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ABSTRACT: 
 

The present research is concerned with an investigation of the vibration 
characteristics of a cracked wing structure. Finite element method has been used to 
formulate the free vibration analysis. Ansys v9.0 program as a mathematical tool was 
used in implementation the analysis and extract the results. Effect of several 
parameters such as (effect of crack ratio, crack location, and crack inclination angle) 
on the natural frequencies and mode shapes were studied. The results indicate that the 
natural frequencies are affected in the presence of a crack; but it doesn’t give an 
indication to the crack location. While, using mode shape is a powerful tool to detect 
the crack and its magnitude along the wing’s length. The crack inclination angle is 
investigated to show its effect on the crack identification where relatively little error 
may appear if crack angle wasn’t normal to the wing axis. Also the presence of the 
crack may cause to transform and exchange the modes between each other depending 
on the crack location and its magnitude.    

    
  عن الشق لجناح بسيط غير مرتد بأستخدام تحليل الأھتزاز الحرالكشف
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  :الخلاصة 
أسѧتخدمت طريقѧة . تم دراسة خصائص الاھتزاز لتركيب جناح طائرة يحيوي علѧى شѧق، في ھذا البحث

 (Ansys v9.0)تѧم تنفيѧذ البحѧث واسѧتخراج النتѧائج  بأسѧتخدام . العناصر المحددة لصياغة وتحليل الاھتزاز الحر
) و وزاويѧة مѧيلان الѧشق¸ موقع الشق، مثل نسبة الشق(تمت دراسة بعض العناصر المؤثرة . يلة حل رياضيةكوس

أ ظھѧرت النتѧائج بѧأن قѧيم التѧردد .للجنѧاح)  (Mode shapeومدى تأثيرھѧا علѧى التѧردد الطبيعѧي والѧشكل النمطѧي
بينمѧا نتѧائج .  موقѧع الѧشق وقيمتѧهالطبيعي تتأثر بѧشكل كبيѧر عنѧد وجѧود الѧشق ولكѧن لا يعطѧي ايѧة انطباعѧات عѧن 

كمѧا تѧم دراسѧة تѧأثير مѧيلان . الشكل النمطي تمثل وسيلة ممتازة للكشف عن موقع و قيمة الشق علѧى طѧول الجنѧاح
ًزاوية الشق على تحديد موقع الشق حيث أظھرت النتائج  وجود خطأ قليل نسبيا في حالة كون زاوية الميلان غيѧر 

أن وجود الѧشق قѧد يѧؤدي الѧى تحѧول و أنتقѧال الأشѧكال النمطيѧه فيمѧا ، افة الى ذلكأض. عمودية على محور الجناح
  .     بينھا وذلك بالأعتماد على موقع ومقدار الشق
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dynamics of a structure is largely depends on the way of various damages undertaken. 

Since damage (e.g., crack, corrosion, creep)  in a structure  usually  changes  the mass, 

stiffness and/or damping distribution of the structure either locally or globally, 

vibration characteristics of the structure may be changed so that evaluation of vibration 

responses may be used to detect the damage. The importance and summary on previous 

research can be found in several survey papers, for instance the one by Doebling et al. 

(1998). 

 

Since the dynamical motion of a real wing structure is difficult by self to 

understand deeply. Therefore an attention is focused here on the theoretical study of 

simple cracked wing (not real) made of aluminum material vibrating in the coupled 

bending and torsional modes. Additional boundary conditions at the crack location can 

be established such that the wing can be replaced with two intact wings connected at 

the crack location or by subtract the crack volume from the whole wing volume. The 

changes in natural frequencies and mode shapes with respect to the crack location, 

crack ratio, and crack inclination angle were plotted such that the crack is detected in 

the wing using free vibration analysis.  

 

2- Crack Detection:  

2-1-Based on Changes in Natural Frequencies: 

 

While natural frequencies are relatively easier and more accurately measured 

than other modal parameters, solving an inverse problem for crack detection based only 

on changes in natural frequencies is not so easy, considering this fact that natural 

frequency has a global nature while damage in most cases is a local phenomenon. 

However, if the crack is the most possible failure mode and no other form of damage 

exists, detecting the crack by natural frequencies is possible, even with the presence of 

measurement errors. Various structures have been targeted directly for real applications 

in civil infrastructure, aeronautical and astronautic systems, ground vehicles, offshore 

platforms and underground pipelines. 

 

Early systematic investigation on damage detection by changes in natural 

frequencies may be attributed to Adams et al. (1978) and Cawley and Adams (1979). 

Under the premise that the change in stiffness is independent of frequency, the ratio of 

frequency changes in two modes is only a function of the damage location. 

Experiments were carried out on an aluminum plate with damage in the form of a 

rectangular hole. Stubbs and Osegueda (1990a, 1990b) developed a sensitivity 

approach for damage detection from changes in natural frequencies that is based on the 

so-called Cawley-Adams criterion. Salawu (1997) provided a good review on damage 

detection by changes in natural frequencies. Although it might not be so reliable using 

natural frequency changes alone for damage identification in some infrastructures such 

as prestressed concrete structures as indicated in the paper, many strategies and 

algorithms were developed to further explore the advantages of natural frequencies. 

  

 2-2- Mode Shapes/Curvatures: 

 

Mode shapes are known as the spatial description of the amplitude at each 

resonance frequency. The modal assurance criterion (MAC) and related variations were 

developed in last two decades as a quality assurance indicator to explore the spatial 
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modal information in the area of experimental and analytical structural dynamics 

(Allemang, 2002). West (1984) proposed possibly the first systematic investigation on 

damage detection by using MAC as the statistical indicator correlating mode shapes of 

the damaged and undamaged structure without the use of a prior finite element model. 

Another widely used criterion in damage detection is coordinate modal assurance 

criterion (COMAC) that identifies the coordinates where two sets of mode shapes do 

not agree (Lieven and Ewins, 1988). Examples with a focus primarily on MAC and 

COMAC include Yuen (1985), Natke and Cempel (1997) and Marwala and Hunt 

(2000). Furthermore, Ratcliffe (1997) proposed a method for damage detection based 

solely on mode shapes. The location of damage can be identified from the finite 

difference approximation of a Laplacian operator to the mode shapes. Khan et al. 

(1999) used a continuously scanning laser Doppler vibrometer to monitor the 

discontinuities in mode shapes for detecting cracks and slots. Shi et al. (2000) 

formulated the MDLAC with incomplete mode shapes instead of natural frequencies 

for damage detection. 

As an alternative in using mode shapes, curvature mode shapes were proposed 

and considered more sensitive to damage than the displacement mode shapes (Pandey 

et al., 1991). Lew et al. (1997) compared the method by curvature mode shapes with 

two other modal based methods and found it is reliable for beam-type structures but not 

suitable for truss-type structures. Amaravadi et al. (2001) obtained the curvature mode 

shapes by differentiating mode shapes twice, and then combined a wavelet map with 

them to improve the sensitivity and accuracy for locating damage in a lattice structure 

and a cantilever beam. 

 

2-3-Based on Damping: 

 

Although the estimation of damping matrix (mass and stiffness matrices as 

well) by frequency response functions may be used in the detection of the damage in 

the structure. Frequency response functions (FRF) depict in frequency domain the 

input/output relationship for a system, and are extensively used in structural dynamics 

and system identification to extract resonance frequencies, estimate mode shapes and 

damping coefficients, and verify matrices of mass, stiffness and damping. Many 

damage detection methods based on evaluation of modal parameters aforementioned 

rely on some FRF data, directly or indirectly. 

Changes in damping, however, may have the ability to detect damage to which 

conventional methods based on changes in natural frequencies and mode shapes are not 

sensitive. Modena et al. (1999) showed that visually undetectable cracks cause 

negligible changes in natural frequencies, but a considerable increase in damping that 

can be used to locate the cracking. 

 

2-4-Time Domain Features: 

 

Modal parameters and FRF data usually involve data reduction and feature 

extraction during the transform of recorded data in time domain to features in 

frequency domain. The process may cause loss of important information related to 

damage dynamics; this disadvantage could be avoided by directly using time response 

data for damage detection. Another advantage of using time domain features is that 
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non-linearity responses raised by damage in a structure could be preserved further 

facilitating diagnostics. 

      Cattarius and Inman (1997) proposed a time-domain approach by taking the 

advantage of beating phenomenon to detect small damage that many be unnoticeable in 

natural frequency changes. Carneiro and Inman (2000) investigated the detection of a 

surface crack on a Timoshenko beam in time domain with the aid of an analytical 

model developed by the authors. A bilinear model of a closing crack is also considered. 

While the minimum rank perturbation theory (MRPT) has been extensively 

investigated in frequency domain by Zimmerman and his co-workers (1994) for 

damage detection. 

 

2-5-Based on Wave Propagation: 

 

As one class of the widely used approaches, wave propagation methods adopt a 

transmitter and a receiver to send a diagnostic stress wave along the structure and 

measure the changes in the received signal due to the presence of damage in the 

structure. This approach is a natural extension is very effective in detecting damage in 

the form of geometrical discontinuities. In a paper by Van Den Abeele et al. (2001) 

micro-scale damage in a micro-inhomogeneous material were detected by means of 

nonlinear elastic wave spectroscopy. It is shown that distortion in acoustic and 

ultrasonic waves with nonlinear features can be used to detect cracks and flaws more 

reliably than linear acoustical methods (measures of wave speed and dissipation).  

 

3. Finite Element Discritization 

3.1. General. 

At present, the finite element method is the most powerful numerical technique, 

which offers approximate solution to realistic types of structures such as wings. In the 

present study, the 20-node structural 3-dimensional solid element is used for 

discritization of the wing model 

 

3.2 Element Parameters. 

Solid186 is used for the 3-D modeling of solid structure. The element is defined 

by 20 nodes having three degrees of freedom per node: translations in the nodal x, y, 

and z directions. SOLID186 may have any spatial orientation. The coordinate system 

for this element is shown in Figure (1) (Ansys Element Manual, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(1): Element geometry. 
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3.3. Wing Geometry and Mesh Generation. 

Figure (2) shows the proposed model (wing), all dimensions of the wing are 

listed in Table 1 below. The wing was discretized using solid element (solid186). 

ANSYS 9.0 finite element program was used as a mathematical tool in the analysis of 

this model. Where, Figure (3) shows the finite element representation of the wing 

structure. It must be noted that, the number of the elements at the crack location must 

be enough in its number to give concentrated results of high accuracy; due to the 

dramatic changes that occurs at regions of the crack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 :   Proposed dimensions of the wing. 

 

 

3.4. Finite element formulation  

The basic concept of the finite elements method is to discretize the continuum 

into arbitrary numbers of small elements connected together at their common nodes. 

The stress–strain relations in coordinates aligned with principal material directions are 

given by: 

 

        E                                                                                                                 …(1)  

For a finite element (e), of the discrete model, the displacement vector at any point is: 

 

{u}
e
=[N] {a}

e
                                                                                                             …(2)  

 

Where [N] is a matrix containing the interpolation functions which relate the element 

displacement {u}
e
 to the nodal displacements {a}

e
. By differentiation of the 

displacements, the corresponding strains { }
e
 are obtained such that: 

wing length 
(L) 

wing width (b) maximum 
wing height(t) 

crack location 
(l) 

crack width 
(a) 

crack 
inclination 

angle (α) 
100cm 20cm 1.5 cm variable variable variable 

Fig (3): Mesh generation of the wing model. Fig (2): Wing configuration. 

 

crack location 
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{ }
e
 = [A] {u}

e
                                                                                                         …(3) 

 

Where [A] is the differential operators matrix. 

The substitution of Equation (2) into Equation (3) yields: 

{ }
e
 = [A] [N] {a}

e
                                                                                       …(4) 

 or                                                  

{ }
e
 = [B] {a}

e
                                                                                       …(5) 

                                                  
Also, the total solution domain is discretized into a number of elements (NE) [sub–

domain] such that: 





NE

e

e aa
1

)()(                                     …(6) 

                                               

Where  and 
e
 are the potential energy of the total solution domain and the sub–

domain, respectively. The potential energy for an element, e, can be expressed in terms 

of the internal strain energy, SE, and external work done, WF, such that: 

 

   
e
 (a) = SE – WF                                                                   …(7) 

                                                   
in which (a) is the vector of nodal degrees of freedom of an element.  

The internal strain energy of an elastic body is given by: 



A

TSE dA  
2

1
                                                              …(8)

                                        

then: 

        
A

TeT
adAaSE     B B

2

1
E                                                                      …(9) 

                                      
The external work done by uniformly distributed load is given by: 

    dAPaW

A

f                                                                   …(10) 

                                                    

But, the displacement vector {a} can also be defined as: 
eaNa }]{[}{                                                                                      …(11) 

                                        

Also 

     dA P
T 


A

Te
f NaW                                               …(12) 

                 dA  P a     B B a 
2

1
a  

TT 

AA

T 
NadA

eeTee

  E                        …(13) 

                         

To obtain the Equilibrium State of the plate element, the potential energy must be 

minimized with respect to nodal displacements as follows: 

}0{}{ 



ea


                                                   …(14) 
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By substitution of Equation (13) in Equation (14) and carrying out the partial 

differentiation, then: 

 

            0dA  P      B B}{ T 




A

e

A

T

e
NadA

a
E


                                              …(15) 

or 

}0{][}{][  eee Fak                                                   …(16) 

where,  

  
 


A

TTe ddJdAk

1

1

1

1

  ]B][[]B[ ]B][[]B[][ EE                                                …(17) 

           d d J PNdA  PN F

1

1-

1

1-

TT

A

e
                                               …(18) 

 

in which,  

[K]
e
: is the element stiffness matrix,  

[F]
e
: is the element external applied force vector, 

  J  : is the determinant of the Jacobian matrix. 

In general, it is not possible to evaluate the element stiffness matrix explicitly. Thus, 

numerical integration has to be used based on Gauss– quadrature rules, and the 

selective integration (Zienkiewicz et al ,2000). 

 

 

3.5. Formulation of element mass matrix: 

 

When the shape functions used for the derivation of the mass matrix are 

identical to those used in formulating the element stiffness matrix; matrix [M] is called 

the consistent mass matrix.  

To derive the consistent mass matrix, one can consider the kinetic energy of the total 

solution domain discretized into number of elements (NE) such that: 

 





NE

e

e aTIaTI
1

)()(                                                            …(19) 

where TI and TI
e
 are the kinetic energy of the total solution domain and the sub–

domain respectively. The kinetic energy of the element (e) can be expressed as follows: 

 



A

Te dAamaTI }]{[}{
2

1
                                              …(20) 

The velocity vector within an element is discretized such that: 





NN

i

ii aNa
1

}{}{    NN (number of nodes)                                                                 …(21) 

By substituting Equation (21) into Equation (20), and rearrange it into matrix form: 
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A

eTTTe aMaadANmNaTI }{][}{
2

1
}{]][[][}{

2

1
                                                …(22) 

thus,  

  
 



A

TTe ddJNmNdANmNM

1

1

1

1

   ]][[][]][[][][                                     …(23) 

Where 

[N] =[N1, N2, N3… Nnn]                                                                                           …(24) 

 

3.6. Modal Analysis: 

 

In the dynamic analysis, the natural frequency, , of the vibration is important 

to give an idea about the oscillation of the system with time, and to determine the 

natural period (T) of the vibration which represents the time for which the vibration 

repeats itself, as: 

 

 T = 2 /                                                                                                                …(25) 

To determine the natural frequencies of a structure, a free vibration 

0}]{[}]{[ 


XKXM                                                                                   …(26) 

Assuming harmonic motion which yields to: 

02  T
iii }{ }{ ])M[]K([                                                                        …(27) 

 

        Equation (27) has the form of the algebraic eigenvalue problem (K=M). From 

the theory of homogeneous equations, nontrivial solutions exist only if the determinant 

of the coefficient matrix is equal to zero. Thus: 

 

0][][ 2  MK i                                                                                                    …(28) 

      Expansion of the determinant yields a polynomial of order n called characteristic 

equation. The n roots of this polynomial (i
2
 ) are the characteristic values or the 

eigenvalues. 

 

3.7. Results and Discussion: 
3.7.1 Natural Frequency : 

 

Figure (4) presents the mode shapes and corresponding natural frequencies for 

the wing structure without crack. As shown, the first mode shape present the minor 

bending mode in x-y plane of natural frequency equal to (9.1899Hz), the second 

present the major bending mode in x-y plane of natural frequency (57.035 Hz). Pure 

torsion is address of the third mode of natural frequency (109.3 Hz). The fourth mode is 

purely bending in x-z plane of (131.02 Hz). At last, the fifth mode is complex bending 

in x-y plane of (157.966 Hz). 
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        Table 2 list the natural frequencies of a cracked wing with different crack ratios 

which started from 0.1 to 0.9 at a dimensionless crack location (l/L) equal to 0.3. Table 

3 shows the change in the natural frequencies with different crack locations using crack 

ratio (a/b) equal to 0.5. 
 
Table (2):Natural frequency at different crack ratios (η=a/b), ζ =l/L =0.3 
 

modes η=0.1 η=0.2 η=0.3 η=0.4 η=0.5 η=0.6 η=0.7 η=0.8 η=0.9 

first 9.186 9.184 9.184 9.179 9.165 9.141 9.081 8.965 8.636 

second 57.013 56.979 56.949 56.939 56.901 56.839 56.64 56.28 32.137 

(a):Sub=1, 1
st

 Mode (b): Sub=2, 2
nd

 Mode 

(c): Sub=3, 3
rd

 Mode (d): Sub=4, 4
th

 Mode 

(e): Sub=5, 5
th

 Mode 

Fig (4): Mode shapes of wing without crack.  
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third 109.232 108.904 109.096 109.01 108.625 100.7 84.293 62.063 55.385 

fourth 130.783 129.557 126.124 120.675 112.494 108.28 107.158 104.799 98.783 

fifth 157.648 157.059 157.191 157.104 156.89 156.33 155.022 152.831 147.706 

 
Table (3): Natural frequency at different crack location (ζ=l/L), η=a/b=0.5 
 

modes ζ =0.1 ζ =0.2 ζ =0.3 ζ =0.4 ζ =0.5 ζ =0.6 ζ =0.7 ζ =0.8 ζ =0.9 

first 9.132 9.158 9.165 9.173 9.178 9.182 9.183 9.184 9.189 

second 56.749 56.938 56.897 56.817 56.766 56.773 56.843 56.883 56.96 

third 99.48 105.704 108.62 108.84 108.71 108.83 108.72 108.795 109.19 

fourth 107.96 108.962 112.47 118.64 123.77 127.49 129.71 130.701 131.01 

fifth 156.55 157.21 156.87 156.71 156.72 156.65 156.65 156.597 157.14 

 

 

It was noted that the natural frequency in the case of wing without crack has a 

larger values than tables (2, 3) because the presence of the crack have a significant 

effect on the stiffness (local flexibility) of the structure. In other words, the crack 

reduces the number of connected element points which reduce the number of the 

doubled point of the stiffness matrix, thereby reduce the stiffness of the element. As a 

result, a decreasing in the stiffness will reduce the corresponding natural frequency 

based on the direct relationship between them. As shown in table (2), it is noted that for 

the case of constant crack location, changes in natural frequency depend on the changes 

in the crack length which is surely due to the changing of the overall stiffness of the 

wing at each crack length. 

       It was supposed that for each mode, the value of natural frequency decreases 

gradually with increasing in the crack length (due to the increasing in the unconnected 

point). This agrees with first and fifth mode shapes and some what in the second mode 

shape, where dramatic changes happen at crack ratio equal to 0.9, but don't agree with 

the third mode shape in which the natural frequency decreases dramatically with the 

increase of the crack ratio that started form 0.5.  

        In other words, mode transform or mode exchange effect which mean that there 

are transformations and coupling between the modes; as example at η=0.9 the second 

mode (bending in x-y plane) becomes bending mode in the x-z plane as depicted in 

Figure (5). While the fourth mode (bending in x-z plane) is transformed to become 

torsion mode after η=0.5 and vice versa as shown in Figure (6). As well as, it is very 

clear that the fourth mode (bending in x-z plane) is more sensitive to the crack length 

than the other modes, because this vibrating mode tends to open the crack. 

       Table (3) presents the changes in the natural frequency at different crack locations 

and constant crack ratio. Like Table (2), there are interactions and transformation 

between the mode shapes. As example, the value of the natural frequency in the fourth 

mode starts at ζ=0.1 with a closed value of the third mode at ζ=0.3 which is the same 

problem that presence of the mode interactions. The alternative decreasing and 

increasing in the natural frequency makes the frequency method ineffective in the study 

of the effect of the crack location on the structure response. On the other hand, in the 

tables mentioned above, the changes in the natural frequencies are small compared with 

the big changes in crack ratio and its location, respectively. Tables (2) and (3) were also 

graphed in normalized form to explain and study the information clearly. 

       Figure (7), shows that the changes of the normalized natural frequency (the natural 

frequency with crack divided by the natural frequency without crack) of the first and 
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fifth modes was very small as compared to the second, third, and fourth modes. The 

fourth mod was affected at crack ratio started from 0.2 in which the change is smaller 

than that corresponding to the third and second modes in which the changing is started 

from crack ratio of 0.5 and 0.8 respectively.  

        In Figure (8) which presents the relation between the normalized natural frequency 

and crack location. The changes in the natural frequency in the first, second, and fifth 

modes were simple and smaller than the corresponding in the third and fourth modes. 

The maximum effect in the natural frequency occurs in the fourth mode due to the 

reduction in the stiffness in the horizontal plane that is largely affected by crack 

presence.  

        It is important to refer that the changing in the natural frequency due to the change 

in the crack location and crack ratio doesn’t give any useful information about the 

crack presence, location, and its length. Thus, it is not recommended to depend on the 

natural frequency changes to test the cracked structure because there information is not 

valuable. This result agreed with (Wang, K.2004) who reminded that “As the global 

nature of a structure, natural frequencies may not be sensitive to the local incipient 

damage. Where some situations such as damage detection on bridges and buildings, 

changes in environmental conditions (e.g., climate changes) even in a single day could 

affect natural frequencies more than the possible damage by changing mass and 

stiffness of the structure”. 

       Figure (9) presents the effect of the crack inclination angle on the natural 

frequency. It was noted that the changes in natural frequency on the first mode is less 

than that corresponding of the second, third, and fifth, respectively. But the fourth 

mode was largely affected with the inclination angle. It is important to refer that the 

maximum effect occurs at an inclination angle of 90˚ (the crack is normal on the wing 

axis).    

        

3.7.2 Mode Shapes        

3.7.2.1 Line of crack perpendicular on the wing axis. 

Figure (10) presents the torsional mode shapes at different crack ratios in the 

wing. At first glance, it is noted that the crack location (ζ=0.3) can be recognized clearly 

that represented by the vertical line in each mode (discontinuity in mode shape). The 

length of the vertical line is direct proportional with the crack ratio (an increasing in the 

crack ratio causes an increasing in the length of the vertical line).  Figure (11) presents 

the bending mode shapes with different crack ratios in which the crack ratio was not 

clearly affect the dynamic general behavior. 

 

       Figure (12) presents the torsional mode shape at different crack locations with 

constant crack ratio η=0.5. It is important to note that there was a sudden jump in each 

crack location (the vertical line). This jump is largest when the crack location is closest 

to the root of the wing and decreases gradually when it converged to the wing's tip 

(converse proportional). The main reason is that the maximum torsional moment in the 

wing structure occurs at a distance between (0.1- 0.15) from the wing length (highly 

stressed regions) and decreasing after that (Waheed. S. O, 2006). The jump in the 

torsional mode is more obvious than the bending mode as depicted in figures (12, 13). 

However, the deflected shape and its jump at each crack location may still valuable for 
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detecting the crack location and its length when both bending and torsional modes are 

taken into consideration. 

 

 

3.7.2.2 Inclined crack with angle α    
Figures (14, 15) presented the torsional and bending mode shapes at different 

crack inclination angles. The crack ratio and crack length are constants of 0.5. The 

general behaviors in the figures are the same as in case of perpendicular crack. It was 

noted that the two modes doesn’t largely affected by the changing in the inclination 

angle. Although that the value of crack location of 0.5 (the discontinuity must appear at 

this location exactly), there is little shifting of the discontinuity closest to the crack. 

Anyway this is not a great problem but it may mislead the observer to detect the crack 

exactlly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig (5): Transforms between modes at (η=0.9), ζ =l/L =0.3  
   (a) The fourth mode to the second ,(b) second to the third. 

 

(a) (b) 

      Fig (6): Transforms between modes at (η=0.6), ζ =l/L =0.3  

      (a) The fourth mode to the third ,(b) the third to the fourth. 

(a) (b) 
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Fig (7): Normalized natural frequency  
at different crack ratios 

Fig (8): Normalized natural frequency  
at different crack locations 
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Fig (9): Normalized natural frequency  
at different crack inclination angles. 
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Fig (10): Tensional mode shape  
at different crack ratios, ζ=0.3. 
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Fig (11): Bending mode shape  

at different crack ratios, ζ=0.3. 
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Fig (12): Torsional mode shape 

at different crack locations, η =0.5. 
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