
 
                           
                         The Iraqi Journal For Mechanical And Material Engineering, Vol.11, No.2, 2011 
 

 DYNAMIC RESPONSE ANALYSIS OF VISCOELASTIC 

MOVING BELTS 

Essam Z. Fadhel 

essam_zuher@yahoo.com 

University of Babylon / Mechanical Engineering Dept. 
 

 Abstract 
The dynamic response and stability of parametrically excited viscoelastic belts 

are investigated in the current study. In this work, the generalized equation of motion 
is obtained for a viscoelastic moving belt with geometric nonlinearity. Non-
dimensional analysis of the model was built on some assumptions to simplify the 
problem. The viscoelasticity of the model was modelled using Kelvin-Voigt model, 
the dynamic equation of motion derived using perturbation technique. The 
displacement of vibration found using the zeroth order solution that was subdivided 
into two parts, real and imaginary parts, due to the nature of nonlinear system. In this 
research effects of many elastic and viscoelastic parameters are studied, it was shown 
that there exists an upper boundary for the existence condition of the summation 
parametric resonance due to the existence of viscoelasticity. Effects of viscoelastic 
parameters, excitation frequencies, excitation amplitudes, and the axial moving speed 
on dynamic responses and existence boundaries were investigated. 
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 تجابة الديناميكية للأحزمة الناقلة للحركة المصنوعة من مواد لزجة مرنةتحليل الاس

  عصام زھير فاضل 
  جامعة بابل/ قسم الھندسة الميكانيكية 

 الخلاصة

الاستجابة الديناميكية واستقرارية الأحزمة المهتزة والمصنوعة من مواد لزجة مرنة تم دراستها في 
ة استحصلت للأحزمة الناقلة للحركة والمصنوعة من مواد لزجة مرنة  ألعامه للحركالمعادلةَإن . هذا البحث

 الهندسي

 314

تم استخدام التحليل اللابعدي للتمثيل الرياضي للنظام كما تم وضع . وفي الحالة اللاخطيه للشكل
 النموذج الميكانيكي ممجموعة من الفرضيات لغرض التمكن من تمثيل الاهتزاز للحزام الناقل رياضيا باستخدا

استخدمت الدرجة ، المعادلة الديناميكية للحركة باستخدام طريقة التحليل القلق تم اشتقاق).  فوجت-كيلفن( 
الأول حقيقي والأخر تخيلي بسبب ، الصفرية لنفس الطريقة لحساب سعة الاهتزاز وتم تقسيمها إلى جزأين

 عدد من العوامل لكل من المواد المرنة بحثت. طبيعة النظام وكذلك بسبب اختيار شكل الاهتزاز بجزأين
لقد تبين من النتائج إن وجود الطبيعة المرنة اللدنة . واللزجة المرنة وتم توضيح تأثيرها على الاهتزاز

تم دراسة تأثير المواد اللزجة .  بحاله الرنينلشرطِ الوجودَللاحزمه ألناقله يؤدي إلى ظهور الحد الأعلى 
  .والسرعة المحورية على الاستجابة الديناميكية والحدود الظاهرة، السعه، الترددات، المرنة
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1. Introduction 
Belt drives are extensively used in mechanical engineering practice for the 

transmission of moments and power between axles located far away from each other. 
Its widespread application – in the automobile industry, a number of branches of the 
light industry, general engineering and machine tool industry, etc. can be explained by 
its inexpensive realisation, quiet operation, easy mounting, favourable vibration 
damping, and last but not least by its good efficiency. 

In applications requiring higher accuracy, for example the main and feed drives of 
machine tools, it is not sufficient to dimension the particular machine elements. In such 
cases it is also essential to apply knowledge of vibrations that will facilitate the solution 
or elimination of dynamic problems in the design phase. However, one major problem 
in belt drive systems is that crank shaft-driven belt tension actually fluctuates, which 
leads to the occurrence of large transverse belt vibrations. Such a system with 
fluctuation tension as a source of excitation is called a parametrically excited moving 
belt system. With reliability, Wear, and noise of utmost concern, it is of great interest to 
recognize and understand this important source of dynamic response. 

Moving belt is a typical axially moving system. The nonlinear vibration of axially 
moving system has been studied extensively by many investigators. Huang et. al. 
(1995) studied the dynamic response and stability of a moving string undergoing three 
dimensional vibration. Perkins (1996) obtained the expressions for amplitudes and 
stability boundaries nontrivial limit cycles. But in all of these works, the material is 
assumed to be linear elastic and damping is either ignored or introduce to any damping 
mechanism. 

Viscoelasticity is the property of materials that exhibit both viscous and elastic 
characteristics when undergoing deformation. Viscous materials resist shear flow and 
strain linearly with time when a stress is applied. Elastic materials strain 
instantaneously when stretched and just as quickly return to their original state once the 
stress is removed. Viscoelastic materials have elements of both of these properties and 
exhibit time dependent strain [Meyers (1999)]. 

Viscoelasticity is an effective approach to model the dissipative mechanism 
because some string-like engineering devices are composed of some viscoelastic 
metallic or ceramic reinforcement materials like glass-cord and viscoelastic polymeric 
materials such as rubber. The damping due to the viscoelasticity of string material 
exists only in nonlinear terms. Therefore nonlinear vibration of an axially moving 
viscoelastic string should be studied. 

Lixin (1999), assumed the belt has constant velocity to simplify the analysis 
procedure with little acceptable error ,that he studied the linear differential constitutive 
relation. Several commonly used models are discussed; it is concerned with the linear 
integral constitutive law and the relation between differential and integral constitutive 
laws. There are many engineering designs that require vescoelastic behavior of 
structures, for examples, creep analysis of magnetic tapes and vibration problem of 
conduits.  
            In this paper, the nonlinear dynamic model of viscoelastic axially moving belt 
with geometrical nonlinearity is established. The effects of material parameters, the 
steady-state velocity, and the perturbed axial velocity of the belt on the dynamic 
response of the belts are investigated by the research of digital simulation.            
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2. Equation of Motion 
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Kelvin-Voigt model ,that presented the material as elastic spring and damper 
connected in parallel [Lixin (1999)], was used to represents a solid undergoing 
reversible viscoelastic strain. Upon application of a constant stress, the material 
deforms at a decreasing rate, asymptotically approaching the steady-state strain. The 
constitutive relation, [LI et. al. (2003)], is expressed as a linear first-order differential 
equation:  

     
dt

td
tEt

                                                                                                    (1)  

                                       
Consider that the viscoelastic belt is in a state of uniform initial stress, and only 

the transverse vibration in the y  direction is taken into consideration. 

Figure (1) shows a prototypical model system of a viscoelastic moving belt used 
in this analysis. The Lagrangian strain component in the x -direction related to the 
transverse displacement, [LI et. al. (2003)], is    /t 2,, 2 xVtx x . Thus, the equation of 

motion in the y-direction, [Lixin (1999)], can be obtained by Newton's second law of 
motion: 
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with boundary conditions: 
                                              0,0 tV   0, tLV                                                        (3) 

The Kelvin viscoelastic model is chosen to describe the viscoelastic property of 
the belt material. The linear differential operator E  for the Kelvin viscoelastic model, 
[Lixin (1999)], is given below: 

t
EE


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 0                                                                                                              (4) 

Introducing the following non-dimensional parameters: 

L

V
v                    

L

x
                   

2AL

T
t


               

0T

A
c

      

0

1

T

T
a                 

0

2

T

AL         
0

0

T

AE
Ee                  

2
0LT

A
Ev 

                     (5) 

 316

Figure 1. A mode of moving belt. 
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The corresponding non-dimensional equation of the transverse motion, [Lixin (1999)], 
is given by: 

   vN
v
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where the nonlinear operator N(ν), [Lixin (1999)], is defined as: 
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Introduce the mass, gyroscopic, and linear stiffness operators as follows:        
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 Where operators M and K are symmetric and positive definite and G is skew-
symmetric for sub-critical transport speeds. Equation (6) can be rewritten in a standard 
symbolic form: 
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Equation (9) is in the form of a continuous gyroscopic system with weakly 
nonlinearity and parameter excitation term. 

The method of multiple scales is applied directly to solve the governing partial 
differential equation (9), which is in the form of a continuous gyroscopic system. 

Here, to give more accurate results than the results studied by Lixin (1999),its 
preferred to use the harmonically fluctuating velocity that suggested by [LI et. al. 
(2003)],as followed : 
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The values of , 5.0C 0 , 9.00 c , and 06.01 c , arbitrary constants, could 

be easily determined by initial conditions [LI et. al. (2003)]. 
The first term is usual constant velocity solution and the second term is the 

correction due to variation in velocity. 
 
3. Limit Cycles and Existence Conditions 

For nonlinear systems, limit cycles may exist in the vicinity of a parametric 
instability region. In this section, the interest is focused on the behavior of limit cycles 
around the parametric instability regions for elastic and viscoelastic nonlinear systems. 
Express  and  in the polar form as [Lixin (1999)]: nA lA

ni
nn eA 

2

1
                                                                                                              (11) 

li
nl eA 

2

1
                                                                                                               (12) 

Note that k  and k  (k=n, l) represent the amplitude and the phase of the 

response, respectively. 
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3.1. Limit Cycles of Elastic Moving Belts 
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The response amplitude of steady state response of summation parametric 
resonance for elastic systems, [Lixin (1999)], are obtained: 

22
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where ,  are solved by using direct multiple scales method by [Lixin (1999)] as: lnm nlm
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From the amplitude expression above of elastic problems, it can be seen that the 
first limit cycle exists if: 
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And the second limit cycle exists if 
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As a special case. the response amplitude of principal parametric resonance (n=l) 
for elastic belts is given in the following: 
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The first limit cycle (select plus sign in equation(18))exists if the translation speed 

is sub-critical )1(   and 0
2

sin






an

. The second limit cycle (select negative 

sign in equation(18)) exists if the translation speed is sub-critical and 
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It should be mentioned that existence conditions of non-trivial limit cycles are the 
same as the stability conditions of the trivial solution for elastic systems (Zhang, 1998). 
Thus, it is concluded that the non-trivial limit cycles bifurcate from the trivial limit 
cycle at the stability boundary of the trivial limit cycle for elastic summation parametric 
resonance. 
 
3.2. Limit Cycles of Viscoelastic Moving Belts 

The response amplitude of steady state response for vescoelastic systems, [Lixin 
(1999)], are obtained: 
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It is seen that the relation between n  and l  of viscoelastic systems is different 

from that of elastic systems. The following amplitude modulation equation for steady 
state response, [Lixin (1999)], is obtained 
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Where , are the same values in equation (15). nlm lnm
It is obvious that equation (20) possesses a singular point at the origin (trivial 

periodic solution). In addition, two non-trivial singular points may exist describing 
limit cycles with amplitudes 
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Equations (19) and (24) represent the amplitudes of the steady state response of 
the summation parametric resonance for viscoelastic systems. From the amplitude 
equation (24) of viscoelastic systems, it can be seen that the two non-trivial steady state 
solutions exist only when the following conditions are satisfied, the first limit cycle of 
viscoelastic systems exists if: 
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and the second limit cycle exists if: 
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As a special case, the response amplitude of principal parametric resonance 
 for viscoelastic belts is given in the following: )( ln 
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The first limit cycle (select plus sign in equation (27)) exists if the translation 

speed is sub-critical and 
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It can be seen from equations (25) and (26) that the existence conditions of non-
trivial limit cycles have an upper boundary for viscoelastic models, which is different 
from the conclusion of the corresponding elastic systems. The upper boundaries of 
existence conditions for the first limit cycle and the second limit cycle are identical and 
are determined by the viscoelastic parameter . The lower boundaries of existence 

conditions have no relation with the nonlinear parameter  and the viscoelastic 

parameter , and are different from those of the corresponding elastic systems. 

vE
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4. Results and Discussion 

In this section, numerical results of steady state responses and existence 
boundaries for the summation parametric resonance of moving belts are presented. 
Effects of the viscoelastic parameter, the amplitude of excitation, the frequency of 
excitation, and the transport speed on the response of non-trivial limit cycles are 
investigated for the belt moving in the harmonic velocity. Belts are composed of cord 
reinforcement materials and the outer layer of rubber materials, which can be 
considered as a spring (reinforcement materials) and a dashpot (rubber materials) 
connected in parallel. Thus, Kelvin viscoelastic is a natural representation of the 
mechanical properties of belt materials. 

Figure (1) compares the current results with the results in Lixin (1999). The 
system parameters are =400, =0, =0.5 and eE vE a  =0.25. where give a good 

agreement between these results for both the first limit cycle and the second limit cycle. 
The amplitudes of non-trivial limit cycles of the first principal parametric resonance 
(n=l=1) are plotted in Figure (2) as a function of excitation frequency (detuning),  , 
and excitation amplitude, a , for an elastic system. The non-dimensional transport 
speed ( ) is 0.2 and the nonlinear parameter of Young's modulus ( ) is 400. eE
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Figures (3) and (4) shows the analogous results for the second principal 
parametric resonance (n=2, l=2) and the first summation parametric resonance (n=1, 
l=2), respectively. From Figures (2) to (4), it can be seen that the amplitude increases 
without bound as detuning parameter increases. When the excitation amplitude grows, 
the response amplitude of the first limit cycle increases while the second limit cycle 
decreases. Only the trivial solution exists if the existence conditions of non-trivial 
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solutions are not satisfied. The results obtained here are identical to those given by 
Mockensturm et. al. (1996). 

The non-trivial limit cycles of the first summation parametric resonance (n=1, 
l=2) for a viscoelastic moving belt are shown Figure (5). The non-dimensional 
transport speed is 0.2. The nonlinear parameter ( ) is 400, and the viscoelastic 

parameter ( ) is 5. It is evident that though the amplitude increases with the growth of 

detuning parameter, there exists an upper bound. The non-trivial limit cycle will vanish 
when non-dimensional amplitude of perturbation tension and detuning parameter 
approach this bound, which indicates that damping introduced by the viscoelasticity 
enlarges the region of the trivial limit cycles. This phenomenon for viscoelastic moving 
belt is quite different from the corresponding elastic systems. 

eE

vE

Translation speed not only influence the amplitude of the non-trivial limit cycles, 
but also influence the existence region of non-trivial limit cycles significantly. Figures 
(6) and (7) illustrate the effect of the translating speed on non-trivial limit cycles of the 
first principal (n=l=1) and the first summation (n =1, l=2) parametric resonance, 
respectively. The non-dimensional amplitude of perturbation tension ( a ) is chosen as 
0.5 and the nonlinear parameter ( ) is 400. From Figure (6), for the principal 

parametric resonance, it is seen that the amplitude of limit cycles decreases with the 
increase of transport speeds. The non-trivial amplitude grows more slowly with 
detuning parameter when translation speeds is larger. Moreover, for the translation 
speed unsatisfying equation (26) and (27), the non-trivial limit cycles no longer exist. 
These results indicate that by increasing the transport speed while keeping other 
parameters constant, an unstable belt can be stabilized. For the summation parametric 
resonance, the relation between the response and the transport speed is much more 
complicated. There exists a maximum value of response for the first limit cycle and a 
minimum value of response for the second limit cycle when non-dimensional transport 
speed is around 0.2. 

eE

 
6. Conclusions  
From the above study, the following conclusions can be drawn: 
1) The amplitude of the limit cycles decreases with increasing transport speeds for 
principal parametric resonance. There is no such a simple relation for the summation 
parametric resonance.  
2) There exists an upper existence boundary for the viscoelastic model and this upper 
boundary of existence for limit cycles is determined by the viscoelastic property vE . 

3) The lower boundary of existence for limit cycles of elastic systems is identical to 
the stability boundary of the trivial solution. This suggests that non-trivial limit cycles 
of the summation parametric resonance bifurcate from the trivial limit cycle at the 
boundary of the trivial limit cycle. 
4) The boundaries of existence have no relation with the nonlinear parameter eE . 

5) The most effects of the transverse amplitudes come from the frequency of the 
perturbed velocity when the belts moves with harmonic velocity. 
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A
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l  



Figure 1. A Comparison of the current result with the Lixin result, Present result,  * 
Lixin result. (n=1, l=2, Ee=400, Ev=0, γ=0.25, a=0.5) 
A: the first limit cycle.                      B: the second limit cycle. 
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Figure 2. The nontrivial limit cycles that bifurcate from the boundary of the first 
principal parameter instability region (γ=0.2, n=l=1, Ee=400, Ev=0) 
A: the first limit cycle.          B: the second limit cycle 
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l  
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Figure 3. The nontrivial limit cycles that bifurcate from the boundary of the second 
principle parameter instability region (γ=0.2, n=l=2, Ee=400, Ev=0) 
A: the first limit cycle.          B: the second limit cycle 
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 Figure 4. The nontrivial limit cycles that bifurcate from the boundary of the first 
summation parameter instability region (γ=0.2, n=1, l=2, Ee=400, Ev=0) 
A: the first limit cycle.          B: the second limit cycle 
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Figure 5. The response amplitude of nontrivial limit cycles for the summation parameter 
resonance of a viscoelastic moving belt (γ=0.2, n=1, l=2, Ee=400, Ev=5) 
A: the first limit cycle.          B: the second limit cycle 

A 

B 

l  

a 

l  

a 







Essam Z.      The Iraqi Journal For Mechanical And Material Engineering, Vol. 11,No. 2, 2011 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 327

Figure 6. Effect of the transport speed on nontrivial limit cycles for the first principle 
parameter resonance (a=0.5, n=l=1, Ee=400, Ev=5) 
A: the first limit cycle.          B: the second limit cycle 
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Figure 7. Effect of the transport speed on nontrivial limit cycles for the first summation 
parameter resonance (a=0.5, n=1, l=2, E =400, E =5) e v

 
A: the first limit cycle.          B: the second limit cycle 
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NOMENCLATURE 

 
Symbol Definition Units 

a Non-dimensional amplitude of perturbation tension - 
A Cross-sectional area of belt m2 

c Axial velocity of belt m/s 

c0 constant - 
c1 constant - 
C constant - 
E Non-dimensional equivalent Young's modulus - 
E* Equivalent Young's modulus N/m2 

E0 Initial Young's modulus N/m2 

Ee Non-dimensional Young's modulus - 
Ev Non-dimensional viscoelastic parameter - 
G Non-dimensional gyroscopic operator - 
K Non-dimensional stiffness operator - 
L Length of moving belts m 

lnm ,  nlm Non-dimensional parameter - 

M Non-dimensional mass operator of moving belts - 
N Nonlinear terms - 
t time of moving belt sec 
T Initial tension of moving belts N 
T0 Steady state tension N 
T1 Perturbation tension N 
v  Non-dimensional transverse displacement of moving belts - 
V Transverse displacement of moving belt m 
x  Local coordinate in longitudinal direction - 

n , m  Response amplitude of the nth and mth mode - 

  Non-dimensional small parameter - 

i  
The ith eigenfunction of moving belts - 

  constant - 
  Non-dimensional translating speed - 
  Belt mass per unit volume Kg/m3 

  Dynamic viscosity of the dashpot - 

n  
Eigenvalue of mode n - 

  Non-dimensional detuning parameter - 
  Non-dimensional time - 
  Excitation frequency Rad/sec 

n  
Natural frequency for mode n Rad/sec 

  Excitation frequency Rad/sec 
  Non-dimensional coordinate in longitudinal direction - 
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1. Introduction 
Belt drives are extensively used in mechanical engineering practice for the 

transmission of moments and power between axles located far away from each other. 
Its widespread application – in the automobile industry, a number of branches of the 
light industry, general engineering and machine tool industry, etc. can be explained by 
its inexpensive realisation, quiet operation, easy mounting, favourable vibration 
damping, and last but not least by its good efficiency. 

In applications requiring higher accuracy, for example the main and feed drives of 
machine tools, it is not sufficient to dimension the particular machine elements. In such 
cases it is also essential to apply knowledge of vibrations that will facilitate the solution 
or elimination of dynamic problems in the design phase. However, one major problem 
in belt drive systems is that crank shaft-driven belt tension actually fluctuates, which 
leads to the occurrence of large transverse belt vibrations. Such a system with 
fluctuation tension as a source of excitation is called a parametrically excited moving 
belt system. With reliability, Wear, and noise of utmost concern, it is of great interest to 
recognize and understand this important source of dynamic response. 

Moving belt is a typical axially moving system. The nonlinear vibration of axially 
moving system has been studied extensively by many investigators. Huang et. al. 
(1995) studied the dynamic response and stability of a moving string undergoing three 
dimensional vibration. Perkins (1996) obtained the expressions for amplitudes and 
stability boundaries nontrivial limit cycles. But in all of these works, the material is 
assumed to be linear elastic and damping is either ignored or introduce to any damping 
mechanism. 

Viscoelasticity is the property of materials that exhibit both viscous and elastic 
characteristics when undergoing deformation. Viscous materials resist shear flow and 
strain linearly with time when a stress is applied. Elastic materials strain 
instantaneously when stretched and just as quickly return to their original state once the 
stress is removed. Viscoelastic materials have elements of both of these properties and 
exhibit time dependent strain [Meyers (1999)]. 

Viscoelasticity is an effective approach to model the dissipative mechanism 
because some string-like engineering devices are composed of some viscoelastic 
metallic or ceramic reinforcement materials like glass-cord and viscoelastic polymeric 
materials such as rubber. The damping due to the viscoelasticity of string material 
exists only in nonlinear terms. Therefore nonlinear vibration of an axially moving 
viscoelastic string should be studied. 

Lixin (1999), assumed the belt has constant velocity to simplify the analysis 
procedure with little acceptable error ,that he studied the linear differential constitutive 
relation. Several commonly used models are discussed; it is concerned with the linear 
integral constitutive law and the relation between differential and integral constitutive 
laws. There are many engineering designs that require vescoelastic behavior of 
structures, for examples, creep analysis of magnetic tapes and vibration problem of 
conduits.  
            In this paper, the nonlinear dynamic model of viscoelastic axially moving belt 
with geometrical nonlinearity is established. The effects of material parameters, the 
steady-state velocity, and the perturbed axial velocity of the belt on the dynamic 
response of the belts are investigated by the research of digital simulation.            
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2. Equation of Motion 
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Kelvin-Voigt model ,that presented the material as elastic spring and damper 
connected in parallel [Lixin (1999)], was used to represents a solid undergoing 
reversible viscoelastic strain. Upon application of a constant stress, the material 
deforms at a decreasing rate, asymptotically approaching the steady-state strain. The 
constitutive relation, [LI et. al. (2003)], is expressed as a linear first-order differential 
equation:  

     
dt

td
tEt

                                                                                                    (1)  

                                       
Consider that the viscoelastic belt is in a state of uniform initial stress, and only 

the transverse vibration in the y  direction is taken into consideration. 

Figure (1) shows a prototypical model system of a viscoelastic moving belt used 
in this analysis. The Lagrangian strain component in the x -direction related to the 
transverse displacement, [LI et. al. (2003)], is    /t 2,, 2 xVtx x . Thus, the equation of 

motion in the y-direction, [Lixin (1999)], can be obtained by Newton's second law of 
motion: 
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with boundary conditions: 
                                              0,0 tV   0, tLV                                                        (3) 

The Kelvin viscoelastic model is chosen to describe the viscoelastic property of 
the belt material. The linear differential operator E  for the Kelvin viscoelastic model, 
[Lixin (1999)], is given below: 

t
EE




 0                                                                                                              (4) 

Introducing the following non-dimensional parameters: 
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Figure 1. A mode of moving belt. 
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The corresponding non-dimensional equation of the transverse motion, [Lixin (1999)], 
is given by: 

   vN
v

ta
vv
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
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2
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

                                                           (6) 

where the nonlinear operator N(ν), [Lixin (1999)], is defined as: 
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Introduce the mass, gyroscopic, and linear stiffness operators as follows:        
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 Where operators M and K are symmetric and positive definite and G is skew-
symmetric for sub-critical transport speeds. Equation (6) can be rewritten in a standard 
symbolic form: 
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v
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Equation (9) is in the form of a continuous gyroscopic system with weakly 
nonlinearity and parameter excitation term. 

The method of multiple scales is applied directly to solve the governing partial 
differential equation (9), which is in the form of a continuous gyroscopic system. 

Here, to give more accurate results than the results studied by Lixin (1999),its 
preferred to use the harmonically fluctuating velocity that suggested by [LI et. al. 
(2003)],as followed : 
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The values of , 5.0C 0 , 9.00 c , and 06.01 c , arbitrary constants, could 

be easily determined by initial conditions [LI et. al. (2003)]. 
The first term is usual constant velocity solution and the second term is the 

correction due to variation in velocity. 
 
3. Limit Cycles and Existence Conditions 

For nonlinear systems, limit cycles may exist in the vicinity of a parametric 
instability region. In this section, the interest is focused on the behavior of limit cycles 
around the parametric instability regions for elastic and viscoelastic nonlinear systems. 
Express  and  in the polar form as [Lixin (1999)]: nA lA

ni
nn eA 

2

1
                                                                                                              (11) 

li
nl eA 

2

1
                                                                                                               (12) 

Note that k  and k  (k=n, l) represent the amplitude and the phase of the 

response, respectively. 
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3.1. Limit Cycles of Elastic Moving Belts 
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The response amplitude of steady state response of summation parametric 
resonance for elastic systems, [Lixin (1999)], are obtained: 

22
nl l

n                                                                                                                    (13) 
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where ,  are solved by using direct multiple scales method by [Lixin (1999)] as: lnm nlm
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From the amplitude expression above of elastic problems, it can be seen that the 
first limit cycle exists if: 
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And the second limit cycle exists if 
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As a special case. the response amplitude of principal parametric resonance (n=l) 
for elastic belts is given in the following: 
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The first limit cycle (select plus sign in equation(18))exists if the translation speed 

is sub-critical )1(   and 0
2
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
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. The second limit cycle (select negative 

sign in equation(18)) exists if the translation speed is sub-critical and 
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It should be mentioned that existence conditions of non-trivial limit cycles are the 
same as the stability conditions of the trivial solution for elastic systems (Zhang, 1998). 
Thus, it is concluded that the non-trivial limit cycles bifurcate from the trivial limit 
cycle at the stability boundary of the trivial limit cycle for elastic summation parametric 
resonance. 
 
3.2. Limit Cycles of Viscoelastic Moving Belts 

The response amplitude of steady state response for vescoelastic systems, [Lixin 
(1999)], are obtained: 
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It is seen that the relation between n  and l  of viscoelastic systems is different 

from that of elastic systems. The following amplitude modulation equation for steady 
state response, [Lixin (1999)], is obtained 
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Where , are the same values in equation (15). nlm lnm
It is obvious that equation (20) possesses a singular point at the origin (trivial 

periodic solution). In addition, two non-trivial singular points may exist describing 
limit cycles with amplitudes 

1

31
2
222

2

4

c

cccc
n


                                                                                             (24) 

Equations (19) and (24) represent the amplitudes of the steady state response of 
the summation parametric resonance for viscoelastic systems. From the amplitude 
equation (24) of viscoelastic systems, it can be seen that the two non-trivial steady state 
solutions exist only when the following conditions are satisfied, the first limit cycle of 
viscoelastic systems exists if: 
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and the second limit cycle exists if: 
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As a special case, the response amplitude of principal parametric resonance 
 for viscoelastic belts is given in the following: )( ln 
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The first limit cycle (select plus sign in equation (27)) exists if the translation 

speed is sub-critical and 
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limit cycle (select negative sign in equation (27)) exists if the translation speed is sub-

critical and 0
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It can be seen from equations (25) and (26) that the existence conditions of non-
trivial limit cycles have an upper boundary for viscoelastic models, which is different 
from the conclusion of the corresponding elastic systems. The upper boundaries of 
existence conditions for the first limit cycle and the second limit cycle are identical and 
are determined by the viscoelastic parameter . The lower boundaries of existence 

conditions have no relation with the nonlinear parameter  and the viscoelastic 

parameter , and are different from those of the corresponding elastic systems. 

vE

eE

vE

 
4. Results and Discussion 

In this section, numerical results of steady state responses and existence 
boundaries for the summation parametric resonance of moving belts are presented. 
Effects of the viscoelastic parameter, the amplitude of excitation, the frequency of 
excitation, and the transport speed on the response of non-trivial limit cycles are 
investigated for the belt moving in the harmonic velocity. Belts are composed of cord 
reinforcement materials and the outer layer of rubber materials, which can be 
considered as a spring (reinforcement materials) and a dashpot (rubber materials) 
connected in parallel. Thus, Kelvin viscoelastic is a natural representation of the 
mechanical properties of belt materials. 

Figure (1) compares the current results with the results in Lixin (1999). The 
system parameters are =400, =0, =0.5 and eE vE a  =0.25. where give a good 

agreement between these results for both the first limit cycle and the second limit cycle. 
The amplitudes of non-trivial limit cycles of the first principal parametric resonance 
(n=l=1) are plotted in Figure (2) as a function of excitation frequency (detuning),  , 
and excitation amplitude, a , for an elastic system. The non-dimensional transport 
speed ( ) is 0.2 and the nonlinear parameter of Young's modulus ( ) is 400. eE
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Figures (3) and (4) shows the analogous results for the second principal 
parametric resonance (n=2, l=2) and the first summation parametric resonance (n=1, 
l=2), respectively. From Figures (2) to (4), it can be seen that the amplitude increases 
without bound as detuning parameter increases. When the excitation amplitude grows, 
the response amplitude of the first limit cycle increases while the second limit cycle 
decreases. Only the trivial solution exists if the existence conditions of non-trivial 
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solutions are not satisfied. The results obtained here are identical to those given by 
Mockensturm et. al. (1996). 

The non-trivial limit cycles of the first summation parametric resonance (n=1, 
l=2) for a viscoelastic moving belt are shown Figure (5). The non-dimensional 
transport speed is 0.2. The nonlinear parameter ( ) is 400, and the viscoelastic 

parameter ( ) is 5. It is evident that though the amplitude increases with the growth of 

detuning parameter, there exists an upper bound. The non-trivial limit cycle will vanish 
when non-dimensional amplitude of perturbation tension and detuning parameter 
approach this bound, which indicates that damping introduced by the viscoelasticity 
enlarges the region of the trivial limit cycles. This phenomenon for viscoelastic moving 
belt is quite different from the corresponding elastic systems. 

eE

vE

Translation speed not only influence the amplitude of the non-trivial limit cycles, 
but also influence the existence region of non-trivial limit cycles significantly. Figures 
(6) and (7) illustrate the effect of the translating speed on non-trivial limit cycles of the 
first principal (n=l=1) and the first summation (n =1, l=2) parametric resonance, 
respectively. The non-dimensional amplitude of perturbation tension ( a ) is chosen as 
0.5 and the nonlinear parameter ( ) is 400. From Figure (6), for the principal 

parametric resonance, it is seen that the amplitude of limit cycles decreases with the 
increase of transport speeds. The non-trivial amplitude grows more slowly with 
detuning parameter when translation speeds is larger. Moreover, for the translation 
speed unsatisfying equation (26) and (27), the non-trivial limit cycles no longer exist. 
These results indicate that by increasing the transport speed while keeping other 
parameters constant, an unstable belt can be stabilized. For the summation parametric 
resonance, the relation between the response and the transport speed is much more 
complicated. There exists a maximum value of response for the first limit cycle and a 
minimum value of response for the second limit cycle when non-dimensional transport 
speed is around 0.2. 

eE

 
6. Conclusions  
From the above study, the following conclusions can be drawn: 
1) The amplitude of the limit cycles decreases with increasing transport speeds for 
principal parametric resonance. There is no such a simple relation for the summation 
parametric resonance.  
2) There exists an upper existence boundary for the viscoelastic model and this upper 
boundary of existence for limit cycles is determined by the viscoelastic property vE . 

3) The lower boundary of existence for limit cycles of elastic systems is identical to 
the stability boundary of the trivial solution. This suggests that non-trivial limit cycles 
of the summation parametric resonance bifurcate from the trivial limit cycle at the 
boundary of the trivial limit cycle. 
4) The boundaries of existence have no relation with the nonlinear parameter eE . 

5) The most effects of the transverse amplitudes come from the frequency of the 
perturbed velocity when the belts moves with harmonic velocity. 
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A

B 

l  



Figure 1. A Comparison of the current result with the Lixin result, Present result,  * 
Lixin result. (n=1, l=2, Ee=400, Ev=0, γ=0.25, a=0.5) 
A: the first limit cycle.                      B: the second limit cycle. 

l  


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B 

l  

a 

l  

a 

Figure 2. The nontrivial limit cycles that bifurcate from the boundary of the first 
principal parameter instability region (γ=0.2, n=l=1, Ee=400, Ev=0) 
A: the first limit cycle.          B: the second limit cycle 
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A 

l  

a 

B 

l  

a 

Figure 3. The nontrivial limit cycles that bifurcate from the boundary of the second 
principle parameter instability region (γ=0.2, n=l=2, Ee=400, Ev=0) 
A: the first limit cycle.          B: the second limit cycle 
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 Figure 4. The nontrivial limit cycles that bifurcate from the boundary of the first 
summation parameter instability region (γ=0.2, n=1, l=2, Ee=400, Ev=0) 
A: the first limit cycle.          B: the second limit cycle 
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Figure 5. The response amplitude of nontrivial limit cycles for the summation parameter 
resonance of a viscoelastic moving belt (γ=0.2, n=1, l=2, Ee=400, Ev=5) 
A: the first limit cycle.          B: the second limit cycle 
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Figure 6. Effect of the transport speed on nontrivial limit cycles for the first principle 
parameter resonance (a=0.5, n=l=1, Ee=400, Ev=5) 
A: the first limit cycle.          B: the second limit cycle 
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Figure 7. Effect of the transport speed on nontrivial limit cycles for the first summation 
parameter resonance (a=0.5, n=1, l=2, E =400, E =5) e v

 
A: the first limit cycle.          B: the second limit cycle 
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NOMENCLATURE 

 
Symbol Definition Units 

a Non-dimensional amplitude of perturbation tension - 
A Cross-sectional area of belt m2 

c Axial velocity of belt m/s 

c0 constant - 
c1 constant - 
C constant - 
E Non-dimensional equivalent Young's modulus - 
E* Equivalent Young's modulus N/m2 

E0 Initial Young's modulus N/m2 

Ee Non-dimensional Young's modulus - 
Ev Non-dimensional viscoelastic parameter - 
G Non-dimensional gyroscopic operator - 
K Non-dimensional stiffness operator - 
L Length of moving belts m 

lnm ,  nlm Non-dimensional parameter - 

M Non-dimensional mass operator of moving belts - 
N Nonlinear terms - 
t time of moving belt sec 
T Initial tension of moving belts N 
T0 Steady state tension N 
T1 Perturbation tension N 
v  Non-dimensional transverse displacement of moving belts - 
V Transverse displacement of moving belt m 
x  Local coordinate in longitudinal direction - 

n , m  Response amplitude of the nth and mth mode - 

  Non-dimensional small parameter - 

i  
The ith eigenfunction of moving belts - 

  constant - 
  Non-dimensional translating speed - 
  Belt mass per unit volume Kg/m3 

  Dynamic viscosity of the dashpot - 

n  
Eigenvalue of mode n - 

  Non-dimensional detuning parameter - 
  Non-dimensional time - 
  Excitation frequency Rad/sec 

n  
Natural frequency for mode n Rad/sec 

  Excitation frequency Rad/sec 
  Non-dimensional coordinate in longitudinal direction - 
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