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H I G H L I G H T S   A B S T R A C T  
• From four models to teach machines (SVM, 

Multiple Bayes - NB, and Bernoulli - NB)   
used, Best accuracy (Bernoulli - NB) model 
89%.  

•  with the Bernoulli-NB model reaching 91% 
of accuracy, as well as improving the value 
of the rest of the models used in this process 

 Regardless of the data source and type (text, digital, photo group, etc.), they are 
usually unclean data. The term (unclean) means that data contains some bugs and 
paradoxes that can strongly impact machine learning processes. The nature of the 
input data of the dataset is the most important reason for the success of the learning 
algorithm. More than one factor influences machine learning results in a specific 
task. The characteristics and the nature of the data are the main reasons for the 
algorithm's success. This paper generally examines data processing entered into an 
algorithm to learn machines. The paper explains the operations of each stage of 
prior treatment data for the best achievement of its data set. In this paper, four 
models for teaching machines (SVM, Multiple Bayes - NB, and Bernoulli - NB) 
will be used. Best accuracy (Bernoulli - NB) model 89%. The pre-processing 
algorithm applied to the data set (dirty data) will be developed and compared to 
previous results before development. The Bernoulli-NB model reaches 91% 
accuracy and improves the value of the rest of the models used in this process. 
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1. Introduction 
There is a rapid increase in machine learning and deep learning that essentially enable us to build models with predictability. 

But getting the data right is the most common problem. We have all the sophisticated models, and they're effective, but it will 
be a real challenge to build a model whose results are accurate because of the unclean data. Workers in this field face the problem 
of processing unclean data when it comes from more than one source [1]. An enormous amount of digital text information is 
generated daily, and the effective search for, managing, and exploring text data has become the main task [2]. Usually, data from 
datasets are unclean. That is, it contains many unwanted characters and symbols, which may negatively affect the quality of 
learning. Social network data is enormous and usually has multiple sources, making it vulnerable to noise and redundancy. Poor 
quality data will restrict the analysis and negatively affect the analysis results. Therefore, it is imperative to clean up the data sets 
before starting the machine learning process. [3]. This research paper aims to provide a semi-detailed overview of the different 
stages, focusing on the data obtained from social media sites. Pre-processing (handling unclean data) is considered an effective 
technique to ensure the validity of the collected data. So pre-processing unclean data removes all punctuation marks, words that 
have no meaning, and words can be grouped into groups, and words or lemma can be truncated to their roots, depending on the 
pre-processing purpose applied to the dataset [4,5,6]. 

2. Related work 
  In 2017 Priyanga Chandrasekar and Prabir Bhattacharya presented improving the Prediction Accuracy of Decision Tree 

Mining with Data Preprocessing. They used J48 for classification and Weka as a data mining tool. They utilized the supervised 
filter discretization on the J48 algorithm for constructing the decision tree. Then, they compared the results with the J48 without 
discretization. The results from experiments showed that the accuracy of J48 after discretization is better than J48 before 
discretization [7]. In 2017 Nerijus Paulauskas and Juozas Auskalnis. Present Analysis of Data Pre-processing Influence on 
Intrusion Detection using NSL-KDD Dataset. The work analyses the initial data pre-processing effect to attack detection 
accuracy by Naïve Bayes, using Decision Trees and Rule-Based classifiers with the NSL-KDD dataset. The data set for method 
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analyses were selected NSL-KDD.   The data set consists of 125973 network flow data, 41 features, and one class marked as 
normal or attack. There are 24 different attack types in the train data set. Used for ensemble model of four different classifiers: 
J48, Naïve Bayes, C5.0, and PART with and without pre-processing, using only the train data set and dividing it into 70% for 
training and 30% for testing [8]. In 2018 Ammar Ismael Kadhim. Present an Evaluation of Preprocessing Techniques for Text 
Classification. Two different methods, TF-IDF and chi-square with a cosine similarity score, are used to extract the features 
based on the BBC English dataset, an English dataset collected manually from the BBC online newspaper. The dataset consisted 
of 4,470 articles published online from 2012 to 2013. TF-IDF's performance with the cosine similarity score was better in 
classifying the ten general categories based on evaluation metrics. The results showed that pre-processing of the text can improve 
text recognition and the performance of the text classification system. In 2019 M. Sornam and M. Meharunnisa. Present The 
discovery of normality of body weight using principal component analysis (A comparative study on machine learning techniques 
using different data pre-processing methods).  This research aims to perform feature selection by utilizing the PCA to determine 
women's normal and abnormal body weight. The major components obtained are passed as input to the supervised learning 
algorithm, such as support vector machine, K-nearest neighbor, decision tree, naïve Bayes, and backpropagation neural network 
with several pre-processing methods. The dataset is gained using the survey cum questionnaire method through the expert and 
document review through 37 questions. The imputed data are pre-processed using several methods. The feature reduction on 
normalized data is then made by PCA. Thirty-seven features are reduced to 29. The highest obtained accuracy is for BPN, SVM, 
KNN, SVM, and KNN, respectively, with 73%, 74%, 70%, 76%, and 77% [9]. 

3. Main steps of Pre-processing stages 
The following are the main steps in any pre-processing stages, as shown in Figure 1 and will be discussed in the following 

subsections: 

 Extraction (Dataset construct) 
 Text Cleaning 
 Tokenization 
 remove Stop-Words 
 Stemming 
 Parts of Speech (POS) Tagging 
 Feature Extraction 

 
Figure 1: Main Steps Of Pre-processing Stages 

3.1 Extraction (Dataset construct) 
The data set is either built or extracted from an application designed for this purpose or taken readily from a specialized 

website. For example, a dataset of Twitter tweets is either developing an application to get tweets according to specific hashtags 
through the API window or taking tweets in a ready-made data set from one of the sites that publish them [10]. Two files 
containing tweets (positive tweets and negative tweets) were used as a dataset in this research. These samples were collected 
from Tweets (or "status updates") from Twitter Streaming APIs. Each file consists of JSON tweets, separated by a line, i.e., one 
tweet per line. These tweets were collected during July 2015. The total number of positive tweets in the file 
("positive_tweets.json") is 5,000, and the same in the file ("Negative_tweets.json"). She also has 5,000 tweets. The total size of 
the data set is 10,000 Tweets. Any data set can also be fetched, and the same working steps apply below. You can get Tweets 
via the Twitter API or from any other source for the dataset. 
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3.2 Text cleaning 
punctuation or special symbols that occur in sentences such as ("([0-9]+)|(#)|(@[A-Za-z0-9]+)|([^0-9A-Za-z 

\t])|(\w+:\/\/\S+)") or some English abbreviations such as (n't = not or I'm = I am or OMG = Oh My God) Taking this move-in 
facilitation is quite beneficial and practical. The main goal of Usually, unnecessary symbols, tokens, and noise that must be 
deleted before any other normalization technique operations are included in the text data taken from the electronics websites 
used for the study. An example of extracting text from it is data sources, such as HTML data containing not needed HTML tags 
or any data from XML and JSON files [11]. If the NLP (Natural Language Processing) application programmer does not handle 
the text appropriately, the results will be unwanted or irrelevant. Text processing is cleaning the text, which supports the rising 
accuracy of classifiers [12]. The elimination of unnecessary and special characters is one of the most important functions during 
text normalization. This may be this step is that Natural Language Processing, and machine learning results are affected by 
punctuation or special characters when performing text analysis and extracting features or information [11]. 

3.3 Tokenization 
Text data generally is a group of letters in the primary stage. each operation in the text analysis stage will need the words of 

the dataset. The requirements of the parser are tokenization documents [12]. Tokenization separates raw text data into several 
individual tokens, which are represented as a word or character [13]. The purpose of tokenization is to research phrases in a 
sentence (or phrase). An input for other operations such as analysis or text mining would be the token list. In both linguistics 
(where it is a type of text segmentation) and computer sciences, which is part of lexical analysis, tokenization is useful. Text data 
is a piece of characters (or letters) in the first stage. It requires processing and converting all words into lowercase. Tokenization 
aims to identify meaningful keywords. Another problem is the abbreviations and acronyms that must be converted to a standard 
format [10]. There are two types of tokenization:  

3.3.1 Sentence tokenization 
Sentence tokenization is a way to break a textual document into a group of sentences. The goal of this operation is to make 
the texts into meaningful sentences. The techniques used to search for separate between sentences to achieve sentence 
tokenization, like a duration (.) or a newline character (\n) [11,12]. 

3.3.2 Word tokenization  
Work tokenization divides the sentence into words that make up that sentence, called tokens. These tokens can be used in 

cleaning and normalization, such as derivation and conjugation [12]. There are several resources available for the tokenization 
of textual documents. The resources are: 

 Mila Tokenizer 
 Nlpdotnet Tokenizer 
 NLTK Word Tokenize 
 TextBlob Word Tokenize 
 Pattern Word Tokenize 
 MBSP Word Tokenize 
 Tokenization of Words with Python (NLTK) 

 

(Tokenization of Words with Python NLTK) used to work for this paper. NLTK stands for Tool Kit of Natural Language. 
It's the Toolkit for Python Natural Language Handling. NLTK is a good platform for developing Python programs to deal with 
human languages data. In addition to a group of libraries for word processing for tokenization, grouping, tagging, semantic 
reasoning, and stemming, NLTK offers many easy-to-use tools for more than 50 classes (the body collection is a broad and 
structured collection of texts) and lexical resources such as WordNet [13]. 

3.4 Remove stop-words 
Stop words, stop words as some references mention them. Stop words are parts of natural language. Words that have little 

matter or no meaning. A stop word group of usually frequented features appears in every text document. Common features like 
conjugations such as and, or, but, pronouns, she, she, etc., should be removed because they have little if no effect on the text 
mining process. Due to the high frequency of their occurrence, the appearance of these words makes it difficult to understand 
the content of the text files that contain them. Removing stop words from a document text is to sort the text to its appearance 
more order by eliminating the less important word. This process decreases the amount of processed textual data, which gets 
better system performance [3, 14, 15]. 

3.5 Stemming 
The method of removing suffixes from a word to obtain the base of the word. Affixes are units like prefixes, suffixes, etc., 

which are attached to a word's stem to change the word's meaning or create a completely new word. Stemming is used to reduce 
the number of features in the feature space, improve classifier performance, and assist with the machine learning process when 
variants of features are rooted in a single feature. For example: (connect, connects, connected, and connecting). Stemming helps 
standardize words to their basic origins regardless of their conjugations, enabling many applications such as text classification, 
grouping, and machine learning operations. The nltk package contains many applications for derivatives. One of the most popular 



Murtadha B. Ressan & Rehab F. Hassan Engineering and Technology Journal 40 (04) (2022) 539-546 
 

542 
 

derivatives is Porter Stem, which is based on the algorithm built by Dr. Martin Porter. The Porter trunk runs in the following 
code snippet: (from nltk.stem import PorterStemmer) [9, 11]. 

3.6 Parts of Speech (POS) tagging 
Part of speech (POS) tagging: is a way in which a part of speech specifies every word in a phrase. POS knowledge plays a 

fundamental role in sentence checking because every word in a sentence with each POS tag has a different meaning depending 
on the sentence situation. Parts of speech (POS) are unique lexical types the words during POS operation are assigned depending 
on their syntactic meaning and purpose. The primary speech components include verbs, nouns, adverbs, and adjectives [1]. Table 
1 shows some examples of parts of speech. POS tags can differentiate words and articulate their parts of speech. It is very helpful, 
especially when NLP-based applications require using the same annotated text. It can be filtered by identifying parts of speech 
and using this knowledge to continue with precise research, such as narrowing names and figuring out which ones are most 
relevant [11]. 

Table 1: Examples of Tags with Parts of Speech 

TAG Descriptions Example(s) 
NN The singular or collective noun lion, cat  
VB Base form - Verb jump, run 
IN Secondary conjugation - Preposition That, in, of, on 
DT Determiners an, a, the 
FW Strange Words Pon, d'hoeve 
JJ Adjectives rich, smart 
JJR Comparative - Adjective better, stronger 
JJS Adjective - superlative fastest, purest 
CD Amount Cardinal seven, four, 9 
NN A singular or collective noun lion, cat  

3.7 Feature extraction 
Feature extraction plays an important role in minimizing errors in machine learning performance. Increases data diversity 

by creating new features by transforming data to reduce dimensions or adding domain knowledge to improve the algorithm's 
work [16]. Document pre-processing (dataset) produces a document that contains only a bag of words. To which the algorithms 
cannot be directly applied. This bag of words should be converted into the term vector. It gives a vector term with numerical 
values corresponding to each term appearing in a document and is very helpful in feature selection [17]. Two techniques for 
feature extraction will be explained in this paper. 

3.7.1 Bag of Words model 
 The simplest and oldest form of text feature extraction in NLP is a bag of words. This model converts every document or 

text into a vector with the number of occurrences of every word in the document. The problem with this model is that it may 
give great importance to a word that frequently appears in all documents, and ignoring the other may be unique to distinguish 
such a document. Other models have been suggested to deal with this problem [12]. 

3.7.2 Tf-idf 
Term Frequency Inverse Documents Frequency (TF-IDF) was first–proposed by Karen [18]. The (TF-IDF) model is the 

most useful and popular one for converting terms into a vector: Term Frequency, Term Occurrences, and Term Frequency 
inverted document frequency (TF-IDF) [19].  The substantial idea of TF-IDF is that terms that appear– frequently in many 
documents are considered less important than high-frequency words that appear within one document. TF-IDF is calculated by 
Eq (1). 

 𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝑇𝑇 = 𝑛𝑛𝑛𝑛
𝑁𝑁

. 𝑙𝑙𝑙𝑙𝑙𝑙 𝐾𝐾
𝐾𝐾𝑛𝑛

  (1) 

In this equation, 𝑛𝑛𝑛𝑛 is the occurrence of term t within a document, 𝑁𝑁 is the number of terms in the document, 𝐾𝐾 is the total 
number of documents, and know is the number of documents that contain the term 𝑛𝑛 [19]. 

4. Machines learning 
The work of this paper applied to the mentioned data set (positive and negative tweets) using the SVM (Support Vector 

Machine) classifier and family naïve bays classifiers. The popular Naïve Bayes Classifiers Are Multinomial Naïve Bayes 
Classifier and Bernoulli Naïve Bayes Classifier. 

4.1 Support vector machines 
SVMs are classifiers that label and classify data in the feature space [20]. Support Vector Machines (SVM) are supervised 

learning algorithms applied for regression, classification, and detection of anomaly outliers. In case of data had been trained 
when each data point in the data set belongs to a particular class, according to a binary classification problem, the Support Vector 
Machines algorithm can be trained based on this data so that each data point can be assigned to one of these two classes [9]. 
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4.2 Naïve Bayes 
A Naïve Bayes classifier is a probabilistic classifier depending on the Bayes theorem with an independence assumption. It 

is supervised learning and will be trained very efficiently [21]. It can learn Class membership probabilities, like expecting the 
probability of a given value belonging to a particular class. The algorithm is a basic Bayesian classifier name the Bayesian naıve 
classifier. If utilized in large datasets, Bayesian classifiers results showed high speed and accuracy. Naive Bayesian classifiers 
presume that the influence on a given class of an attribute value is distinct from the other attribute values. This case is named 
class conditional independence. It is constructed to simplify the computations [22]. 

4.3 Multinomial naïve bayes 
Multinomial NB is similar to Naïve Bayes and is also a probabilistic tactic. Multinomial NB develops the utilization of the 

Naïve Bayes algorithm. It uses NB for data partitioned multinomially and is a frequency-depended model. The Multinomial 
Naïve Bayes algorithm operates on the definition of the frequency of the term, explaining how many times repeated the item is 
during operation. The main variation between classifiers of Multinomial Naïve Bayes and Naïve Bayes Generally, Naïve Bayes 
(NB) works based on conditional probability (the conditional independence of the characteristics is considered). In contrast, the 
Multinomial Naïve Bayes works based on the multinomial distribution. Multinomial Naïve Bayes also can be said as an upgraded 
version of the Naïve Bayes algorithm. It effectively calculates an item's frequency [23-25]. 

4.4 Bernoulli naïve bayes  
Bernoulli's Naïve Bayes algorithm works well on the binary concept that when the items are repeated or not, but not similar 

to Multinomial Naïve Bayes, it does not notify the term frequency. Bernoulli Naïve Bayes, unlike the multinomial process in 
that the term frequencies are taken into account by the multinomial approach. In contrast, the Bernoulli approach is only 
interested in determining whether or not a term is present in the text under consideration. In the multivariate Bernoulli Naïve 
Bayes algorithm, features are distinct binary variables, which explain if the term appears in the file under specified consideration 
or does not [23,26,27]. 

5. Results and Discussion 
After dividing the dataset into Training and Testing at a ratio of (70:30) and training the machine on this dataset, two 

algorithms summarize pre-processing steps below.  Algorithm No. 2 was proposed as an algorithm to work because its results 
are better than algorithm No. 1, as we can see through the results tables. As we can see through the results tables, where Table 2 
shows the results of the work of algorithm 1, and Table 3 concerns the results of algorithm 2. A total of 2,781 negative and 2005 
positive words were collected in the English language. Positive words were placed in the file extension txt, and negative words 
were placed in FileText. In the program, a special step breaks up one tweet into several words and compares these words with 
the words in the file, meaning that the positive tweet words are compared with the negative words in the file. If it finds a negative 
word within the positive tweet, the program will delete this word, as is the case with tweets. The negative word is where the 
negative words of the tweet are broken down and compared with the words in the file for the positive words. If he finds a positive 
word within a negative tweet, he will delete this word from the tweet. As mentioned in the attached tables, this step increased 
accuracy and improved results. The results of the updated algorithm (Algorithm 2) are as follows. 

Table 2: Results of Algorithm1 

Metric/algorithm SVM Naive-Bayes Multinomial - NB  Bernoulli - NB 
Accuracy 86 83 82  89 
Precision (positive tweets) 81 82 82  82 
Precision (negative tweets) 78 83 80  80 
Recall (positive tweets) 89 84 84  84 
Recall (negative tweets) 93 82 87  87 
F1-Score (positive tweets) 85 83 83  83 
F1-Score (negative tweets) 85 83 84  84 

 

Table 3: Results Of Algorithm 2 

Metric/algorithm SVM Naive-Bayes Multinomial - NB Bernoulli - NB 
Accuracy 88 86 85 91 
Precision (positive tweets) 83 93 84 84 
Precision (negative tweets) 79 80 80 80 
Recall (positive tweets) 94 77 89 89 
Recall (negative tweets) 95 94 94 94 
F1-Score (positive tweets) 88 84 87 87 
F1-Score (negative tweets) 87 87 86 86 
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Figure 2 shows the comparison between Algorithm No. 1 and Algorithm No. 2 (results of each machine learning). 

 
Figure 2: Accuracy levels after the algorithm update 

6. Conclusion 
In this paper, more than one step is used (cleaning, removing stop words, tokenization, Stemming, part of speech tagging, 

and feature selection) to apply it to the dataset to make the dataset clearer and less error-free, and free from noises as much as 
possible. Using other machines and training it or a different data set is possible to get better accuracy and results. After applying 
these steps, it was observed that the accuracy of machine learning increased when removing negative words from positive tweets 
and removing positive words from negative tweets, where the accuracy (Bernoulli - Naive Bayes) became 91 after what was 89. 
The accuracy of (SVM) increased from 86 to 88. The accuracy of the results depends on the data set used and the model used in 
machine learning. 

Algorithm 1: 
Input: source dataset (uncleaned and unstructured tweets) 
Output: cleaned and labeled tweets 
 
 
Start 
Step1: Read the data set (5,000 positive tweets and 5,000 negative tweets) 
Step2: Fragmentation \ tokenize the tweets, each tweet separately, then tokenize the tweet into 
words. 
Step3: Remove noise \ Clean each tweet (token) from numbers, punctuations, and handling 
abbreviations.   
Step4: Remove stop words. 
Step5: POS \ Part of Speech tagging each remained word. 
Step6: Stemming: return the verb to it is root. 
Step7: Mark [Label] each tweet as positive or negative 
End 

 

Algorithm 2 
Input: source dataset (uncleaned and unstructured tweets) 
Output: cleaned and labeled tweets 
 
Start 
Step1: Read the data set (5,000 positive tweets and 5,000 negative tweets) 
Step2: Fragmentation \ tokenize the tweets, each tweet separately, then tokenizes the tweet into 
words. 
Step3: Remove noise \ Clean each tweet (token) from numbers, punctuations, and handling 
abbreviations.   
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Algorithm 2: Continued 

Algorithm 2 
Input: source dataset (uncleaned and unstructured tweets) 
Output: cleaned and labeled tweets 
 
Step4: Remove stop words. 
Step5: Remove Negative words from positive tweets & Remove positive words from negative 
tweets (by comparison, each word in a tweet with external files contains positive and negative 
words). 
Step6: POS \ Part of Speech tagging each remained word. 
Step7: Stemming: return the verb to it is root. 
Step8: Mark [Label] each tweet as positive or negative 
End 
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