On Pairwise Semi-p-separation Axioms in Bitopological Spaces

R. N.Majeed Department of Mathematics, College of Education Ibn Al-Haitham, University of Baghdad Received in : 10 October 2010 Accepted in : 13 March 2011

Abstract

In this paper, we define a new type of pairwise separation axioms called pairwise semi-pseparation axioms in bitopological spaces, also we study some properties of these spaces and relationships of each one with the ordinary separation axioms in the bitopological spaces. **Keywords:** Bitopological space, pairwise semi-p- T_0 - space, pairwise semi-p- T_1 - space, pairwise semi-p- T_2 - space, pairwise semi-p-regular space, pairwise semi-pnormal space.

1-Introduction

The theory of bitopological spaces started with the paper of Kelly in [1]. A set equipped with two topologies is called a bitopological space. Since then several authors continued investigating such spaces. Furthermore, Kelly extended some of the standard results of separation axioms in a topological space to a bitopological space, such extensions are pairwise regular, pairwise Hausdorff and pairwise normal, concepts of pairwise T_2 and pairwise T_1 were introduced by Murdeshwar and Naimpally in [2].

The purpose of this paper is to introduce and investigate the notion of pairwise semi- pseparation axioms in bitopological spaces and study some properties of these spaces and relationships of each one with the ordinary separation axioms in the bitopological spaces.

2- Preliminaries

In this section, we introduce some definitions and propositions, which is necessary for the paper.

Definition 2.1[3]:

A subset A of a topological space (X, τ) is called a *pre-open set* if $A \subseteq \overline{A}^*$. The complement of pre-open set is called *pre-closed set*.

The family of all pre-open subsets of X is denoted by PO(X). The family of all pre-closed subsets of X is denoted by PC(X).

Proposition 2.2 [4]:

Let (X, τ) be a topological space, then:

1-Every open set is a pre-open set.

2-Every closed set is a pre-closed set.

But the converse of (1) and (2) is not true in general.

Proposition 2.3 [4]:

The union of any family of pre-open sets is a pre-open set.

Definition 2.4[3]:

The union of all per-open sets contained in A is called the *pre-interior of* A, denoted by pre-int A.

The intersection of all pre-closed sets containing A is called the *per-closure of* A, and is denoted by pre-cl A.

Proposition 2.5 [4]:

Let (X, τ) be a topological space and A, B be any two subsets of X, then:

pre-cl $A \cup pre - cl B \subseteq pre - cl (A \cup B)$.

Definition 2.6 [4]:

A subset A of a topological space (X, τ) is said to be *semi-p-open set* if and only if there exists a pre-open set in X, say U, such that $U \subseteq A \subseteq pre - cl U$.

The family of all semi-p-open sets of X is denoted by S-P(X).

The complement of semi-p-open set is called *semi-p-closed set*.

The family of all semi-p-closed sets of X is denoted by S-P-C(X).

Proposition 2.7 [4]:

1- Every open (closed) set is semi-p-open (closed) set respectively.

2- Every pre-open (pre-closed) set is semi-p-open (semi-p-closed) set respectively.

Also, the converse of (1) and (2) is not true in general.

Proposition 2.8:

The union of any family of semi-p-open sets is semi-p-open set.

Proof:

Let $\{A_{\alpha}\}, \alpha \in \Lambda$ be any family of semi-p-open sets in X, we must prove $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is a semi-p-open set, since A_{α} is semi-p-open set, for all $\alpha \in \Lambda$, which implies there exists a pre-open set U_{α} such that $U_{\alpha} \subseteq A_{\alpha} \subseteq prc - clU_{\alpha}$.

Thus $\bigcup_{\alpha \in \Lambda} U_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} prc - clU_{\alpha}$ and from (Proposition 2.3 and 2.5) we have a pre-open set $\bigcup_{\alpha \in \Lambda} U_{\alpha}$ such that $\bigcup_{\alpha \in \Lambda} U_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq prc - cl(\bigcup_{\alpha \in \Lambda} U_{\alpha})$. Hence $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is a semi- p-open set.

Definition 2.9 [4]:

Let (X, τ) be a topological space and let A be any subset of X, then:

- 1- The union of all semi-p-open sets contained in A is called the *semi-p-interior of A*, denoted by semi-p-int A.
- 2- The intersection of all semi-p-closed sets containing A is called the *semi-p-closure of* A, and denoted by semi-p-cl A.

Definition 2.10 [4]:

Let (X, τ) be a topological space and let $x \in X$. A subset N of X is said to be *semi-p-neighborhood of x* if and only if there exists a semi-p-open set G, such that $x \in G \subseteq N$. We shall use the symbol nbd. instead of the word neighborhood.

If N is semi-p-open subset of X, then N is a semi-p-open nbd of x.

Proposition 2.11:

Let (X, τ) be a topological space, then every semi-p-nbd is a semi-p-open set.

Proof:

Let N be any semi-p-nbds for each of its points, that is means for each $x \in N$, there exists a semi-p- open set G such that $x \in G \subseteq N$. now we must prove N is a semi-p-open set, since $N = \bigcup_{x \in N} \{x\}$ and since N is a semi-p- nbd for all $x \in N$.

Thus $N = \bigcup_{x \in G} \{G : G \text{ is a semi} - p - open \text{ set such that } x \in G \subseteq N \}$, and from (Proposition 2.8) we have N is a semi-p-open set.

Definition 2.12 [1]:

Let X be a non-empty set, let τ_1, τ_2 be any two topologies on X, then (X, τ_1, τ_2) is called a bitopological space.

Note 2.13:

In the space $(X_1\tau_1,\tau_2)$, we shall denote to the set of all semi-p- open sets in $\tau_1(\tau_2)$ by S-P(X, τ_1)(S-P(X, τ_2)) respectively.

Definition 2.14 [2]:

A bitopological space $(X_1\tau_1,\tau_2)$ is said to be:

- 1- Pairwise T₀ space if for every pair of points x and y in X such that x ≠ y₁ there exists a τ₁-open set containing x but not y or y but not x or a τ₂-open set containing y but not x or x but not y.
- 2- *Pairwise* $T_1 space$ if for every pair of points x and y in X such that $x \neq y_1$ there exists a τ_1 -open set U and a τ_2 -open set V such that

 $x \in U, y \notin U$ and $y \in V, x \notin V$.

Definition 2.15[1]:

A bitopological space (X, τ_1, τ_2) is said to be:

- 1- *Pairwise* $T_2 space$ if every two distinct points in X can be separated by disjoint τ_1 open set and τ_2 -open sets.
- 2- *Pairwise regular space*, if for each point $x \in X$ and each τ_i -closed set F not containing x, there exists a τ_i -open set U and τ_j -open set V such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$, where $i \neq j$ and i, j = 1, 2.
- 3- *Pairwise normal space*, if for each τ_i -closed set A and τ_j -closed set B such that $A \cap B = \emptyset_i$ there exist sets U and V such that U is τ_j -open, V is τ_i -open, $A \subset U, B \subseteq V$, and $U \cap V = \emptyset, i, j = 1, 2, i \neq j$.

3-Pairwise semi-p-separation axioms

We begin with the definition of pairwise semi-p- T_{a} - spaces.

Definition 3.1:

A space (X, τ_1, τ_2) is called *pairwise semi-p-T*^{$0^-} space if for any pair of distinct points x and y in X, there exists a <math>\tau_1$ -semi-p-open set or τ_2 -semi-p-open set which contains one of them but not the other.</sup>

Proposition 3.2:

If a space (X, τ_1, τ_2) is pairwise T_0 - space, then (X, τ_1, τ_2) is pairwise semi-p- T_0 - space.

Proof:

For any $x, y \in X$ such that $x \neq y$, we must prove there exists a semi-p-open in τ_1 or τ_2 which contains one of them but not the other.

Now, let $x \neq y$ in X, since (X, τ_1, τ_2) is pairwise T_0 - space, then there exists open set U in $\tau_1 \text{ or } \tau_2$ such that $x \in U$ and $y \notin U$. But from (Proposition 2.7 part (1)) there exists semi-popen set U such that $x \in U$ and $y \notin U$. Thus (X, τ_1, τ_2) is pairwise semi-p- T_0 - space.

Remark 3.3:

The converse of (Proposition 3.2) is not true in general, as the following example shows: **Example 1:**

Let X={1, 2, 3}, $\mathbf{r}_1 = \{\emptyset, X, \{1\}\}, \mathbf{r}_2 = \{\emptyset, X, \{2, 3\}\}, PO(X, \mathbf{r}_1) = S \cdot P(X, \mathbf{r}_1) = S \cdot P(X$

 $\{\{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}\}, PO(X, \tau_2) = S \cdot P(X, \tau_2) = \{\{\emptyset, X, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}\}$

Then, clearly the space (X, τ_1, τ_2) is pairwise semi-p- T_0 - space, but not pairwise T_0 - space, since $2 \neq 3$ in X but there is no open set $U \in \tau_1$ or $U \in \tau_2$ such that $2 \in U$ and $3 \notin U$.

Theorem 3.4 :

For a space (X, τ_1, τ_2) , the following are equivalent :

- (1) (X,τ_1,τ_2) is pairwise semi-p- T_0 -space.
- (2) For every $\mathbf{x} \in \mathbf{X}$, $\{\mathbf{x}\} = \tau_1 \mathbf{semi} \mathbf{p} \mathbf{cl}\{\mathbf{x}\} \cap \tau_2 \mathbf{semi} \mathbf{p} \mathbf{cl}\{\mathbf{x}\}$.
- (3) For every $x \in X$, the intersection of all $\tau_1 soml p nolghbourhoods of x$ and all $\tau_2 soml p nolghbourhoods of x$ is $\{x\}$.

Proof: (1) \Rightarrow (2)

Suppose $x \neq y$ in X, there exists a τ_1 -semi-p-open set U containing x but not y or a τ_2 -semi-p-open set V containing y but not x. That means mean either $x \notin \tau_1 - semi - p - cl\{y\}$ or $y \notin \tau_2 - semi - p - cl\{x\}$. Hence for a point x $y \notin \tau_1 - semi - p - cl\{x\} \cap \tau_2 - semi - p - cl\{x\}$. Thus $\{x\} = \frac{1}{2} = \frac{1}{$

Suppose there exists $y \neq x$ such that y belongs to the intersection of all $\tau_1 - somi - p - nbds$ of x and all $\tau_2 - somi - p - nbds$ of x. Hence (X, τ_1, τ_2) is not pairwise semi-p- T_0 -space, implies τ_1 -semi -pcl $\{x\} \cap \tau_2 - somi - pcl \{x\} \neq [x]$ which is a contradiction, thus the intersection of $all \tau_1 - somi - p - nbds$ of x and all $\tau_2 - somi - p - nbds$ of x and all $\tau_2 - somi - p - nbds$ of x and all $\tau_2 - somi - p - nbds$ of x and all $\tau_2 - somi - p - nbds$ of x and all $\tau_2 - somi - p - nbds$ of x and all $\tau_2 - somi - p - nbds$ of x and all $\tau_2 - somi - p - nbds$ of x and all $\tau_3 - somi - p - nbds$ of x

(3) \rightarrow (1) Let $x \neq y$ in X, since $\{x\}$ = the intersection of all $\tau_1 - somt - p - nbds$ of x and $\tau_2 - somt - p - nbds$ of x. Hence, there exists either on $\tau_1 - somt - p - nbds$ of y not containing x or a $\tau_2 - somt - p - nbds$ of y not containing x. Therefore (X, τ_1, τ_2) is pairwise semi-p- T_2 -space.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

Theorem 3.5:

The product of an arbitrary family of pairwise semi $-p-T_{\Box}$ -spaces is pairwise semi- $p-T_{\Box}$ -space.

Proof:

Let $(X, \tau_1, \tau_2) = \prod_{\alpha \in \Lambda} (X_{\alpha}, \tau_{1_{\alpha}}, \tau_{2_{\alpha}})$ be the product of an arbitrary family of pairwise semi-p- T_0 -spaces, where τ_1 and τ_2 are the product topologies on X generated by $\tau_{1_{\alpha}}, \tau_{2_{\alpha}}$ respectively and $X = \prod_{\alpha \in \Lambda} X_{\alpha}$.

Let \mathbf{x} and \mathbf{y} be two distinct points of X. Hence $\mathbf{x}_{A} \neq \mathbf{y}_{A}$ for some $\lambda \in A$. But $(X_{A}, \tau_{1_{A}}, \tau_{2_{A}})$ is pairwise semi-p- T_{0} -space, therefore, there exists either a $\tau_{1_{A}}$ -semi-p-open set U_{A} containing \mathbf{x}_{A} but not \mathbf{y}_{A} or a $\tau_{2_{A}}$ -semi-p-open set V_{A} containing \mathbf{y}_{A} but not \mathbf{x}_{A} . Define $U = \prod_{\alpha \neq A} X_{\alpha} \times U_{A}$ and $V = \prod_{\alpha \neq A} X_{\alpha} \times V_{A}$. Then U is a $\tau_{1^{-}}$ -semi-p-open set and V is $\tau_{2^{-}}$ -semi-p-open set, also, U contains x but not y. Hence $\prod_{\alpha \neq A} (X_{\alpha}, \tau_{1_{\alpha}}, \tau_{2_{\alpha}})$ is pairwise semi-p- T_{0} -space.

Definition 3.6:

A space (X, τ_1, τ_2) is called *pairwise semi-p-T*₁-*space*, if for any pair of distinct points x and y in X, there exists a τ_1 -semi-p-open set U and τ_2 -semi-p-open set V such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Proposition 3.7:

If a space (X, τ_1, τ_2) is pairwise $-T_1$ - space, then (X, τ_1, τ_2) is pairwise semi-p- T_1 - space. **Proof:**

For any $x \neq y$ in X, since (X, τ_1, τ_2) is pairwise $-T_1$ - space, then there exists τ_1 -open set U and τ_2 -open set V such that $x \in U, y \notin U$ and $y \in V, x \notin V$. And since every open set is semi-p-open set (by Proposition 2.7 part (1)), which implies U is semi-p-open set in τ_1 containing x but not y and V is semi-p-open set in τ_2 containing y but not x. Hence (X, τ_1, τ_2) is pairwise semi-p- T_1 - space.

Remark 3.8:

The converse of (Proposition 3.7) is not true in general as the following example shows: Consider Example 1, where:

 $X = \{1, 2, 3\}, r_1 = \{\emptyset, X, \{1\}\}, r_2 = \{\emptyset, X, \{2, 3\}\},\$

 $PO(X, \tau_1) = S - P(X, \tau_1) = \{\{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}\},\$

PO(X, τ_2) = S-P(X, τ_2)= { { $\emptyset, X, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}$ }. Then, clearly that the space (X, τ_1, τ_2) is pairwise semi-p-T₁- space, but not pairwise -T₁- space, since $2 \neq 3$ in X, but there is no τ_1 -open set containing 2 but not containing 3 and there is no τ_2 -open set containing 3 but not 2.

Theorem 3.9:

The product of an arbitrary family of pairwise semi $-p-T_1$ -spaces is pairwise semi- $p-T_1$ -space.

Proof: Similar to the proof of (Theorem 3.5). ■

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

Definition 3.10:

A space (X, τ_1, τ_2) is called *pairwise semi-p-T*₂-*space*, if for any pair of distinct points x and y in X, there exists a τ_1 -semi-p-open set U and τ_2 -semi-p-open set V such that $x \in U$ $y \in V$ and $U \cap V = \emptyset$.

Proposition 3.11:

If a space (X, τ_1, τ_2) is pairwise $-T_2$ - space, then (X, τ_1, τ_2) is pairwise semi-p $-T_2$ - space. **Proof:** similar of the proof of (Proposition 3.7). **Remark 3.12:**

The converse of (Proposition 3.11) is not true in general; consider example 1:

 $X = \{1, 2, 3\}, r_1 = \{\emptyset, X, \{1\}\}, r_2 = \{\emptyset, X, \{2, 3\}\},\$

 $PO(X, \tau_1) = S - P(X, \tau_1) = \{\{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}\},\$

PO(X, τ_2) = S-P(X, τ_2)= { { $\emptyset, X, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}$ }, clearly (X, τ_1, τ_2) is pairwise semi-p- T_2 - space, but not pairwise - T_2 - space, since $2 \neq 3$ in X, but there is no two disjoint open sets in τ_1 and τ_2 , which contain 2 and 3 respectively.

Theorem 3.13:

For a space (X, τ_1, τ_2) , the following are equivalent:

1- (X, τ_1, τ_2) is pairwise semi-p- T_2 - space.

2- For each $x \in X$ and for each $y \in X$ such that $y \neq x$, there exists a τ_1 -semi-p-open set U containing x such that $y \notin \tau_2$ -semi-pclU.

3- For each $x \in X$, $\{x\} = \bigcap [\tau_2 \text{-semi-pclU}: x \in U \text{ and } U \text{ is } \tau_1 \text{-semi-p-open set}\}$.

4- The diagonal $\Delta = \{(x, x) : x \in X\}$ is a semi-p-closed subset of $\{X \times X, \tau_{X \times X}\}$.

Proof: $(1) \Rightarrow (2)$

Let $x \in X$, be given and consider $y \in X$ such that $y \neq x$, since (X, τ_1, τ_2) is pairwise semi-p-T₂- space, there exists τ_1 -semi-p-open set U and τ_2 -semi-p-open set V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. Hence $y \notin \tau_2$ -semi-pclU, since we have a semi-p-open set V such that $y \in V$, but $U \cap V = \emptyset$.

$(2) \supset (3)$

Suppose that there exists $x \neq y$ in X, such that $y \in \cap [\tau_2 \text{-semi-pclU}; x \in U \text{ and U is } \tau_1 \text{-semi-p-open set}]$; implies $y \in \tau_2$ -semi-pclU; $x \in U$ for all τ_1 -semi-p-open set U, which is a contradiction, thus for each $x \in X$, $\{x\} = \cap [\tau_2 \text{-semi-pclU}: x \in U \text{ and U is } \tau_1 \text{-semi-p-open set}]$.

$(3) \supset (4)$

To prove $\Delta = \{(x, x) : x \in X\}$ is a semi-p-closed subset of $\{X \times X, \tau_{X \times X}\}$, that is mean we must prove $X \times X \setminus \Delta$ is semi-p-open subset of $\{X \times X, \tau_{X \times X}\}$.

Let $(x, y) \in X \times X \setminus \Delta$, which implies that $x \neq y$. In view of (3), there exists a τ_1 -semi-popen set U containing x and $y \notin \tau_2$ -semi-pclU.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

We know that $U \cap (X \setminus \tau_2 \text{-semi-pclU}) = \emptyset$. Also, we have $y \in (X \setminus \tau_2 \text{-semi-pclU})$. So $(x, y) \in U \times (X \setminus \tau_2 \text{-semi-pclU}) \subseteq X \times X \setminus \Delta$. But $U \cap (X \setminus \tau_2 \text{-semi-pclU})$ is a $\tau_{X \times X}$ -semi-pclU) is a $\tau_{X \to X}$

open set, so $X \times X \setminus \Delta$ is a $\tau_{X \times X}$ -semi-p-nbd of each of its points. Thus Δ is $\tau_{X \times X}$ -semi-p-closed set.

(4) ⊃ **(1)**

Let $x \neq y$ in X, hence $(x, y) \in X \times X \setminus \Delta$. Since Δ is $\tau_{X \times X}$ -semi-p-closed set, $X \times X \setminus \Delta$ is a semi-p-nbd of each of it is points. Therefore, there exists a $\tau_{X \times X}$ -semi-p-open set $U \times V$ containing (x, y) and contained in $X \times X \setminus \Delta$. then U is τ_1 -semi-p-open set and V is τ_2 -semi-popen set, also $x \in U$ and $y \in V$, since $U \times V \subseteq X \times X \setminus \Delta$, $U \cap V = \emptyset$. Thus (X, τ_1, τ_2) is pairwise semi-p- T_2 - space.

Definition 3.14:

A space (X, τ_1, τ_2) is said to be *pairwise semi-p-regular-space*, if for each τ_i -closed set F and for each point $x \notin F$, there exist τ_i - semi-p-open set U and τ_j - semi-p-open set V such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$, where i, j=1, 2, $l \neq j$.

Proposition 3.15:

Every pairwise regular space (X, τ_1, τ_2) is pairwise semi-p-regular-space.

Proof:

Let F be any τ_i -closed set and let $x \in X$, such that $x \notin F$, since (X, τ_1, τ_2) is pairwise regular space, there exist τ_i - open set U and τ_j - open set V such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$.

And from (Proposition 2.5 part (1)), we have τ_i - semi-p-open set U and τ_j - semi-p-open set V such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$. Hence (X, τ_1, τ_2) is pairwise semi-p-regular- space. **Bemark 3.16**:

Remark 3.16:

The converse of (Proposition 3.15) is not true in general, as the following example shows:

Let X={1, 2, 3}, $\mathbf{r}_1 = \{\emptyset, X, \{1,2\}\}, \mathbf{r}_2 = \{\emptyset, X, \{1,3\}\}, \text{then}$

 $S-P(X, \tau_1) = \{ \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\} \},\$

S-P(X, τ_2)= { $\{\emptyset, X, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$. Then X is pairwise semi-p-regularspace, but not pairwise regular space since $\{3\}$ is closed set in τ_1 and $1 \notin \{3\}$, but for any τ_1 open set containing 1 and for any τ_2 -open set containing $\{3\}$, its intersection is not empty.

Theorem 3.17:

A space (X, τ_1, τ_2) is pairwise semi-p-regular- space if and only if for each point x in X and every τ_i - closed set F not containing x there is a τ_i - semi-p-open set U such that $x \in U$ and $(\tau_j \quad \text{semi} \quad pclU) \cap F = \emptyset$.

Proof:

Suppose (X,τ_1,τ_2) is pairwise semi-p-regular-space, let $x \in X$ and F is any τ_i - closed set such that $x \notin F$, implies $X \setminus F$ is τ_i -open set containing x and since (X,τ_1,τ_2) is pairwise

semi-p-regular- space, there is a τ_i - semi-p-open set U such that

 $x \in U \subset \tau_j$ semi $pcUU \subset X \setminus F$. Hence $(\tau_j \text{ semi } pcUU) \cap F = \emptyset$.

Conversely, let F be any τ_i - closed set and $x \notin F_i$ then there exists a τ_i - semi-p-open set U such that $x \in U$ and $(\tau_i \quad \text{semi} \quad pclU) \cap F = \emptyset$.

Let $V=X\setminus(\tau_j \quad \text{semi} \quad pclil)$, then V is τ_j -semi-p-open set such that $F \subseteq V, x \in U$ and $U \cap V = \emptyset$, thus (X, τ_1, τ_2) is pairwise semi-p-regular-space.

Definition 3.18:

A space (X, τ_1, τ_2) is said to be *pairwise semi-p-normal-space*, if for each τ_i -closed set A and τ_j - closed set B disjoint from A, there exist τ_j - semi-p-open set U and τ_i - semi-p-open set V such that $A \subseteq U, B \subseteq V$ and $U \cap V = \emptyset$, where i, j=1, 2, $l \neq j$.

Proposition 3.19:

Every pairwise normal space (X, τ_1, τ_2) is pairwise semi-p-normal-space.

Proof:

Let A, B be two closed disjoint sets in $\tau_i, \tau_j; i, j = 1, 2$ (respectively), since X is pairwise normal space, there exist τ_j - open set U and τ_i - open set V such that $A \subseteq U, B \subseteq V$ and $U \cap V = \emptyset$, but from (Proposition 2.4 part (1)) U, V semi-p-open sets which contains A and B respectively. Thus (X, τ_1, τ_2) is pairwise semi-p-normal-space.

Remark 3.20:

The converse of Proposition 3.19 is not true in general, as the following example shows: Consider example 2, where:

$$\begin{split} \mathbf{X} &= \{1, 2, 3\}, \ \mathbf{r}_1 = \{\emptyset, X, \{1, 2\}\}, \ \mathbf{\tau}_2 = \{\emptyset, X, \{1, 3\}\}, \\ \mathbf{S} &= \mathbf{P}(\mathbf{X}, \tau_1) = \{\{\emptyset, X, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}, \\ \mathbf{S} &= \mathbf{P}(\mathbf{X}, \tau_2) = \{\{\emptyset, X, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}. \end{split}$$

Then (X, τ_1, τ_2) is pairwise semi-p-normal- space, but not pairwise normal space, since $\{3\}$ and $\{2\}$ are closed disjoint sets in τ_1 and τ_2 respectively but for any open set in τ_2 which containing $\{3\}$ and any open set in τ_1 which containing $\{2\}$, its intersection is not empty.

References

- 1. Kelly, J. C. (1963), Bitopological Spaces, Proc. London Math. Soc. 13: 71-89.
- 2. Murdeshwar, N. G. and Naimpally, S. A. (1966), Quasi-uniform Compact Spaces, P. Noordhoff, Groningen.
- 3. Nour, T. M. (1995), A note on Five Separation Axioms in Bitopological Spaces, Indian J. pure appl. Math., <u>26</u>(7): 669-674.
- 4. Al-Kazragi, R. B. (2004), On semi-p-open sets, M. Sc. Thesis, University of Baghdad, College of Education Ibn-Al- Haitham.

حول بديهيات الفصل شبه – P – على الفضاءات التبولوجية الثنائية

رشا ناصر مجيد قسم الرياضيات، كلية التربية – ابن الهيثم، جامعة بغداد استلم البحث في : 10 تشرين الاول 2010 قبل البحث في : 13 اذار

الخلاصة

في هذا البحث قمنا بتعريف نوع جديد من بديهيات الفصل على الفضاءات التبولوجية الثنائية التي اسميناها بديهيات الفصل شبه – P ، كذلك درسنا بعض خواص هذه الفضاءات وعلاقات كل نوع مع بديهيات الفصل الاعتيادية في الفضاءات التبولوجية الثنائية.

الكلمات المفتاحية: الفضاء التبولوجي الثنائي، الفضاء شبه p-p، الفضاء شبه T_1-p-r_1 ، الفضاء شبه p-