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ARTICLE INFO ABSTRACT

Keywords In this study, a novel neural network for the multivariance Bernstein
The neural network of operators' rational powers was developed. A positive integer is
multivariate rational required by these networks. In the space of all real-valued continuous
Bernstein operators, functions, the pointwise and uniform approximation theorems are

Sigmoidal functions, introduced and examined first. After that, the Lipschitz space is used

Pointwise and to study two key theorems. Additionally, some numerical examples
uniform are provided to demonstrate how well these neural networks
approximation approximate two test functions. The numerical outcomes demonstrate

theorems, Lipschitz that as input grows, the neural network provides a better
space. approximation. Finally, the graphs used to represent these neural
network approximations show the average error between the

approximation and the test function.
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1. Introduction

Neural networks (NNs) with a single layer from the type of feed-forward are studied in many

papers [1, 2, 3, 4, 5, 6, 7, 8], with ¢ as the activation function o: R — R, defined as:

n

NGO = ) colax+B),  neN, M

i=0
were, x € R, s € N*,0 < i <n, the B;, ¢; inR, threshold values, coefficients, a;, ;- x in R®

denote to weights, inner product and for o is the activation function o: R — R.

In 2013 [9,10], Costarelli and Spigler introduced neural networks in the univariate and the

multivariate Bernstein and studied the behavior of these neural networks, defined as:
for f: R — R bounded function, and x in R := [ay, b;] X ... X [a, bs].

b bs k
S )+ E e f () ¥ (nx = )
Z nb1 Z[les Wa. (nx _ k)

ki=[na4] """ “ks=[nas]

Fo(f3%) = , nENT (2)

where ¥ is a density function that is built from a sigmoidal function o, k = (ky, ..., k) € Z*, As
usual, the symbols [.] and [.] denote taking the "floor" and the "ceiling™ of a given number,
respectively. Costarelli and Spigler extended Eq. 2 using the Kantorovich type to define and study

approximation theorems to this neural network, defined as [11]:

for f: R - R, and x € R, a locally integrable

b b
e a1l w0t et
Kn(f;x) = 7] - )
Zy=inay] Lke=[nag] Yo XK

Furthermore, Costarelli and Vinti give two formulas similar to the neural networks in form Eq. 2

by using max-product and studying convergence theorems, defined as [12]:

for J,, represents the set of indexes k, where f: R — R, and x € R, a bounded function,

k
Vien f()¥o(nx—K)
Vies,, Yo (nx—K)

M, (f,x) = (4)

where the notation v defines as: Vyec; Ay = sup{Ay:k € J} ,for f:R®* - R,andx € R%, a

bounded function,
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k
Viezs f(5) o (nx—K)
VkeZS ¥ (nx—Kk)

MQ,(f,x) = (5)

In one-dimensional and multi-dimensional scenarios, Shivam and Kumar created and investigated
a neural network of the exponential type and examined their behavior [13]. Additionally, Costarelli
and coworkers [14] developed the multivariate max-product NN utilizing the Kantorovich type,

which is described as:

for f:R = R, and x € R, a bounded and locally integrable function

Vken [ns S Ry S (Wdu |5 (nx-K)

Vkejpn Po(nx-k)

Ka' (f, %) = (6)

In 2021 [15], Mohammad and Abdul Samad introduced and study the sequence of linear

and positive operators of r-th power of the rational Bernstein polynomials, defined as:

for f € C[0,1]and r € N = {1,2, ... }.

o b @f (3)
k=0 br(x)

where b () = (b (0)) . x € [0,1], £ € C[0,1].

Bn,r(f; x) = (7)

Also, can see the family of operators that was established in [16-19], to be used to build new neural
networks. The current study developed a novel neural network based on the multivariance
Bernstein operators' rational r-the powers. First, the pointwise and uniform approximation
theorems are introduced and studied in the space of all real-valued continuous functions on R.
Then, the two theorems above are studied in the Lipschitz space on v. Also, some numerical

examples are given to show the approximation of these neural networks to two test functions.

2. Construction of neural network and Preliminary Results
Several preliminary results are recalled in this part. The measurable is called a sigmoidal function
if satisfying the conditionsxl_i)rpoo o(x) =0and xl_i)rpoo o(x) = 1, such a function:
i) Logistic function g,(x) = (1 + e™*)71;
ii) Gompertz function o,z (x) = e P yeR a, B > 0;
iii) Hyperbolic tangent a3, (x) = %[tanh(x) + 1].
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Also, the function @, (x) is defined as
&, (x) = %[a(x +1)—0o(x—1)],x € R. (8)

Furthermore, as shown in [10], any non-decreasing function and a(2) > o(0) "which isonly a

technical condition" satisfy various assumptions, of which we list a few:

i) the function ¢ € C2(R)is concave for x > 0;
i) gs(x) =0a(x)—1/2,isan odd function;

i) o(x) =0(|x|"1"%) as x » —oo, for some a > 0.
We need to give the following definitions:

Definition 2.1. [10]

Any measurable function with the condition lim {(x) =0, lirP {(x) =1 it's known as a
X—>—00 X—>+ o0

sigmoidal function.

Definition 2.2 [10]
Lipschitz classes are defined as:
Lip(v) = {f €C°(R):3y>0,C >0sothatVXx e R, |f(x+y) — fF(X)| < Cllyll%,
Vyll, <ywith(x+y)eR0<v <1}

The following lemmas stated some properties of the functions @, and ¥,.

3. Main Results

In the following definition, we will define and investigate multivariate NN operators Q,-(f; x):
Definition 3.1

For a bounded and continuous function f: R — R, the neural network of rational r-th powers of
the multivariate Bernstein Q,.(f;x), activated by the sigmoidal function ¢ actingon f, r € N :=
{1,2, ...}, defined by:

o) — 2k Po(nx—K)f(k/n)
Qr (f' X) - Zk 'Pg(nx—k) (9)

observe that Q,.(1;x) = 1, and Q,(.;x) = E,(.;x) for every x € R and n tends to infinity, the
multivariate for the @7 define a function ¥ (x) = ®F (x1) * DF(x3) = ... PF(xs).
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Definition 3.2
For v > 0, the discrete absolutely moment of the function @7 of order v is defined as
my(®P5) = sup Yikez P (x — k) [x — kI”. (10)

X€

The properties of the functions @, and ¥, in [9] and [10] are needed to give and prove the

following Lammas (3.1-3.3) directly.

Lemma 3.1

Some properties of the function @7 (x) defined in R :

i) @&;(x)=0,vx € Rand lirP &f(x) =0;
x—+oo

ii) the function @7 (x) is even;
i) Vx € R, we have ¥ e7 @7 (x — k) < 1/220D forr = 1,2,3, ..;

iv) ®I(x) = 0(|x|7TA*+®)) as x — +oo,
Proof.

One can easily prove this lemma by direct computation and the proving of properties of the

function @,in [9]. m|
The next lemma gives some properties for the function ¥ (x — k).
Lemma 3.2

Some properties of the function &7 (x — K) are defined in RS:

i) Vx € RS, wehave Y ¥7(x — k) <1/2%0-D forr =1,2,3, ...
i) on the compact set of R?, the series ), ¥J (x — k) converges uniformly;
i) lim Y« >yn Po (x — K) = 0 are converges uniformly to x € R;
n—-oo
and Y jx—kj>yn Yo X —K) = 0(n™") in particularly for 0 < v < a, where y,a >0, a is a

constant and ||x||., = max {|x;|,i = 1, ..., s}.
Proof.

One can easily prove this lemma by direct computation and the proof of properties of the Lemma
(2.4, 2.5)in[10]. O
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Lemma 3.3

i) for x € [a,b] C R, then

1 1
[nb] = ®r(1 ;
Zk=[na] I (nx — k) v (1)
ii) for x € R c R®, then
1 - 1
b; = :
=1 Z};L[Jnai] oF (nx; — k;) (@5 (D]°

Proof.

One can easily prove this lemma by direct computation and using the proof of lemma 2.7 in [10].

O

The following theorem studies the pointwise and the uniform convergence for the NN,

Qr(f; X)-
Theorem 3.1

For f:R — R bounded and continuous function, lim Q,.(f;x) = f(x)
n—-oo

where f is continuous at each point x € R. If f € C°(R), then

T{i_{goSlelngr(f;X) —f&I = lim [|Q-(f5.) = f( )l = 0

Proof.

Suppose x € R is a point of continuity of f we have

2k o (nx = K)f(k/n)
Yk 5 (nx = K)

10-(f;%) — fX)| =

1)

and by using Lemma 3.3, we get:

S (nx — ) (f (&) - f(X)>

|Qr(f;x)_f(x)| = qu]g(nx_k)

1

< WZ wr (nx — K)|f(k/n) — F(X)]
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vn - co,n € N*,x € R® are arbitrary but fixed. Suppose for a fixed £ > 0, and from the
continuity of f atx, 3y > 0: |[f(y) — f(X)| < &, Vy € R with |ly — x||, <y, the symbol ||.||,
denote to Euclidean norm, then

> W ax—10IfGk/n) - FO

||k/n—x||<%

1Q-(f;x) — fF(X)] < EEeNN

+) e —-RIfk/m - f

Y
k/n—x||z-=
lIk/n—xl|z—=

1
=——7—(U; + ,).
RO
Now using the continuity of £ and Lemma 3.2, we get that ||k/n — x||, < Vs||k/n —x|| < y. So

estimation I, is,

I <e z Pr(nx—Kk) <e.

||k/n—x||s%

And from the boundedness of f and Lemma 3.2, for sufficiently large n, then

L2fle ) Wox—K) <2fllee

||k/n—x||>%

uniformly for all x € RS. Since ¢ arbitrarily, the first side of the theorem holds. When f € C°(R),
the proof in the reverse direction is easily followed by removing y > 0 with the parameter of the

uniform continuity of f on R. O
Now, in the following, study the order of approximation of (NN) operators in C°(R).

Theorem 3.2
Suppose f € Lip(v) for some v, at 0 < v < 1.and let sigmoidal function ¢ satisfy the condition

(iii) for some a > 1. Then,

10,(f;%x) = f()llw = O0(n7") as n - oo.
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Proof.
Let f € Lip(v), Vx € R, for some v € (0, —1], by using Lemma 3.3, we obtain

Sz (x =107 Ge/m)
S x-S

10 (f;%) = f(R)| =

Si ¥ (nx — K) <f (%)- f(X)>
S P (xR

< T Zwr(nx KIf (k/m) = £

Now, using the Lip(v) formulation, where, y, C > 0 are constants with respect tof, then

1
0% = f S et D, ¥ (ex=WIFGe/m) — £

lIk/n—x]||< \/—

) WX —-RIfk/M - f)]

““/”"‘”Wl;

1

[Cbr(l)] U1 +7]2)

since f € Lip(v), then for
Ik/n — x|, < Vsllk/n—x|| <,
and hence
|f(k/n) = F&I < Clik/n = x5 < Cs2llk/n - x]".

v
J, <nvCs? Z YT (nx — K) [Inx — K||”

lIk/n—x||< \/—

for fixed 0 < v; < a, by using Lemma 3.2, for a compact subset K ¢ R®. vx € R?®, if n - oo one
can write the flowing:
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N

i < n‘”CS%Z Z <,‘D(§(nxj — kj)|nxj — kj|v 2 W;[j](nx[j] - k[j])
j=1 \ kj€z k) €zst

Where
(] _
YoV (nxp;) — k) =
dr(nx; —ky) - ...- (Dg(nxj_l — kj_l) . <,‘l>g(nijr1 — kj+1) Cr @ (nxs — k),

Notice for every j=1,..,s X[j] = (xl, s Xjo 1y X1 ...,xs) € Rs‘l,k[j] =
(kl, v kg, Ky, ...,ks) € Z°~*. Now let k[;; < R the set of the j-th projection of a compact set

K for all elements. By using Lemma 3.2, and for all sufficiently large N € N*, then

v
n~vCsz

S
v
= 22(s—1)(r—1) Z qb;(nxj - kj)|nxj - kj|
j=1 kjEZ
nvCstE

< Sa-ne—n "w(®).

note that m,,(®}) < oo, where m,,(®}) give in Definition 3.2 since v < a then:
]1 = O(n_v)ln — 0.

Now, we estimate J, by using the other direction of Lemma 3.2,

J2 2 2|lflle Z Yi(nx —Kk) =0(n""), asn — oo, O

||k/n—x||>\/l§

Now, even when a € (0,1], an approximation order can be obtained, as the following:

Theorem 3.3

Let the function o for some a € (0,1] satisfy the condition (iii), and let f € Lip(v) for some v €
(0,1], Then,

i) Ifv<a,
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10-(f3-) = fFOllo = O(n™7), @5 n — 00;

i) Ifa<v<1,then

10-(f;.) — f()llo = 0(n™%#), a8 n - o0;
Vi<e<a.

Proof.

1) for function f € Lip(v) at0 < v < a,
10-(f5.) = fFllw = O(n7"),asn -
Then the proving by using the same step of the Theorem 3.2.
i) As a special case for all f € Lip(v) with a < v < 1, with ¢ is fixed but arbitrary choose

B =a—¢andget 0 < B < a, by based on part (i) then,

10,(f;.) = fFOllw = 0(n7F) = 0(n™%*¢),as n > o
for function f € Lip(B),at0 < € < a. O

4. Numerical Example
For the values of n = 10,30, = 2,3,4, and the test functions f (x,y) = cos(9xy) + 2 sin(x + y)
and h(x,y) = i(x + y)3,(x, y) € [0,1]%, we will give numerical examples for the NN operators

Q.- (.; x,y) with the NN operators F,(.; x,y), We make a comparison of the results in the graphics
of examples of NN operator convergence Q,-(.; x,y), E,(.; x,y) of the results the test functions
f(x,y),h(x,y). We also provide the following table for the average error function for
Qr(5x,¥), Fy(5x, y):

Example 4.1

The convergence of NN operators Q,-(f; x,y), F,(f; x,y) to test function f(x, y)can be given in
the following figures for n = 10,30, r = 2,3,4.
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Figurel: For n = 10,30, = 2 the numerical convergence of NN operators F,(f; x,y) (red)
and Q,(f; x,y) "Cyan" to f (x,y) (blue).
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1 08 ; v o2 O
p 08 06 04 02 06 04 92 , os 06 04

X ¥ X \J

Figure 2: For n = 10,30, r = 3 the numerical convergence of NN operators F,(f; x, y) (red)
and Q. (f; x,y) "Cyan" to f (x,y) (blue).
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Figure 3: For n = 10,30, r = 4 the numerical convergence of NN operators F,(f; x, y) (red)
and Q,(f; x,y) "Cyan" to f (x, ) (blue).

Example 4.2

The convergence of NN operators Q,.(h; x,y), F,(h; x, y) to test function h(x, y)can be given in
the following figures for n = 10,30, r = 2,3,4.

D8 06 04 02
X

Figure 4: For n = 10,30, r = 2 the numerical convergence of NN operators F, (h; x, y) (red)
and Q,-(h; x,y) "Cyan" to h(x, y) (blue).

1 08 06 04 02 0

X

Figure 5: For n = 10,30, r = 3 the numerical convergence of NN operators F, (h; x,y) (red)
and Q,(h; x,y) "Cyan" to h(x,y) (blue).
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l 08 06 04 02 . 1 D8 06 04 02 0
X i x

Figure 6: For n = 10,30, r = 4 the numerical convergence of NN operators F, (h; x, y) (red)
and Q,-(h; x,y) "Cyan" to h(x, y) (blue).

Now, as shown in the Table 1, the values of the average error between the test function and NN in

two dimensions are calculated as follows:

_ k1=0 2k2=0lUn(g; %, ¥) — g(x, )|

Ay) D V(xy) €R?
Using the following two test functions, f(x,y) and h(x, y):
Tablel: Average Error
Neural Network | n 7= 1l = r=3 r=4
Q,(f;x,v) 10 | 1.203503767 | 0.9412620573 | 0.7206772999 | 0.5709241359
30 | 0.5585328529 | 0.2993268089 | 0.2055316359 | 0.1556577549
Q,(h;x,y) 10 | 0.5774244320 | 0.3583003550 | 0.2648725190 | 0.2096147940
30 | 0.2181245850 | 0.1291939990 | 0.0939463700 | 0.0737079440
Conclusions

When r gets bigger, the NN operators Q,.(.; x, y)get closer numerically to the test functions

f(x,y) and h(x,y) than the classical NN operators F,(.; x,y).
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