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ABSTRACT

The present work is a theoretical macro mechanics study, which concentrates
on linear viscoelastic creep behavior of short fiber reinforced polymeric composite
materials to estimate their flexural creep modulus at constant room temperature and at
a time range of 1 to 10° seconds. The loading cases are concentrated and the
deformations have been limited with small strains without permanent deformation. A
three-parameter model is used as a mathematical viscoelastic model. A finite element
program in Quick Basic had been designed to obtain the flexural creep modulus.

Halpin-Tsai equation shows an improvement in the modulus values for composite
materials reinforced with short fibers in both aligned and random reinforcement
through flexural creep estimations. On the other hand, the modified rule of mixtures
shows a slight effect of reinforcement on this property.
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modified the finite element solution for elasticity problems in two-dimensions to
linear and nonlinear viscoelastic creep behavior of solid glassy polymers through
changing material properties in each time step.

The present work is aimed to investigate numerically the time dependent
flexural creep modulus of polymer reinforced with short aligned and randomly
oriented fibers. The material systems chosen are polypropylene and short E-glass
fiber reinforced polypropylene composite. Both polymeric and polymeric matrix
composite (PMC) specimens have been assumed to be fabricated by injection
molding. The general assumptions of the present work can be stated as follows:
1-The polymeric specimens are considered to be isotropic.

2- The recovery behavior has not been considered.

3-Stress concentrations at fiber ends have been ignored.

4-The present work has been concerned with the linear viscoelastic behavior in
polymer and PMC and does not reach to failure.

5-The bonding between fiber and matrix is perfect.

In this work 3-parameters model will be used to represent the viscoelastic behavior of
polypropylene polymer. The response of this model contains both initial elastic and
decreasing strain rate which represents creep response fully [Resen, A. S. and
Alhadithi]. The time dependent modulus of this model has three constants (E;, E», ).
These constants have been determined according to experimental curve of
polypropylene at constant stress (8.3 MPa) and at (20°C) from [Rollason, E. C.] by
curve fitting procedure, so: E;=1.7GPa, E,=0.23GPa, and p,=2.9 x 10 (Poise).

Ji=O_ L L g (M
o, L E
1 E\E
E@) = - — 7 2
J(t) El +E2 —Ele " (2)

Where t; = wo/Es

Flexural Creep Estimation of Polymer

The viscoelastic characteristics of composite materials are usually due to a
viscoelastic matrix material [Jones], so it is essential to estimate the flexural creep
modulus of polymer- the matrix. In this work three-point flexural creep estimation for
simply supported beams was conducted due to the ASTM D790 on specimens with a
length, L = 130 mm; depth, h = 8.125 mm; width, b = 6.4 mm; and L/h = 16. All the
assumptions of simple bending theory (elementary beam theory) are consistent with
the flexure specimen used. The beam cross section is uniform and symmetrical about
the plane of loading - (x-y) plane. A simplifying assumption will be used that the
shear forces do not contribute significantly to the overall deformation [Lardner].

The time dependent deflection of a linear viscoelastic beam under sustained loading
can be determined as [Popov]:

S(Xa t)= 8el(X)EbJ(t) (3)
J(ty= %Y )
So 6el(X)Eb
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Where I is moment of inertia (= bh*/12) , Ey bending modulus which is constant
material property, M(x)= PX/2 and the elastic deflection in terms of x is [Timoshinko
& Young]:

Px 2 3 2

d,(x)= X" —=L
el( ) IZEbI( 4 )

O (x, t) is the viscoelastic deflection of the beam that can be determined from the

finite element analysis. Then the time dependent flexural creep modulus of polymer
can be determined as [Resen, & Alhadithi, Ward]:

E,(t) = JL“) )
p

0<x<l (6)
2

Each strain value € (x, t) at position x and time t must be checked due to the
limit of linear viscoelastic behavior where the strain must be less than 0.5%.

Flexural Creep Estimation of PMC:
1- Aligned Short Fiber PMC

For flexural creep estimation of aligned short fiber composite, the specimens
were stressed and strained in the fiber dominated longitudinal direction and the effect
of time dependence has been admitted to the modulus of polymer E, (t). The
mechanical response can be predicted according to the two following approaches:

-Modified Rule of Mixtures
By assuming perfect alignment, the time dependent longitudinal modulus of
unidirectional short fiber reinforced composites Ecy, (t) can be obtained as:

EcL(t) =2 (t)ViEs + Vi Ep (0 ®)

Where : V¢ and V), are volume fractions of fiber and matrix respectively; E¢f modulus
of elasticity of E-glass fiber wherein Eis= Err = Er , E, (t) is to be obtained from
finite element computer program; A; is the factor which corrects the modulus for the
shortness of the fibers with a modification represented by time dependence according
to the presence of time dependent shear modulus G, (t) as follows:

_J1_| tanh(n(t)a) )
M {1 [ a(a ]}

Where: a is the fiber aspect ratio and equal to 1/d; n is a dimensionless group of
constants and can be estimated as:

[ 26,
(= \/ E,Ln(2R/d) 4

where:
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E, (1)
G,()=——— 11
P 21+, () 1n
For viscoelastic materials v, (t) is specialized to [Lakes]:
E, (1)
v, (t)=0.5——2 12
p(D) ok, (12)
When the bulk modulus of polymer, kj, is approximated as [Jones]:
E
K =— P 13
P 31-2v,) (13

Where E, and v, are modulus of elasticity and Poisson's ratio for initially elastic
matrix respectively. The time dependent longitudinal strains for PMC will be:

c
Ecp (D) (14)

gcL (t)=

- Halpin-Tsai Equations
The longitudinal modulus and transverse modulus of aligned short fiber PMC can be
written by modifying the equation quoted in [Agarwal, & Broutman] as follows:

1+ zﬁxL (t) V¢
Ecp(t)=E,(t)—4 (15)
1-Ap(t) Vs
Where
(Ef /Ep(t)) -1
AL (t) = P o1 (16)
(E¢ /Ep(t)+ =1
and
1+ Z)LT(t)Vf a7
Ecp(t)=E,(t
cr(t) p( ) 1—Ap(H)Vy
Where
E;/E_ (t) -1
}‘-T(t)= ( f p( )) (18)

(E;/E, () +2

2- Random Short Fiber Composite

Applying the approach of Halpin-Tsai quoted in [Agarwal, & Broutman]with
modification due to time dependent the modulus of random short fiber PMC can be
determined as follows:

3 5
Ec, (1) = EECL (t)+ gECT (t) 03 (19)
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Finite Element Modeling for Flexural Specimen
The simply supported beam is descretized by using one-dimensional linear elements
with two nodes for each and one degree of freedom for each node. Due to symmetry a
half of beam length (65 mm) was analyzed. The finite element mesh of the beam is
shown in Fig. (1). The boundary conditions are:
a. Atx=0<and atx=L,04=0, 6(x,t)=0, M =0.
b. Atx=L/2, 8, (X) = max., 6(x, t) = max., and M = maximum.
The one-dimensional linear differential equation for deflection of a simply supported
beam subjected to concentrated load is [Segerlind]:
For a sequence of nodes : r, s, and m as shown in fig.(2) the nodal residual equation
of node s in terms of r& m after evaluation using Galerkin's formulation is :

2
EId—¢ _Px_ 0 20
dx? 2
(e) () (e+1) (e+1)
Rs=—E D, + E +E CIDS—E D,
L, L, L, L, @1)

P
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e

RESULTS AND DISCUSSION

A special quasi-static finite element computer program was designed to solve
flexural beam problem of polymer and its composite reinforced with short fibers
through the linear viscoelastic region. A period of time between (1-10°) seconds has
been considered. Maximum and minimum values of the property understudy have
been obtained at t = 10” seconds. The values of the mechanical property that exceeds
over the linear viscoelastic limits (¢ > 0.5%) will be decreased to zero due to the
present study that is limited with linear viscoelastic behavior. The values out of the
linear viscoelastic limits have been found at node 14. The following data have been
considered in the present analysis [Peng, X. & Cao, Eichhorns, and Sanadi et.al.]:
Vi=02;a=40;d=14 um; Er=70 GPa; E,=1.4 GPa;v,=0.3 and P =250 N.

Flexural Creep of Polypropylene

Fig.(3) refers to the time dependence of flexural strain of polypropylene
specimen according to Eq. (5). Strain increases with time starting from node 2 to node
14. Maximum strain of node 13 is 4.5x107.

Fig.(4) refers to the effect of time on flexural modulus of polypropylene
polymer due to Eq. (7). Flexural modulus has been decreased with time beginning
from node 2 to node 14. Minimum modulus for node 13 is 25 GPa.

Flexural Creep of PMC (according to Halpin-Tsai Equation):
- Longitudinal modulus of composite with aligned short fibers:

Fig.(5) denote the time dependence of longitudinal flexural modulus for
aligned short E-glass fiber reinforced polypropylene due to Halpin-Tsai equation
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(Eq.15). Flexural modulus curves are decreasing with time.Minimum value of
longitudinal flexural modulus is 500 GPa and it is obtained at node 13.

-Transverse modulus of composite with aligned short fibers:

Fig.(6) represents the time dependence of transverse flexural modulus of aligned
short E-glass fibers reinforcing polypropylene obtained from Halpin-Tsai
equation (Eq.17). Maximum transverse modulus is equal to 50 GPa. In general,

the lateral mechanical properties are very close to the results of PP polymer alone
because the lateral properties of aligned composite are matrix dominated.

-Modulus of composite with random short fibers:

Fig.(7) refers to the effect of time on flexural creep modulus of random short E-glass
reinforced polypropylene obtained from Halpin-Tsai equation (Eq.19). The creep
modulus is equal to 25 GPa for. It can be concluded that the effect of reinforcement in
random case is small with respect to polymer alone. The stiffness values are the same
without improvement as the random composite material is isotropic and its
mechanical properties are equal in all directions.

Flexural Creep of PMC (Modified Rule of Mixtures):
- Longitudinal modulus of composite with aligned short fibers:

Fig.(8) shows the effect of time on longitudinal flexural modulus of aligned
short E-glass fiber reinforced polypropylene by using the modified rule of mixtures
(Eq.8).Maximum longitudinal modulus is 31GPa. It is clear that there is little
improvement in stiffness.

The rule of mixtures gives accurate results of composite reinforced with
aligned continuous fibers. According to the present study, the modified rule of
mixtures is less accurate in predicting of the mechanical properties of composite
reinforced with aligned short fibers.

CONCLUSIONS

1- There is constancy in flexural curves for modulus during the periods 1-10°
seconds, so the region of glassy behavior of polypropylene polymer alone and
polypropylene reinforced with short E-glass fibers in the forms of aligned and
random reinforcement is limited by this period.
2- It can be observed that using a wider range of time may give three regions in
the curves of creep modulus. These regions are glassy, viscoelastic, and rubbery.
3-. The mechanical property that have been obtained from flexural creep estimations
are identical to the time dependent typical behavior of polymer and PMC. This
behavior reflects the success of the theoretical analysis applied in the present work.
4- The reinforcement of polypropylene polymer by short E-glass fiber in its two
forms, aligned and random, improves modulus according to Halpin-Tsai equation.
5- Halpin-Tsai equation is more accurate than modified rule of mixtures in the
theoretical prediction of the mechanical properties of the understudy composite
material reinforced with short fibers.
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Fig.(1): Finite element mesh for flexural specimen
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Fig.(2): The weighting function for an interior node [Segerlind].
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Fig.(3): Time dependent flexural strain

for PP, (a) nodes(2-6); (b) nodes(7-10);

(c) nodes(11-14)
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