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H I G H L I G H T S   A B S T R A C T  
• Implementing and comparing the results of 

GMM, KNN, and ViBe background 
subtraction algorithms. 

• Applying algorithms on dynamic background 
scenes from a well-known CDnet 2014 
benchmark dataset. 

• A wide range of evaluation metrics has been 
used (Accuracy, Precession, Recall, F1, FPR, 
FNR, and PWC). 

• ViBe background subtraction algorithm 
shows the best overall performance. 

 Background subtraction is the most prominent technique applied in the domain of 
detecting moving objects. However, there is a wide range of different background 
subtraction models. Choosing the best model that addresses a number of 
challenges is still a vital research area. 

Therefore, in this article we present a comparative analysis of three promising 
algorithms used in this domain, GMM, KNN and ViBe. CDnet 2014 is the 
benchmark dataset used in this analysis with several quantitative evaluation 
metrics like precession, recall, f-measures, false positive rate, false negative rate 
and PWC. In addition, qualitative evaluations are illustrated in snapshots to depict 
the visual scenes evaluation. ViBe algorithm outperform other algorithms for 
overall evaluations. 
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1. Introduction 
Detecting moving objects is one of the remarkable topics in the field of computer vision due to increasing security concerns 

and the spread of CCTV(Closed-Circuit Television Cameras) and CCD (Charge-Coupled Device) image sensors[1]. A wide 
range of real-time applications is employed in different environments with many occurring challenges. Extracting a foreground 
object from a particular region of interest can be devoted to the synopsis, tracking, and anomaly detection [2].  Many techniques 
have been used in the domain of moving object detection, like optical flow, frame differencing, and temporal differencing, while 
the background subtraction technique is the most popular one. It is authorized by the ease of implementation in a vast scope of 
video surveillance systems [3]. Numerous video surveillance environments are appealing. It is comprised of: a surveillance 
system of human activities like ( transportation, warehouses, sports, and the military), a surveillance system of nature like 
(animals, insects, nature scenes), etc. [4]. In this paper, we shed light on three well-known techniques used in the domain of 
background subtraction. The rest of the paper contains the background subtraction models and process, the discussion of 
algorithms, the experiments, and analytical comparison with evaluation metrics. Eventually, we present a concrete conclusion 
supported by a summary table of the average foreground detection of the three models. 
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2. Background subtraction models  
Background subtraction models have been extensively developed through the decades. The following are the main model 

approaches: 

2.1 Basic models 
In the basic models, the classification of background and foreground is done according to a threshold difference between the 

current frame and the background model [5]. Therefore, basic models are threshold dependable and work better on single model 
background distributions [6]. There are many examples of basic models like the mean model [7], median model [8], and 
histogram analysis model [9]. 

2.2 Mathematical models  
These models are classified into parametrical statistical models and non-parametric statistical models. Gaussian Mixture 

Model (GMM) [10], Visual Background extractor (ViBe) [11], and Substance Sensitivity Segmenter (SuBSENSE) algorithm 
are examples of the parametrical statistical models [12]. Where kernel density estimation (KDE) [13] and Pixel-Based Adaptive 
Segmenter (PBAS) [14] are examples of non-parametrical statistical models. 

2.3 Filter models 
These models are single processing models that predict the background according to a pixel's previous information value, 

whether it is orientation or intensity value [4]. Filters like Tchebychev filter [15], Wiener filter [16], Kalman filter [17], 
Correntropy filter [18] and optical flow [19] are examples of this model.  

2.4 Clustering models 
These models use the intensity of color for each pixel to identify the foreground mask. Then, the current sample frame pixels 

are compared to the background and foreground clusters, and a decision is made on which cluster the pixel belongs to. Various 
methods lie under this model, such as background reconstruction [20], K-means [21],  and the Codebook method [22].   

2.5 Machine learning models 
Machine learning models are the cutting edge models that comprise subspace learning with reconstructive and discriminative 

techniques [25,26], support vector machines (SVM) [25], robust subspace tracking [26], neural networks, and deep learning 
[29,30]. They have been broadly experimented with mainly because of the huge development of hardware processing power and 
the availability of an adequate collection of video surveillance training datasets [29]. Recently the convolutional neural network 
(CCN) has been implemented in various applications in the domain of computer vision. It was first introduced in the background 
subtraction field by Braham and Droogenbroeck [30].  CNN was originally developed for image classification tasks, and it is 
well-known for its robust performance in computer vision.  However, the lack of datasets and the need for high computation 
restrict the use of CNNs in real-time applications [33,34]. The machine learning methods perform well with illumination changes 
but not with abnormal dynamic background movements or non-static shadows challenges. In addition, these models suffer from 
extensive processing time [33]. 

A lot of research has been conducted to study background subtraction, but no single model can overcome all the challenges 
regarding real-time video surveillance applications. Therefore, many articles presented a fusion of multiple models and strategies 
for a robust performance like in real-time semantic background subtraction (RT-BSB) [34]. 

3. Background subtraction process 
Various background subtraction models have been built to extract the background from the scene resulting in moving 

foreground object detection. However, all these models share the same pipelined process for the background subtraction. The 
sequence of stages is as follows: 

3.1.1 Background initialization  
This stage represents the process of generating the first background scene by taking several video frames.  

3.1.2 Background modeling 
This stage represents the process of describing the background representation scene to be compared with the current frame. 

3.1.3 Background maintenance  
This stage represents the process of updating the background model according to the frequent changes.   

3.1.4 Foreground detection  
It is the process of classifying the pixel into background or foreground. This is achieved by comparing the background model 

scene with the recent frame scene. 
Certain pre-processing operations could involve video framing and color space altering. On the other hand, post-processing 

might be taken by applying specific algorithms to overcome a particular challenge in the process of background subtraction [35]. 
Figure1 depicts an overview of the background subtraction process.   
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Figure 1: The overview of the background subtraction process [36] 

4. Background subtraction algorithms 

4.1 Gaussian mixture model (GMM) 
The GMM was first introduced in 1999 by Stauffer and Grimson [10] as a breakthrough approach in the field of background 

modeling, where each pixel is modeled as a mixture of Gaussian using a real-time approximation for updating the model [37]. 
GMM is a statistical parametrical and unsupervised model that uses three main parameters: mean vectors, covariance matrices, 
and mixture weights from all component densities [38]. GMM is famous for its robust performance concerning gradual 
illumination changes and dynamic background challenges. Although, the GMM tends to have a poor performance with 
unexpected illumination changes and unusual background motions[39]. In addition, the efficiency of GMM is prone to be reduced 
due to the parametrical nature of the algorithm, like in selecting inaccurate parameters or the time consumed in selecting these 
parameters [40].  

Many studies have been performed to enhance the GMM against different background subtraction challenges, such as 
Boosted Gaussian Mixture Model (BGMM), where the performance is boosted using a color space classifier and dynamic 
learning for updating the background model [41]. Improved Gaussian background modeling (GBM) is also an example of the 
enhanced model using wavelet denoising applied to the foreground object. This model performs better with respect to shadow 
and illumination changes challenges [42]. GMM has been used frequently in the field of foreground detections and is still applied 
in many optimized versions. The following are the general steps of the GMM algorithm [38]. 

4.2 K-nearest neighbor (KNN) 
KNN is one of the well-known non-parametrical supervised algorithms where K denotes the number of neighbors to be 

considered in voting for the class detection. It is early introduced in the 1970s as a statistical model. Since then, KNN has been 
used in classification and regression problems [41]. KNN is influenced by the concept that similar things are close. In this context, 
the algorithm finds the closest k samples (neighbors) to the query using distance and then determines the query label with the 
same class label as the closest sample. The following are the general steps of the KNN algorithm [43]. 



Maryam A. Yasir & Yossra  H. Ali Engineering and Technology Journal 40 (04) (2022) 617-626  
 

620 
 

5. Visual background extractor (vibe)  
The viBe was introduced first by Barnich and Droogenbroeck in 2009 as a background subtraction algorithm, which adopts 

a new technique reliant on the pixel value in a multicolor space to be constrained to a diameter of the neighborhood [11]. The 
classification in ViBe is achieved by searching the neighbors to find the closest value to a pixel and updating the model without 
using the probability density function (pdf) to gain better results [44]. The viBe model has been enhanced over the years in 
different works [45]. The following are the general steps of the ViBe algorithm [46]. 

6. Experiments 
This article compares foreground detection using the aforementioned background subtraction models (GMM, KNN, and 

ViBe). The models are tested using the CDnet 2014[47] benchmark dataset considering the dynamic background challenge 
videos. CDnet 2014 was chosen as the most well-known and preferable dataset due to providing a wide range of videos with 
several challenges and providing ground-truth scenes that help in statistical evaluation. In these experiments, we compare the 
background subtraction image with the correspondent ground-truth image to evaluate the performance of each method 
concerning quantitative evaluation metrics at the pixel level, and the background subtraction method classifies the pixels into 
background or foreground. Seven metrics are utilized for the performance evaluation as follows: 

  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (2) 

 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠𝐴𝐴) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  (3) 

 𝐹𝐹 −𝑀𝑀𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃(𝐹𝐹1) = 2∗𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

  (4) 

 𝐹𝐹𝑃𝑃𝑅𝑅 = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

  (5) 

 𝐹𝐹𝐹𝐹𝑅𝑅 = 𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  (6) 

 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

∗ 100  (7) 

TP is the sum of foreground pixels correctly classified, TN is the sum of background pixels correctly classified, FP is the 
sum of background pixels incorrectly classified as foreground pixels, and FN is the sum of foreground pixels incorrectly 
classified as background pixels. Accuracy indicates the correct classification for a pixel. Whether it is a foreground or a 
background pixel, Precision indicates the proportion of truly detected foreground pixels to the number of all pixels classified as 
foreground pixels. Recall indicates the number of pixels correctly classified as a foreground of all the foreground pixels. The F-
measure is the harmonic mean of recall and precision. 

On the other hand, we have the following metrics; False Positive Rate (FPR) is the sum of background pixels misclassified 
as foreground pixels. False Negative Rate (FNR) is the sum of foreground pixels misclassified as background pixels. Percentage 
weight loss (PWC) indicates the error rate, which is the percentage of misclassified pixels to the original pixels. Usually, a low 
recall is a sign of over-segmentation of the foreground objects, whereas a low precision is a sign of under-segmentation of the 
foreground objects. In addition, high F-measures are a sign of a robust background subtraction algorithm, while the lower FPR, 
FNR, and PWC are signs of a better performance. The following Tables 1, 2, and 3 illustrate the analytical metrics results of 
applying the GMM, KNN, and ViBe models, respectively, on the CDnet 2014 dynamic background videos dataset. Tables (1, 2, 
and 3) depict the results of applying each algorithm on the videos (overpass, fall, boats, canoe, fountain1, and fountain2) that 
contain dynamic background challenges. The comparative analysis uses the aforementioned metrics of accuracy, precession, 
recall, F-measure(F1), FPR, FNR, and PWC. Table 4 illustrates the average results of applying each algorithm on different 
dynamic background videos with the same evaluation metrics. The results show that the ViBe model performed the best 
precession and recall. Also, it achieved the lowest results for FNR, FPR, and PWC. On the other hand, KNN achieved the best 
harmonic mean of precession and recall (F1) with the highest accuracy. 

Table 1: Performance metrics of GMM on CDnet 2014 dataset 

Video Accuracy Precession  Recall F1  FPR FNR PWC          

Overpass  0.987 0.151 0.512 0.423 0.008 0.488 1.302 
Fall  0.979 0.146                        0.781 0.461 0.018 0.219 2.097 
Boats 0.993 0.134 0.271 0.371 0.003 0.729 0.698 
Canoe 0.968 0.297 0.402 0.407 0.014 0.598 3.245 
Fountain1  0.987 0.027 0.631 0.209 0.013 0.369 1.307 
Fountain2   0.996 0.095 0.663 0.508 0.004 0.337 0.427 
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Table 2: Performance metrics of KNN on CDnet 2014 dataset 

Video  Accuracy Precession Recall F1 FPR FNR PWC          

Overpass 0.988 0.173 0.703 0.549 0.008 0.297 1.180 
Fall  0.968  0.119 0.699 0.377 0.029 0.301 3.210 
Boats 0.995 0.142                0.318 0.426 0.002 0.682 0.528 
Canoe  0.980 0.375 0.615 0.585 0.011 0.385 1.983 
Fountain1  0.987 0.023 0.497 0.180 0.013 0.503 1.296 
Fountain2   0.997 0.109 0.587 0.531 0.002 0.413 0.306   

Table 3: Performance metrics of ViBe on CDnet 2014 dataset 

Video Accuracy Precession  Recall F1  FPR   FNR  PWC 

Overpass  0.989               0.164 0.564 0.157 0.006  0.436 0.111 
Fall  0.967 0.125 0.570 0.129 0.026  0.430   3.311 
Boats  0.992 0.129 0.371 0.088 0.004  0.629  0.824 
Canoe  0.975 0.455 0.512 0.360 0.007  0.482  2.516 
Fountain1  0.991              0.055 0.750 0.079 0.009  0.250  0.899 
Fountain2   0.996               0.126 0.780 0.133 0.003  0.220  0.355 

Table 4: Average performance metrics of GMM, KNN and ViBe on CDnet 2014 dataset 

Model Accuracy Precession  Recall F1 FPR FNR PWC          

GMM 0.985 0.141 0.543 0.396 0.010 0.456 1.512 
KNN 0.986 0.156 0.569 0.441 0.011 0.430 1.417 
ViBe 0.985 0.175 0.591 0.157 0.009 0.407 1.336 

 
Moreover, Figure 2 depicts the visual results’ comparison of the foreground results of applying the three models on the 

CDnet 2014 dynamic background scenes. Where (a) is the original scene, (b) is the ground truth provided by the dataset, (c) is 
the foreground mask created by the GMM model, (d) is the foreground mask created by the KNN model, and (e) is the foreground 
mask created by ViBe model. 

7. Conclusions 
This article experimented with an effective comparative analysis of three robust and well-known background subtraction 

algorithms. The CDnet 2014 dataset was employed as a benchmark focusing on the dynamic background scenes. Seven different 
quantitative evaluation metrics were used in the experiments on the video surveillance dataset. These metrics are accuracy, 
precession, recall, F1, FPR, FNR, and PWC. The aforementioned performance metrics show that all three models perform well 
in terms of accuracy, while KNN performs the best in terms of F1 measures. But ViBe algorithm performs the best in terms of 
precession, recall, and the best in terms of lowest results for FPR, FNR, and PWC, making it the most reliable model among all 
three models in this comparative analysis of dynamic video surveillance scenes. 

 
Algorithm 1: GMM algorithm 
Input: Mean µ𝐜𝐜 
Covariance matrix ∑c 
Mixing coefficients 𝛑𝛑𝐜𝐜 
Output: foreground mask of the moving object in the video scene. 

1. Calculate ϒc for all k. 
2. Recalculate parameters (µ𝐜𝐜,∑𝐜𝐜 𝐴𝐴𝑃𝑃𝑎𝑎 𝛑𝛑𝐜𝐜) based on ϒc values. 
3. Calculate log-likelihood function. 
4. Set the stop criterion for the convergence. 
5. If the log-likelihood value converges to some value 

(or if all the parameters converge to some values) 
then stop, 
else return to Step 2. 
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Algorithm 2: KNN algorithm 
Input: unknown example(query) x, the dataset S and the distance d 
 
Output: foreground mask of the moving object in the video scene. 
 

1. for(x',l') ϵ S do 
compute the distance d(x',x) 
end for 

2. Sort the |S| distance by increasing order.  
3. Count the number of occurrences of each class lj among the K 

nearest neighbor.  
4. Assign to x the most frequent class. 

 
 

 

Algorithm 3: ViBe algorithm 
Input: Given samples N 
            The values of a sample x v(x) 
            The distance threshold R  
            Classification threshold λ 
            Subsampling rate t 
 
Output: foreground mask of the moving object in the video scene. 

1. for each pixel x do 
                           2.           while neighbours < λ and index < N do 
                        3.             Compute distance between v(x) and v(i) 

                               4.             if distance < distance threshold (R) then 
                                                     neighbours= neighbours + 1 
                                                end if 

                                5.              counter=counter + 1 
                                            end while 

                                 6.        if neighbours ≥ λ then 

                         7.             Save the pixel ϵ background 

                         8.             Update current pixel background model with probability                           

                                            1/t 

                         9.             Update neighbouring pixel background model with   

                                         probability 1/t 

                                            else 

                         10.          Save the pixel ϵ foreground 

                                    end if 
                                    end for 
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(a) Original scene             (b)Ground-truth 
scene 

(c) GMM detection (d) KNN detection   (e) Vibe detection 

     

     

     

     

     

     

Figure 2: Comparison of foreground detection results 
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