of the previous research in the analysis of composite plates is limited to linear 
problems, and many of them were based on the classical thin-plate theory, which neglects the 
transverse shear deformation effects. 

Librescu et al. 1990, presented the dynamic loading conditions considered here include 
sine, rectangular and triangular pulses while spatially, they are considered as sinusoidally 
distributed. The results obtained as per a higher-order plate theory are compared with their first 
order transverse shear deformation and classical counter-parts.Reddy 1982, presented  
numerical results for deflections and stresses showing the effect of plate side-to-thickness ratio, 
aspect ratio, material orthotropy, and lamination scheme. 

Cederbaum and Aboudi 1989, applied the first-order as well as two high-order shear 
deformation theories for the investigation of the laminated plate’s response. 

Khdeir and Reddy 1991, used the exact solutions of rectangular laminated composite 
plates with different boundary conditions are studied.The Levy-type solutions of the classical 
first-order and third-order shear deformation theories are developed using the state-space 
approach. 

Bose and Reddy 1998, presented a unified third-order laminate plate theory that contains 
classical, first-order and third order theories as special cases are presented. Analytical solutions 
using the Navier and Levy solution procedures are presented. 

Reddy and Chao 1981, obtained the numerical results of deflections and stresses for 
rectangular plates for various boundary conditions, loading, staking and orientation of 
layers, and material properties. 

In this work the analytical solution for displacement and stresses of laminated plates in 
bending subject to dynamic loading is presented. The investigations deal with the analytical 
solution of composite plates subjected to time dependent loading, therefore, 
 
EQUIVALENT SINGLE LAYER THEORIES (ESL) 
 

In the “ESL” theories, the displacements or stresses are expanded as a linear combination 
of the thickness coordinate and undetermined functions of position in the reference surface, 
 

∑
=

=
iN

j
jZyxi

jzyxi
0

),(),,( φφ ,  for i=1,2,3.                                                          (1) 

Where Ni are the number of terms in the expansion. φi
j can be either displacements or stresses. 

 
Classical Laminated Plates Theory (CLPT) 
 

The displacement filed of laminated plates are, Rao 1999, 
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Where (u,v,w) are the displacements, along the coordinate lines, of a material point on the xy-
plane. 

The equations of motion are, 
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Where, 
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For ρ(K) being the material density of Kth
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 layer. 
The laminate constitutive equations can be expressed in the form, 

 

                                                                               (5) 

Where, 
 
εx=u,x  , εy=v,y  , γxy=u,y+v,x , Kx=w,xx , Ky=-w,yy , Kxy=-2 w,xy                                    (6) 
 

The Aij, Bij, Dij 

∑ ∫
= −

=
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kz

kz
dzZZkQDBA
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)2,,1()(),,(

 (i,j =1,2,6 ) are the respective inplane, bending –inplane coupling, and 
bending or twisting, respectively, 

 

                                                                       (7) 

Here Zm denotes the distance from the mid-plane to the lower surface of the Kth

[ ][ ] [ ] [ ][ ]∆=+∆ MfL

 layer. 
Eqs. (3) and (5) can be conveniently expressed in the operator form as, 

 
                                                                                                      (8) 

 
Where, 
M11 =I1 , M12=0 , M13=-I2 dx , M22=I1 , M23=-I2 dy  , M33=I1 –I3 (dxx+dyy). 
[∆]=[u   v   w]T ,[f]=[0   0   q(x,y,t)]T.    
And,  
L11=A11 dxx +2 A16 dxy +A66 dyy , L12=A12 dxy +A16 dxx +A26 dyy +A66 dxy ,  
L13=-B11 dxxx -B12 dxyy -3 B16 dxxy - B26 dyyy -2 B66 dxyy  , L22=2A26 dxy +A66 dxx +A22 dyy ,  
L23=-B16 dxxx –3 B26 dxyy –2B66 dxxy –B12 dxxy –B22 dyyy ,  
L33= -D11 dxxxx -2 D12 dxxyy –4 D16 dxxxy–4 D26 dxyyy –4 D66 dxxyy –D22 dyyyy .                   (9) 
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First-OrderShear Deformation Theory (FSDT) 
 

This theory accounts for linear variation of inplane displacements through the thickness, 
 

u1(x,y,z,t)=u(x,y,t)+Z ψx(x,y,t) 
u2(x,y,z,t)=v(x,y,t)+Z ψy(x,y,t) 
u3(x,y,z,t)=w(x,y,t) .                                                                                           (10) 

Where, t is the time; u1 , u2 , u3  are the displacements in x,y,z directions, respectively; 
and ψx and ψx are the slopes in the xy and yz planes due to bending only.  

 
The equations of motion are, 

 
Nx,x+Nxy,y=I1 u,tt +I2ψx,tt 
Nxy,x+Ny,y=I1 v,tt+ I2ψy,tt 
Nxz,x+Nyz,y+q(x,y,t)=I1w,tt 
Mx,x+Mxy,y -Nxz=I2 u,tt +I3ψx,tt 
Mxy,x+My,y- Nyz =I2 v,tt+ I3ψy,tt
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dzZZkIII
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                                                                              (11) 
 
Where, 

 

                                                          (12) 

The laminated constitutive equations can be expressed in the form, 
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Where, 
εx=u,x , εy=v,y , γxy=u,y+v,x , γyz=ψy+w,y , γxz=ψx+w,x , Kx=ψx,x , Ky=ψy,y , Kxy=ψx,y +ψy,x 
                                                                                                                                (14) 
And,K45, K44  and K55

[ ][ ] [ ] [ ][ ]∆=+∆ MfL

 are correction factors. 
Eqs. (11) and (13) can be conveniently expressed in the operator form as, 

 
                                                                                               (15) 

 
Where, 
[∆]=[u   v   w   ψxψy]T  ,   [F]=[0   0   q(x,y,t)  ]T .  
And,M11=M22=M33 =I1 , M44 =M55 =I3 , M14 =M25=I2 ,and other terms of Mίj

L

=0 (for ί≠j). 
And, [L] is given as, 

11=A11dxx+2A16dxy+A66dyy ,  L12=A12dxy+A16dxx+A26dyy+A66dxy  , L13

L

=0  

14=B11dxx+2B16dxy+B66dyy,  L15=B12dxy+B16dxx+B26dyy+B66d

L

xy 

22=2A26dxy+A66dxx+A22dyy  , L23=0   ,  L24=B16dxx+B66dxy+B12dxy+B26d
L

yy 
25=2B26dxy+B66dxx+B22dyy  ,  L33=2A45dxy+A55dxx ,  L34=A55dx+A45dy ,  L35=A45dx+A44dy 

L44=D11dxx+2D16dxy+D66dyy-A55, L45=D12dxy+D16dxx+D26dyy+D66dxy-A45 
L55=2D26dxy+D66dxx+D22dyy-A44. 
 



DYNAMIC ANALYSIS OF STIFFENED AND                                                     Prof. Dr. Muhsin J. Jweeg     
UNSTIFFENED COMPOSITE PLATES                                                                     Dr. Muhannad Al-Waily 
 
 

693 

ACTUAL DISPLACEMENTS FOR SIMPLY-SUPPORTED LAMINATED PLATE 
 
Cross-Ply Laminated Plate 
 

The general actual displacements for cross-ply laminated plate are, Bose and Reddy 
1998, 
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Angle-Ply Laminated Plate 
 

The general actual displacements for Angle-ply laminated plate are, 
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GENERAL SOLUATION FOR EQUATIONS OF MOTION 

 
The general equations of motion are, 

 
[ ][ ] [ ] [ ][ ]∆=+∆ MfL                                                                (18) 
 

By substituting the actual displacements, eq. (16) or (17), into eq. (18), than by 
premultiplying the result by [ ∆ (x,y)]T

[ ][ ] [ ][ ] [ ]FKM =∆+∆

 and integral of xy, we get, 
 

                                                                (19) 
 
Where, 
[ ] [ ]Tyxvyxuyx ..................),(),(),( =∆  
And [M] and [K] are mass and stiffness matrices, respectively; [∆(t)] and [F] are displacement 
of time and load vector, respectively. 
 
Cross-Ply Laminated Plate 
 

Depending on the used theory, substitution eq. (16) into eq. (18) , get, 
 

[ ][ ] [ ][ ] [ ]FKM =∆+∆                                                                   (20) 
 
Where,[M], [K], [∆(t)] and [F] as, for (FSDT), 
K11=α2A11+β2A66 , K12=αβ(A12+A66)  , K13=0  , K14=α2B11 , K15=0  , K22=α2A66+β2A22, 
K23=0  
K24=0  , K25=β2B22 , K33=α2A55+β2A44 , K34=αA55 , K35=βA44 , K44=α2D11+β2D66+A55 
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K45=αβ(D12+D66)  , K55=α2D66+β2D22+A44 
And ,[M] as in eq. (15)  
[∆(t)]=[u(t)   v(t)   w(t)   ψx(t)   ψy(t)]T [ ]TtqtF 00)(00)( = , . 
Where,  

∫ ∫=
b a

tfdydxyxqyx
ab

tq
0 0

)(..).,(.sin.sin4)( βα  

The [M] and [K] matrix for symmetric cross-ply are as for antisymmetric cross-ply for 
subjected (Bij= Eij=Gij

 

=0). 
 
Angle-ply Laminated Plate 
 

Depending on the used theory, substitutioneq. (17) in to eq. (18), get, 

[ ][ ] [ ][ ] [ ]FKM =∆+∆                                                                                                   (21) 
Where, [M], [K], [∆(t)] and [F] as, for (FSDT), for anti-symmetric angle-ply laminated plates, 
K11=α2A11+β2A16 , K12=αβ(A12+A66)      , K13=0  , K14=2αβB16 , K15=α2B16+β2B26 
K22=α2A66+β2A22      , K23=0  , K24=α2B16+β2B26, K25=2αβB26 , K33=α2A55+β2A44 , 
K34=αA55 
K35=βA44 , K44=α2D11+β2D66+A55 , K45=αβ(D12+D66)  , K55=α2D66+β2D22+A44 . 
And, [F] and [∆(t)] as in equation (20). 
And, M11=M22=M33=I1 ,M44=M55=I3 ,Mij
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STIFFENED LAMINATED PLATES 

 
To achieve a uniform distribution over the entire section consisting of plate and ribs, the 

spacing of the ribs must be small in comparison with whole span.A typical orthotropic element 
stiffened eccentrically with open ribs in x and y-directions is shown in Fig. 1. 
 
Classical Plate Theory (CLPT) 
 

The refined analysis of such a plate, the governing differential equations are expressed in 
terms of the displacements, u, v, and w, of the middle surface of the plate in the directions x, y, 
and z, respectively. 

The force and moment relations for stiffened laminated plate are, Troitsky (1976), 
 

                                                                                    (22) 

 

Where, 
... plstunM

N
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  are force and moment relations for un stiffened laminated plate, 

and
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   are force and moment relations for stiffened plate as, 
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For,
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Where, st
y

st
x EandE  are modules of elasticity of  stiffeners in x and y-directions, 

respectively. 
Then, by substituting equation (22) in to equations of  motion, we get [M] and [K] matrices as, 
[M]=[M]st.+[M]un.st. and [K]=-[L], for [L]=[L]st +[L]un.st.  
Where, [M]un.st. ,[L]un.st. are mass and stiffness matrices for un stiffened laminated plate, and 
[M]st.,[L]st.
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 are mass and stiffness matrices for stiffeners  determined as, 
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For st

y
st
x and ρρ  are the density of stiffeners in x and y-directions respectively. 

 
First-Order Shear Deformation Theory (FSDT) 

 
The force and moment relations for stiffened laminated plate are, 
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Where, [N], [M] as in equations (22) , 
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Where, Gst)x and Gst)y  are shear modules of elasticity of stiffeners in x and y-directions, 
respectively. 

Then, by substituting equation (26) into equations of  motion, Eq. (11), we get [M] and 
[K] matrices as, 

 
[M]=[M]st.+[M]un.st. and [K]=-[L], for [L]=[L]st +[L]un.st.  
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MODAL ANALYSIS 
 

For a system with (n) coordinates or degrees of freedom, the governing equations of 
motion are a set of (n)  coupled ordinary differential equations of second order. The solution of 
these equations becomes more complex when the degree of freedom of the system (n) is large 
and/or when the forcing functions are non-periodic. In such cases, a more convenient method 
known “Modal analysis” can be used to solve the problem. 

The equation of motion of a multi-degree of freedom system under external forces are 
given by,Singiresu 1995, 

 
[ ][ ] [ ][ ] [ ]FKM =∆+∆                                                                                (28) 
  

To solve equation (28) by modal analysis, it is necessary first to solve the eigenvalue 
problem and find the natural frequencies ω1,ω2, ……, ωn

[ ]P~
 and the corresponding normal 

weighted modal . 
The solution vector of equation (28) can be expressed by a linear combination of the 

normal weighted modal, 
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[ ] )(~)( tqPt p


=∆                                                                                         (29) 
 

Where,
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p

p

p 

                                                                                    (30) 

 
Where )(1 tqp , )(2 tqp ,….., )(tq np are time-dependent generalized coordinates, also 

known as the “principal coordinates or modal participation coefficients”.  
By substituting equation (29) into equation (28) , than, premultiplying throughout by [ ]TP~ , get, 

 
[ ] )()()( 2 tQtqtq ppp


 =+ ω                                                                         (31) 

 
Where, 
 

[ ] [ ] [ ][ ] [ ] [ ] [ ][ ]PKPPMPI TT ~~,~~ 2 == ω  and [ ] )(~)( tFPtQ T
p


=  

 
Equation (31) denotes a set of (n) uncoupled differential equations of second order, 
 

)()()( 2 tQtqtq ipipiip =+ω                                                                                 (32) 
 
COMPUTER PROGRAMMING 

 
The computer programs designed in this work are concerned with solving the dynamic 

problems for composite laminated plates using any theory for laminated plates. The computer 
programs constructed herein are coded in “Fortran Power Station 4.0” language, the following 
flow chart of the dynamic program ,as shown in Fig. 2. 

 
 
RESULTS AND DISCUSSION 
 
Un-Stiffened Plates 
 

The case study discussed here is a un-stiffened laminated simple supported plate Fig. 3. 
with dimensions and material properties give below using the first-order shear deformation 
theory (FSDT) and applying the suggested analytical solution and finite element method. 

Fig. 4.shows a comparison of the present work solutions by Analytical and finite 
elements method with the numerical solution of Reddy, J. N. (1982)they are given for two 
layer simply supported cross-ply laminated plate subjected to sinusoidal Pulse loading 
(q(x,y,t)=P(x,y), for P(x,y)=qo π sin( x/a)sin(π y/b) ,qo=10 N/cm2) and the properties of plate, 
E2=2.1*106 N/cm2, E1/E2=25, G12=G13=G23=0.5E2, ρ=800 Kg/m3, ν=0.25, a=b=25 cm , h=5 
cm. 

Fig. 5.shows a comparison of the present work with the numerical solution of Reddy, J. 
N. (1982)they are given for simply supported two layer cross-ply laminated plate subjected to 
sinusoidal Pulse loading (q(x,y,t)=P(x,y), for  
P(x,y)=qo π sin( x/a)sin(π y/b) ,qo=10 N/cm2) ,for properties of plate:- 
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E2=2.1*106 N/cm2, E1/E2=25, G12=G13=G23=0.5E2, ρ=800 Kg/m3, ν=0.25, a=b=25 cm , h=1 
cm. 

The following properties were using for simply supported Laminated Plates ,in Figs. 6, 7, 
and 8, for qo=10 N/cm2 ,to=0.0005 sec, simply supported laminated plates, 
E2=2.1*106 N/cm2, E1/E2=25, G12=G13=G23=0.5E2, ρ=1500 Kg/m3, ν=0.25. 
a=b=25 cm , h=5 cm . 

Fig. 6. represents the variation of central transverse deflection with time for 
antisymmetric cross-ply (0/90/0/…) laminated plates under sinusoidal variation loading (plus 
q(x,y,t)=P(x,y) ,Ramp loading q(x,y,t)=P(x,y) t/to  and sine loading q(x,y,t)=P(x,y) sinπt/to ) 
for qo=10 N/cm2 ,to=0.0005 sec ) solutions by analytical and (F.E.M).The deflection due to 
pulse loading higher in magnitude than the other loading because the pulse load subjected 
suddenly with constant value with time.   

Fig. 7. represents the variation of central transverse deflection with time for 
Antisymmetric cross-ply (0/90/0/…) laminated plates under sinusoidal (P(x,y)=qo

π
 

sin( x/a)sin(π y/b))  and uniform (P(x,y)=qo ) plus loading solutions by analytical and 
(F.E.M). The deflection due to uniform load higher in magnitude than the deflection due to 
sinusoidal loading. 

Fig. 8. represents the variation of central transverse deflection with time for angle-ply 
and cross-ply laminated under sinusoidal Ramp loading solution by analytical and (F.E.M). 
The (0/90/…) laminated higher in magnitude than the (45/-45/…) laminated because at 
(θ=450/-450/…) the extension and bending stiffnesses A16, A26, D16 and D26 appear to have a 
significant effect while at (θ=00/900/…)the extension and bending stiffnesses A16, A26, D16 and 
D26 are zero.  

The following properties were used for simply supported Laminated Plates, Figs. (9 to 
14), 
E1=130.8 Gpa, E2=10.6 Gpa, G13=G23=6 Gpa ,G23=3.4 Gpa , ρ=1580 Kg/m3, ν=0.25. 
a=b=1 m h=0.02 m, and qo=10 kn/m2 to=0.05 sec.  

Fig. 9. represents the effect of the degree of othotropy (E1/E2) (E2=10.6 Gpa) on the 
deflection with time of simply supported antisymmetric cross-ply laminated plates subjected to 
sinusoidal plus loading solution by analytical and (F.E.M). From the figure, increasing the 
material orthotropy ratio (E1/E2) will decreases the deflection. Fig. 10. shows the effect of the 
aspect ratio (a/b) on the deflection of the simply supported antisymmetric cross-ply laminated 
plates(a=1 m) subjected to sinusoidal Ramp loading solution by analytical and (F.E.M). From 
the results, the increase of (a/b) ratio increases the deflection. 

Fig. 11.  shows the effect of the (a/h) ratio on the deflection of the simply supported 
antisymmetric cross-ply laminated plates (a=1 m)subjected to sinusoidal sine loading solution 
by analytical and (F.E.M). From the results, the increase of (a/h) ratio increases the deflection 
of laminated plates.Fig. 12. shows the effect of the number of layer of simply supported 
antisymmetric cross-ply laminated plates on the deflection of plate subjected to sinusoidal 
Pulse loading solution by analytical and (F.E.M) . The central deflection of laminated plates 
decreases with increasing number of layers.  

Fig. 13. shows the effect of the lamination angle (θ0) on the deflection of simply 
supported antisymmetric angle-ply laminated plates under sinusoidal ramp loading solution by 
analytical and (F.E.M). It is apparent from the results that the deflection decreases with 
increasing the angle of laminated.Fig. 14. shows the effect of the number of layer of simply 
supported antisymmetric angle-ply laminated plates on the deflection of plate subjected to 
sinusoidal sine loading solution by analytical and (F.E.M). The central deflection of laminated 
plates decreases with increasing number of layers.  

The following properties were used for simply supported laminated plates, for analytical 
solutions, in figs. 15 to 20, qo=10 kn/m2 ,to=0.05 sec, simply supported, 
E1=130.8 Gpa ,E2=10.6 Gpa ,G12=G13=6 Gpa, G23=3.4 Gpa ,ρ=1580 Kg/m3, ν=0.28. 
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a=b=1 m ,h=0.02 m.  
Fig. 15. represents the stress-x in each layer, at the middle of layers, with time for four 

layers Antisymmetric cross-ply (0/90/0/…) laminated plates under uniformly ramp loading 
q(x,y,t)=qo t/to for qo=1 N/cm2 ,to=0.05 sec), at x=a/2, y=b/2. The maximum value of σx is at 
layer-1 and the stress-x are antisymmetric about the middle plane. Fig. 16. represents the 
stress-x in layer-1, at the middle of layer, with time for different number of layer for 
Antisymmetric cross-ply (0/90/0/…) laminated plates under uniformly ramp loading 
q(x,y,t)=qo t/to for qo=1 N/cm2 ,to=0.05 sec), at x=a/2, y=b/2. The value of σx at layer-1 
increase with increase the number of layers 

Fig. 17. represents the effect of the lamination angle(θ0) on theσx at layer-1 for four 
layers antisymmetric angle-ply  laminated plates under uniformly ramp loading, at x=a/2, 
y=b/2. From the results the σx decreases with the increase of the angle of laminated to the 450 
,the minimum value at 450 and the maximum value at 00.Fig. 18. represents the comparison of 
stress-x with stress-y at layer-1 for four layers antisymmetric cross-ply laminated plates for 
difference E1/E2 under uniformly pulse loading, at x=a/2, y=b/2. From the results, stresses-x 
are more than stresses-y at E1/E2≠1 and Stress-x equal stress-y for E1/E2=1.  

Fig. 19. represents the comparison stress-x with stress-y at layer-1 for four layers 
antisymmetric cross-ply laminated plates for difference aspect ratio under uniformly ramp 
loading, at x=a/2, y=b/2. From the results, stresses-x are more than stresses-y.    
Fig. 20. represents the stress-y in layer-1, at the middle of layer, with time for different number 
of layer for Antisymmetric cross-ply (0/90/0/…) laminated plates under uniformly sine loading 
q(x,y,t)=qo sin(πt/to) for qo=1 N/cm2 ,to=0.05 sec), at x=a/2, y=b/2. The value of σy at layer-1 
decreases with the increase of the number of layers. 
 
Stiffened Laminated Plates 
 

The case study discussed here is a stiffened laminated simple supported plate Fig. 1. with 
dimensions and material properties give below using the first-order shear deformation theory 
(FSDT) and applying the suggested analytical solution and finite element method. 

The following properties were used for simply supported stiffened laminated plates, in 
Figs. 21. to 27, qo=10 kn/m2 ,to=0.05 sec, dynamic numerical and analytical solution: 
E1=130.8 Gpa ,E2=10.6 Gpa ,G12=G13=6 Gpa, G23=3.4 Gpa ,ρ=1580 Kg/m3, ν=0.28. 
a=b=1 m ,h=0.02 m. 
And, for stiffeners: 
Est')x=Est)y=E1 ,Gst.)x=Gst)y=G12 ,hx=hy=0.025 m, tx=ty=0.0025 m,ρst)x=ρst)y= ρ. 

Comparison of the stiffened laminated plates with the un stiffened laminated plate are 
shown in Fig. 21 , for cross-ply two and four layer for un stiffened laminated and two and four 
layer, and three stiffeners in x and y-directions for stiffened laminated plates, subjected to 
sinusoidal pulse loading. 

Fig. 22. shows the effect of the number of stiffeners of the four layer antisymmetric 
cross-ply stiffened laminated plates subjected to sinusoidal pulse loading. The figure shows 
that the increase of the numbers of stiffeners decreases the deflection of stiffened laminated 
plates. 

Fig. 23. shows the effect of (Est/E1) ,( for Est)x=Est)y and E1=130.8 Gpa) for four layer 
and four stiffeners of stiffened laminated plates subjected to sinusoidal pulse loading. From the 
figure, the deflection of stiffened laminated plates decreases with increase (Est./E1) ratio, 
decreases with increase Est. . 

Fig. 24. shows the effect of the higher to width (hs/ts), ratio of stiffeners ,(for 
hs=hx=hy=.025 m and ts=tx=ty) for four layer and four stiffeners cross-ply stiffened laminated 
plates subjected to sinusoidal Ramp loading. From the figure, the deflection of stiffened plates 
increase with increases (hs/ts) ratio, increase with decreases ts . 
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Fig. 25. represents the effect of the distance of stiffeners in x and y directions on the 
central deflection for four layer antisymmetric cross-ply stiffened  laminated plates under 
sinusoidal pulse loading. From the results, the deflection decrease with decrease the distances 
of stiffeners. 

Fig. 26. represents the effect of the aspect ratio for different distance of stiffeners in x 
and y directions on the central deflection for four layer antisymmetric cross-ply stiffened  
laminated plates under sinusoidal pulse loading. 

Fig. 27. shows the effect of the higher of stiffeners to the thickness of  Laminate (hs/hp) 
ratio, (hs=hx=hy and hp=h=0.02 m), for four layer and three stiffeners cross-ply stiffened 
laminated plates subjected to sinusoidal sine loading. The figure showed that the deflection or 
stiffened laminated plates decreases with increase (hs/hp) ratio, decreases with increase hs . 

The following properties were using for simply supported laminated plates, in figs. 28 to 
32, qo=10 kn/m2 ,to=0.05 sec, dynamic analytical solution:  
E1=130.8 Gpa ,E2=10.6 Gpa ,G12=G13=6 Gpa, G23=3.4 Gpa ,ρ=1580 Kg/m3, ν=0.28. 
a=b=1 m ,h=0.02 m. 
And, for stiffeners:- Est')x=Est)y=E1 ,Gst.)x=Gst)y=G12 ,hx=hy=0.025 m, tx=ty=0.0025 
m,ρst)x=ρst)y= ρ. 

Fig. 28. represents the effect of the distance of stiffeners in x and y directions on the 
stress-x in layer-1 for four layer antisymmetric cross-ply stiffened laminated plates under 
uniformly ramp loading, at x=a/2, y=b/2. From the results, the stress-x decrease with decrease 
the distances of stiffeners. 

Fig. 29. represents the stress-x in layer-1, at the middle of layers, with time for four 
layers Antisymmetric cross-ply (0/90/0/…) stiffened laminated plates for difference number of 
stiffeners in x and y directions under uniformly sine loading, at x=a/2, y=b/2. From the results, 
the stress-x decrease with increase the number of stiffeners. 

Fig. 30. represents the stress-x in layer-4, at the middle of layers, with time for four 
layers Antisymmetric cross-ply (0/90/0/…) stiffened laminated plates for difference number of 
stiffeners in x and y directions under uniformly sine loading, at x=a/2, y=b/2. From the results, 
the stress-x decrease with increase the number of stiffeners. 

Fig. 31. represents the comparison σx for stiffened with unstiffened laminated plates in 
each layer for four layer antisymmetric cross-ply for stiffeners in x and y directions under 
uniformly sine loading, at x=a/2, y=b/2. The stresses-x for stiffened plates are less than that 
corresponding of unstiffened plate. 
Fig. 32. represents the comparison σy

1. The suggested analytical solution is a powerful tool for un-stiffened laminated plated 
subjected to time depended loading, by solution the general differential equations of 
motion of (FSDT) for laminated plated by using separation method for differential 
equation and model analysis method foe forced vibration. 

 for stiffened with unstiffened laminated plates in each 
layer for four layer antisymmetric cross-ply for stiffeners in x and y directions under uniformly 
sine loading, at x=a/2, y=b/2. The stresses-y for stiffened plates are less than that 
corresponding of unstiffened plates. 
 
CONCLUSIONS 
 

2. The presented work showed that the increasing the numbers of layers for laminated, the 
angle of fibers, the modules of  elasticity E1 more than E2

3. The presented work shows that the increasing  the aspect ratio or angle of fibers 
decreases the stress-x, and the increase of number of layer or the E

, the aspect ratio, the 
thickness of laminated decreases the deflection of laminated plates. 

1/E2 ratio increases 
the stress-x. And the increase of the number of layers or the E1/E2 ratio decreases the 
stress-y.  



DYNAMIC ANALYSIS OF STIFFENED AND                                                     Prof. Dr. Muhsin J. Jweeg     
UNSTIFFENED COMPOSITE PLATES                                                                     Dr. Muhannad Al-Waily 
 
 

701 

4. The presented work shows that increasing the number of stiffeners, the higher, the 
width, and the modules of elasticity of stiffeners decreases the deflection of stiffened 
laminated plates. And the increasing the numbers of stiffeners decreases the stress in 
each layer for stiffened laminated plates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Dimensions and Directions of Stiffened Laminated Plates. 
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Fig. 2. Flow Chart for Computer Program of Dynamic Solution for Laminated Plates. 
 

Start 

Open 
 

Read input data (Properties 
of Laminated Plate and 

  
 

Solve For Cross-Ply Laminated 
Pl  

 

Calculate Stress-Strain Relation of lamina ,[Q] 
 

Read input data (Dimensions 
of Laminated Plate and 

 
 

Loop  N=Ns ,Nf ,∆N 

Loop I=1,N,1 

Calculate Stress-Strain Relation of 
l i t d [ ]φ  M t i   

Calculate Resultants Stress Relation 
of Laminated, [Aij], [Bij],…Matrices. 

 
 

I=1 

Calculate [K] and [M] Matrices of 
Laminated Plate and stiffeners. 

 
 Calculate The Frequencies and The Mode 

Shapes of Laminated Plate, by Subroutine 
  
 Calculate Deflection and Stress of 

Laminated Plate, by Subroutine 
  
 

∆N 

Solve For Angle-Ply Laminated 
Pl  

 

Loop I=1,N,1 

Loop N= Ns ,Nf ,∆N 

Loop θ=0,90, ∆θ 

Calculate Stress-Strain Relation 
of laminated, [ ]Q  Matrix. 

Calculate Resultants Stress Relation 
of Laminated, [Aij], [Bij],...Matrixes. 

  
 

I=1 

Calculate [K] and [M] Matrixes 
of Laminated Plate and stiffeners. 

 
 Calculate The Frequencies and The Mode 

Shapes of Laminated Plate, by Subroutine 
   
 

Calculate Deflection and Stress of 
Laminated Plate, by Subroutine 

  
 

∆θ 

∆N 

End 



DYNAMIC ANALYSIS OF STIFFENED AND                                                     Prof. Dr. Muhsin J. Jweeg     
UNSTIFFENED COMPOSITE PLATES                                                                     Dr. Muhannad Al-Waily 
 
 

703 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Dimensions and Directions of Un-Stiffened Laminated Plate. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Central deflection due to Sinusoidal Pulse loading for two Layer. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Central deflection due to Sinusoidal Pulse loading for two Layer. 
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Fig. 6. Central Deflection for Variant dynamic Load for sinusoidal Load (n=4). 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 7. Central deflection due to Variant d Pulse loading (n=4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Central deflection due to Sinusoidal Ramp Loading (n=4). 
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Fig. 9. Central deflection due to Sinusoidal Pulse loading for N=4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Central deflection due to Sinusoidal Ramp Loading for (N=4). 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 11. Central deflection due to Sinusoidal Sine Loading for (N=4) 
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Fig. 12. Central deflection due to Sinusoidal Pulse loading for (0/90/…) plates. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 13. Central deflection due to Sinusoidal Ramp Loading for (N=6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Central deflection due to Sinusoidal Sine Loading for (θ=45/-45/…). 
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Fig. 15. Stress-x in each Layer due to Uniform Ramp Loading for (N=4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Stress-x in Layer-1 due to Uniform ramp Loading. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. Stress-x at Layer-1 due to Uniform Ramp Loading for N=4. 
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Fig. 18. Stress-x and Stress-y in Layer-1 due to Uniform Pulse loading for N=4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. Stress-x and Stress-y in Layer-1 due to Uniform Ramp loading for N=4. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 20. Stress-y in Layer-1 due to Uniform sine loading. 
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Fig. 21. Comparison of Central Deflection for Stiffened and Un-stiffened Cross-Ply 
Laminated plates 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 22. Central deflection for stiffened Laminated Plates due to sinusoidal pulse loading 
for cross-ply laminated plates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 23. Central deflection for stiffened Laminated plates due to sinusoidal pulse loading 
for cross-ply laminated plates. 
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Fig. 24. Central deflection for stiffened plates due to sinusoidal Ramp loading for 
 cross-ply laminated plates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 25. Central deflection due to Sinusoidal Pulse Loading for stiffened cross-ply 
laminated plates for N=4 (a/b=1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 26. Central deflection due to Sinusoidal Pulse Loading for stiffened 
 laminated plates for N=4. 
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Fig. 27. Central deflection for stiffened plates due to sinusoidal sine 
 loading for cross-ply laminated plates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 28. Stress-x in Layer-1 due to Uniform Ramp loading for 
 stiffened laminated plates for N=4. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 29. Stress-x in Layer-1 due to Uniform sine loading for 
 stiffened laminated plates for N=4. 
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Fig. 30. Stress-x in Layer-4 due to Uniform sine loading for 
 stiffened laminated plates for N=4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 31. Stress-x in each Layer due to Uniform sine loading for 
 stiffened laminated plates for Stiffeners=6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 32. Stress-y in each Layer due to Uniform sine loading for 
 stiffened laminated plates for Stiffeners=6. 
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	1
	2
	In the “ESL” theories, the displacements or stresses are expanded as a linear combination of the thickness coordinate and undetermined functions of position in the reference surface,
	LR11R=AR11RdRxxR+2AR16RdRxyR+AR66RdRyyR ,  LR12R=AR12RdRxyR+AR16RdRxxR+AR26RdRyyR+AR66RdRxyR  , LR13R=0
	LR14R=BR11RdRxxR+2BR16RdRxyR+BR66RdRyyR,  LR15R=BR12RdRxyR+BR16RdRxxR+BR26RdRyyR+BR66RdRxy
	LR22R=2AR26RdRxyR+AR66RdRxxR+AR22RdRyyR  , LR23R=0   ,  LR24R=BR16RdRxxR+BR66RdRxyR+BR12RdRxyR+BR26RdRyy
	(28)
	Where,
	and



