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Abstract 
The non-Darcy mixed convection from a horizontal permeable surface 

embedded in a saturated porous medium with the simultaneous heat and mass transfer 

has been studied. Uniform and variable permeability effects are also investigated. 

Variable surface temperature and concentration was considered as a surface condition. 

Nonsimilar governing equations are obtained by using a suitable transformation and 

solved numerically by a finite difference method. It is observed that for uniform 

permeability surface fluid suction and increasing the power law index, thermal 

dispersion parameter, and buoyancy ratio increases the heat and mass transfer rates. 

Surface fluid injection and increasing the inertia effect parameter have opposite effect. 

Increasing Lewis number decreases the heat transfer rate and increases the mass 

transfer rate. For any particular parameter, variable permeability enhances the heat 

and mass transfer rates.   
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 –جشٌاٌ انحًم انًخخهط عهى طىل صفٍحت أفقٍت َفارة فً وسط يسايً يع حغٍش انُفارٌت 

 دسجت حشاسة انسطح وانخشكٍز
 صذاو أ. يحًذ     د.أيٍش سهطاٌ داؤد        و    

 قسى انهُذست انًٍكاٍَكٍت

 جايغت انًىصم
 انخلاصت
يغًيىس فيً وسيط يسيايً يميبع ييع  َفيار فً هزا انبحث حًج دساست انحًم انًخخهط انلاداسسً يٍ سطح أفقيً 

وانُفارٌت انًخغٍشة. نقيذ أذيز ظُظيش الاعخبياس  حأثٍشاث انُفارٌت انًُخظًتحزايٍ لاَخقال انحشاسة وانكخهت. كزنك حى انخحشي عٍ 

حييى انحلييىل عهييى يمييادلاث يخحكًييت لايخًاثهييت عييٍ طشٌيي   حغٍييش دسجييت انحييشاسة وانخشكٍييز عهييى انسييطح كمييشط نهسييطح.

ىٌلاث يُاسبت وحى حهها سقًٍا ظىاسيطت طشٌقيت انفيشل انًحيذود. نقيذ نيىحل اَيذ نهُفارٌيت انًُخظًيت فياٌ سيح  اسخخذاو حح

انًائع يٍ انسيطح وانزٌيادة فيً اا قياَىٌ انقيىةم يمهًيت انخميخج انحيشاسيم وَسيبت انطفيى حزٌيذ يميذلاث اَخقيال انحيشاسة 

لىس انزاحً نهًا حأثٍش يماكس. انزٌيادة فيً عيذد نيىٌس ٌقهيم وانكخهت. حقٍ انًائع يٍ انسطح وانزٌادة فً يمهًت حأثٍش انق

يمذل اَخقال انحشاسة وٌزٌذ يميذل اَخقيال انكخهيت. لاٌيت يمهًيت يمٍُيتم فياٌ انُفارٌيت انًخغٍيشة حقيىي يميذلاث اَخقيال انحيشاسة 

 وانكخهت.  
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Nomenclature 

21 & aa  Constants, equation (7). Greek letters 

61 AA 
 

Coefficients, equation (16).   Thermal diffusivity of fluid  sm2
. 

b  Inertia coefficient (Ergun’s correlation) defined 

in equation (3)  m1 . 
e  Effective thermal diffusivity of  

the porous medium  sm2
. 

121 BB 
 

Coefficients, equation (17). C
                   

Coefficient of concentration expansion  kgm3
. 

c  Specific heat of fluid  KkgJ  .     T  Coeff. of thermal expansion  K1 . 

C  Concentration  3mkg .   Parameter defined in equation (12). 
dd &  Constants, equation (9). 

T  Thermal boundary layer thickness  m . 

pd  Particle diameter  m . T
 

Temperature difference 

   TxTw   K . 

D  Mass diffusivity of the porous  

medium  sm2
. 


 

Subinterval in the  -direction. 

sD  Thermal dispersion parameter  

   23121

xxp RaPexd  .                  


 

Subinterval in the  -direction. 

f  Dimensionless stream function.   Nonsimilarity parameter. 

wf                   Surface mass flux parameter  

     3121

xxw RaPexV   . 

  Pseudosimilarity variable. 

g  Gravitational acceleration  2
sm .   Dimensionless temperature. 

h  Local heat transfer coefficient  

    TxTq ww   KmW 2
. 

  Coefficient, equation (9). 

mh  Local mass transfer coefficient  

    CxCm ww   sm . 

  Thermal conductivity ratio of the fluidphase to that 

of the solid phase. 

i  Index of mesh points in the  -direction.   Dynamic viscosity of fluid  mskg  . 

j  Index of mesh points in the  -direction. v    Kinematic viscosity of fluid  sm2
. 

k  Thermal conductivity of fluid  KmW  .   Density of fluid  3mkg . 

K  Permeability of porous medium  2m .   Prefix indicating summation. 

Le  Lewis number  D . w  Local wall shear stress  2.smkg . 

wm  Local surface mass flux  smkg 2
   Velocity component y -direction  sm . 

n  Constant, equation (7).   Porosity of the porous medium. 

N  Buoyancy ratio  

        TxTCxC wTwC   

  Dimensionless concentration. 

xNu  Local Nusselt number  khx .   Stream function. 

 NN &
 

Integer numbers greater than zero. Subscripts 

xPe  Local Peclet number  xU . e  Effective 

wq  Local surface heat flux  2mW . na  Assumed value not affected by the 

firstconvergence criterion. 

R  Inertia effect parameter  

   23121

xx RaPevxbK    . 

new  New value. 

xRa  Local Rayleigh number  

     TxgK T . 

old  Old value. 

xSh  Local Sherwood number  Dxhm . s  Dispersive. 

T  Temperature  K . so  Solid phase. 

u  Velocity component in the x direction  

 sm . 

st  Stagnant. 

U  Free stream velocity  sm . w  Surface conditions. 

wV  Surface blowing or suction velocity  

 sm . 

  Free stream conditions. 

x  Axial coordinate  m .   

y  Normal coordinate  m .   
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Introduction 
In recent years, much work has been dedicated to the area of convective heat 

transfer in porous media because of its relevance to a variety of situations occurring in 

engineering and nature. Among these works, natural and forced convection studies occupy 

the majority of investigations. The interfacial area of mixed convection which connect natural 

and forced convection, in comparison, has not been given due attention in porous media [1]. 

The convection heat transfer phenomena in nature are often accompanied by mass transfer, 

that is, by the transport of a certain substance that acts as a component (constituent, species) 

in the fluid mixture. Convection mass transfer processes alone (in the absence of heat 

transfer) constitute the backbone of many operations in the chemical industry. This seems 

like enough reason to include mass transfer in the studies. An additional argument in favor of 

this decision is the analogy that exists between convective mass transfer and convective heat 

transfer [2].  

Simultaneous heat and mass transfer from different geometries embedded in 

porous media has many engineering and geophysical applications. These applications include 

migration of water in geothermal reservoirs, underground spreading of chemical wastes and 

other pollutants, thermal insulation, enhanced oil recovery, packed-bed catalytic reactors, 

cooling of nuclear reactors, grain storage, and evaporative cooling and solidification [3]. 

When the flow velocity and the pores of the porous medium matrix are small, the 

porous medium can be modeled by the Darcy law, which assumes a linear empirical relation 

between the Darcian velocity and the pressure drop across the porous medium. To acquire a 

better understanding of convective heat transfer in a porous medium, incorporating the effects 

of various non-Darcy flow phenomena, which are often encountered in many practical 

situations, into the analysis is necessary. These non-Darcy effects include boundary viscous 

resistance, flow inertia force, near-wall porosity variation, and thermal dispersion (A 

secondary effect of a porous medium on the flow appears as a result of mixing and 

recirculation of local fluid particles through tortuous paths formed by the porous medium 

solid particles, this effect is classified as thermal dispersion [3]). Inclusion of these non-

Darcy effects in the analysis is essential for porous media with a higher flow velocity and/or 

larger pore sizes, where Darcy’s law is inadequate [4]. 

Previous works on mixed convection over horizontal surfaces(4-14) were done 

without taking into consideration the convection mass transfer process in the analysis 

(concentration equation and its relevant boundary conditions). Previous works were carried 

out for impermeable surfaces (i.e., there was no surface blowing or suction velocity). 

Furthermore, variation of permeability and porosity of the porous medium was included in 

the previous studies without including the non-Darcian effects in the analysis with these 

variations.   

In this work the problem that will be considered is the simultaneous heat and 

mass transfer by mixed convection from a semi-infinite horizontal permeable surface 

embedded in a fluid-saturated porous medium and in the presence of : 

1.   Surface blowing or suction. 

2.   The porous medium inertia and thermal dispersion effects.  

3.   Incorporating the variation of permeability and thermal conductivity due to packing of 

particles.  

This will be done for power law variations of the surface temperature and 

concentration. 
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Problem formulation 
Consider steady, laminar coupled heat and mass transfer by mixed convection 

flow of fluid over a semi-infinite permeable horizontal plate embedded in a fluid-saturated 

porous medium. The coordinate system is shown in Figure (1). For the mathematical analysis 

of the problem, we assume that gravitational acceleration ( g ) is acting downward in the 

negative y -direction. Fluid is assumed to be incompressible, Newtonian, and has constant 

properties except the density in the buoyancy term of the balance of the momentum equation 

that is approximated according to the Boussinesq approximation. The surface temperature 

and concentration are assumed to have power law variations with the horizontal distance 

along the plate. The temperature and concentration of the free stream are assumed to be 

constant. The temperature and concentration at the plate surface are always greater than the 

free stream values existing far from the plate surface. Permeability and thermal resistance are 

functions of the vertical coordinate y . The flow is assumed to be two-dimensional and the 

porous medium is assumed to be non-deformable. At any point in the porous medium, the 

solid matrix is in thermal equilibrium with the fluid filling the pores. Under these 

assumptions and the application of Boussinesq and boundary layer approximations, the 

governing equations are given by [22]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Continuity equation. 
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Where u and   are the velocity components in the x  and y directions respectively. 

 

2. Momentum equation. 
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Figure (1): Mixed convection flow adjacent to a permeable horizontal       

plate embedded in a saturated porous medium. 
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Where  ,  , T ,and C  are the density, dynamic viscosity, thermal expansion coefficient, 

and concentration expansion coefficient of the fluid respectively; K  is the permeability of the 

porous medium; T , C , and g  are the temperature, concentration, and gravitational 

acceleration respectively; b  represents an Ergun ’s correlation for a column of packed 

spheres, it is given as [2]: 

 

 

 pd

b
3

175.1




                                                                                                                   (3) 

Where   and pd  refer to porosity of the porous medium and particle diameter respectively. 

                                                                                                                   

3.Energy equation. 
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                                                                                  (4) 

 

4.Concentration equation. 

 

2

2

y

C
D

y

C

x

C
u














                                                                                                   (5) 

Where e  and D  are the effective thermal diffusivity and the mass diffusivity of the porous 

medium respectively.  

 

5. Boussinesq approximation. 

As stated earlier the properties of the fluid are assumed to be constant except the 

density variation in the buoyancy force, which is approximated according to the Boussinesq 

approximation. This variation, due to both temperature and concentration gradients, can be 

described by the following equation [15]: 

  

      CCTT CT  1                                                                           (6) 

 

6. Boundary conditions. 

The boundary conditions for the problem of power law variations of surface 

temperature and concentration can be written as: 

 

0y :   wV      n

w xaTxTT 1       n

w xaCxCC 2                              (7) 

 

y :        Uu        TT        CC                                                                 (8) 

 

In equations (7 & 8), wT  and wC  are the surface temperature and concentration, respectively. 

wV  is the surface blowing or suction velocity; U , T , and C  are the free stream velocity, 

temperature, and concentration, respectively; 1a , 2a , and n  are constants. 
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7. Permeability and porosity.        

It will be assumed that the permeability and porosity of the porous medium vary 

exponentially from the surface due to packing of particles next to the surface  [14,16-19]. 

 

 ydeKK 

  1             yed 

  1                                                                   (9) 

 

Where K  and   are the permeability and porosity at the edge of the boundary layer, 

respectively. d  and d  are constants, whose values are taken 3.0 and 1.5 [14,16-19], 

respectively.   will be explained with the proceed in the analysis. The porosity of a packed-

sphere bed decreases from a value of 0.9  1.0 at the surface to 0.38  0.4 in the bulk of the 

bed [4]. 

 

8. Effective thermal diffusivity. 

The quantity  ck
ee 

   in equation (4) is the effective thermal diffusivity of 

the porous medium, with ek  denoting the effective thermal conductivity of the saturated 

porous medium and  c  the product of density and specific heat of the fluid. The effective 

thermal conductivity ek  can be written as [4,8]: 

 

sste kkk                                                                                                                      (10) 

Where stk  is the stagnant thermal conductivity and sk  is the thermal dispersive conductivity. 

The stagnant thermal conductivity of the porous medium for packed beds of spherical 

particles as a function of the medium porosity   and the thermal conductivity ratio between 

the fluid and the solid   can be expressed as in the following correlation [4,8,20]: 
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1

12
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2k

kst                                    (11) 

Where k  is the thermal conductivity of the fluid, sokk  is the thermal conductivity ratio 

of the fluid phase to that of the solid phase, and the parameter   is a function of the porosity, 

which can be expressed by [4,8,20]: 

   

   910
125.1                                                                                                         (12) 

In the case of prevalent inertia effect, the thermal dispersion effect may become important. In 

order to examine the effect of thermal dispersion on heat transfer rate, the following thermal 

dispersion model will be used in the analysis [4,8,21]: 

 

       104.0 ps udck                                                                                           (13) 

Next, the system of equations (1-5) together with the boundary conditions (7 & 8) will be 

transformed into a dimensionless form.  

 

9. Dimensionless variables. 

In order to obtain a system of equations applicable to the entire regime of mixed 

convection, the following dimensionless variables are introduced [7,8,22]: 
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12/1   xPe
x

y
   ,    

1

2/1

3/1

1













x

x

Pe

Ra
                                                                           (14) 

 

     12/1,,   xPeyxf  

        TxTTT w ,                                                                                       (15) 

        CxCCC w ,  

 

Where  , f ,  ,  , and   are the pseudosimilarity variable, dimensionless stream function, 

dimensionless temperature, dimensionless concentration, and thermal diffusivity of fluid 

respectively.   is the stream function, which is defined by yu    and x   

such that the continuity equation, equation (1), is automatically satisfied; xUPex   is the 

local Peclet number,     TxgKRa Tx  is the local Rayleigh number, and the 

parameter   is the nonsimilarity mixed-convection parameter. A value of 0  corresponds 

to pure free convection, while 1  represents pure forced convection. It will choose 
2/1

xPex   such that equation (9) and e  are purely function of   only [19]. By 

substituting equations (14) and (15) into equations (2), (4), and (5), the following nonsimilar 

system of dimensionless equations are obtained [22]: 

 

10. Dimensionless momentum equation. 
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Where      
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  represents the buoyancy ratio, 61 AA   are as 

follows: 
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11. Dimensionless energy equation. 
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Where 121 BB   are as follows: 
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12. Dimensionless concentration equation. 
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1
                                                            (18) 

Where DLe   is the Lewis number.  

 

13. Dimensionless boundary conditions. 
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Where      3121

xxww RaPexVf    is the surface mass flux parameter. wf  increases 

from injection to suction; i.e. from –1 to 1. 

 

 
 
  0,

0,

, 2











f

                                                                                                            (20) 

 

Physical quantities of interest include the velocity components u  and   in the x  

and y  directions, the local Nusselt number khxNux  , where the local heat transfer 

coefficient    TxTqh ww  and  
0


yew yTkq , the local Sherwood number 

DxhSh mx  , where the local mass transfer coefficient    CxCmh wwm  and 

 
0


yw yCDm , the local surface shear stress w , defined as  

0


yw yu . In terms 

of the new variables, these quantities have the expressions: 
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The primes in equations (16-25) denote partial differentiation with respect to  . The presence 

of   in these equations makes them nonsimilar [9].  

 

Numerical scheme  
The numerical scheme to solve equations (16-18) adopted here is based on a 

combination of the following concepts [23]: 

1. The boundary conditions for   are replaced by   2

max,  f ,   0, max  , 

and   0, max    where max  is a sufficiently large value of   where the boundary 

conditions (20) for velocity is satisfied. 

2. The two-dimensional domain of interest (  , ) is discretized with an equispaced mesh 

in the   direction and another equispaced mesh in the   direction. 

3. The partial derivatives with respect to   and   are all evaluated by the central 

difference approximations. The central difference approximation for the partial 

derivatives with respect to   vanish when 0  and 1 . 

4. Two iteration loops based on the successive substitution are used because of the 

nonlinearity of the equations. 

5. In each inner iteration loop, the value of   is fixed, while each of equations (16-18) is 

solved as a linear second-order boundary-value problem of ordinary differential 

equation (ODE) on the   domain. The inner integration is continued until the nonlinear 

solution converges for the fixed value of  . 

6. In the outer iteration loop, the value of   is advanced from 0.1 to 0.9. The derivatives 

with respect to   are updated after every outer iteration step. 

Fortran language is used to program the system of nonlinear equations. The 

program is divided into three parts: the first part obtains the solution of the pure free 

convection by setting the nonsimilarity parameter equal to zero. The second part obtains the 

solution of pure forced convection by setting the nonsimilarity parameter equal to one. The 

third part obtains the solution of mixed convection region for the nonsimilarity parameter 

values lies between 0 and 1 (i.e., 0 <   < 1). 

In this work 39.0 , 005.0pd m, 1  [4], and step sizes of 02.0  

and 1.0  are input to the program. A convergence criterion of     


N

j
oldnew ijfijf

1

,,  < 

0.001 is adopted in the program for all types of convection. Where  ijfnew ,  and  ijfold ,  are 

the new and old value of f . For the mixed convection region, as well as the above 
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mentioned convergence criterion there is another convergence criterion on the whole region 

of mixed convection that it 

For i 1,…, N   

    


N

j
nanew ijfijf

1

,,  < 0.001 

If (yes) then next i . If (no) then updates the values of f ’s,  ’s, and  ’s for the mixed 

convection region (0 <   < 1) and repeat the solution process for this region. Where  ijfna ,  

represent the assumed value of f  that is not affected by the first convergence criterion.  

 

Results and discussion 
Numerical results were obtained and presented. These results cover the values of 

the exponent n , which is physically realistic. The range of n  values for which the present 

problem is physically realistic can be found following the criterion given by Aldoss et al. [7] 

and Chen [8]. The criterion is based on the requirements that both u  and T , must increase 

or at least remain constant with respect to x  as long as the wall temperature at x  > 0 is 

different from that of the surroundings. To meet these requirements, it is found that T  varies 

like   32 nx   and u  varies like     2132 nx  for pure free convection. Thus, the range of 

exponent n  is 25.0  n . In order to illustrate the effect of all involved parameters on the 

local Nusselt and Sherwood numbers a parametric study is performed. Table (1) shows the 

input values of the parameters to the program.  

 

Table (1): Input values of the parameters to the program when 

( 39.0 , 005.0pd m, 1 , 02.0 , 1.0 ). 

Run number wf  n  R  N  sD  Le 

1 0 0.5 0 0 0 1 

2 0 1 0 0 0 1 

3 0 1.5 0 0 0 1 

4 0 2 0 0 0 1 

5 0 0.5 0 5 0 10 

6 0 1 0 5 0 10 

7 0 1.5 0 5 0 10 

8 0 2 0 5 0 10 

9 0 1 0 2 0 10 

10 0 1 0.1 2 0 10 

11 0 1 1 2 0 10 

12 0 1 10 2 0 10 

13 0 1 1 2 15 10 

14 0 1 1 2 20 10 

15 0 1 1 2 25 10 

16 0 1 1 2 30 10 

17 0 1 0 1 0 0.5 

18 0 1 0 1 0 5 

19 0 1 0 1 0 10 

20 0 1 0 1 0 100 

21 0 1 0 0 0 10 

22 0 1 0 1 0 10 

23 0 1 0 5 0 10 

24 0 1 0 8 0 10 

25 -1 1 0 1 0 0.5 

26 -0.5 1 0 1 0 0.5 

27 0 1 0 1 0 0.5 

28 0.5 1 0 1 0 0.5 

29 1 1 0 1 0 0.5 
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The whole runs are achieved two times one under uniform permeability (UP) 

condition when 0 dd , while the other under variable permeability (VP) condition when 

3d  and 5.1d .The results have been obtained for various values of the parameters. In 

order to validate the numerical results, the present results are compared with those of 

previously published works on special cases of the problem. These favorable comparisons 

give confidence in the numerical results to be reported in the next sections. Comparisons of 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

Figure (2): Comparisons of velocity profile, temperature profile, and local Nusselt 

number for Darcy and non-Darcy solution.  
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velocity profile, temperature profile, and local Nusselt number for Darcy and non-Darcy 

solution are shown graphically in Figure (2). In tabulated form, comparisons of 

 121 xx PeNu  values for Darcy solution at values of   and n  are listed in Table (2). These 

comparisons were found to be in excellent agreement 

 

Table (2): Comparisons of  121 xx PeNu  values for Darcy solution at values of   and n . 

 5.0n 0.1n 5.1n 0.2n 

0.0 0.8165 1.0995 1.3458 1.5710 

0.1 0.7373 0.9930 1.2156 1.4191 

0.2 0.6648 0.8959 1.0970 1.2808 

0.3 0.6036 0.8134 0.9956 1.1613 

0.4 0.5619 0.7547 0.9208 1.0708 

0.5 0.5510 0.7313 0.8852 1.0231 

0.6 0.5775 0.7523 0.9002 1.0314 

0.7 0.6356 0.8160 0.9670 1.0997 

0.8 0.7126 0.9089 1.0722 1.2148 

0.9 0.7980 1.0162 1.1973 1.3552 

1.0 0.8863 1.1285 1.3294 1.5046 

(a) Aldoss et al. [7] 

 5.0n 0.1n 5.1n 0.2n 

0.0 0.8156 1.0990 1.3456 1.5170 

0.1 0.7361 0.9922 1.2153 1.4191 

0.2 0.6635 0.8950 1.0966 1.2806 

0.3 0.6025 0.8127 0.9951 1.1641 

0.4 0.5614 0.7543 0.9204 1.0706 

0.5 0.5509 0.7311 0.8850 1.0229 

0.6 0.5775 0.7523 0.9002 1.0314 

0.7 0.6356 0.8160 0.9670 1.0998 

0.8 0.7125 0.9089 1.0722 1.2148 

0.9 0.7980 1.0161 1.1973 1.3552 

1.0 0.8862 1.1284 1.3293 1.5045 

(b) Chen [8] 

 5.0n 0.1n 5.1n 0.2n 

0.0 0.8158 1.0989 1.3452 1.5702 

0.1 0.7361 0.9921 1.215 1.4186 

0.2 0.6635 0.8951 1.0966 1.2805 

0.3 0.6026 0.8128 0.9953 1.1612 

0.4 0.5615 0.7542 0.9203 1.0705 

0.5 0.5508 0.7307 0.8845 1.0223 

0.6 0.5774 0.7519 0.8996 1.0307 

0.7 0.6355 0.8158 0.9667 1.0993 

0.8 0.7125 0.9088 1.072 1.2146 

0.9 0.7979 1.0161 1.1972 1.3549 

1.0 0.8862 1.1281 1.329 1.5041 

(c) Present work 
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1. Results under UP condition:  

In this section the results under uniform permeability condition for different 

parameters will be presented and discussed. These parameters include power law index n , 

inertia effect parameter R , thermal dispersion parameter sD , Lewis number Le , buoyancy 

ratio N , and surface mass flux parameter wf . To conserve space, the variations of velocity, 

temperature, and concentration profiles with pseudosimilarity variable at selected values of 

the nonsimilarity mixed convection parameter and any specified parameter will be described 

only and not shown graphically.  

 

Effect of exponent n :  

 At a given value of n  the velocity gradient at the surface is found to be greater at lower 

values of  . At a given value of  , as n  increases the velocity gradient is larger and the 

momentum boundary layer thickness is smaller. It is noticed that at a given value of n , as   

increases the thermal and concentration boundary layer thickness increases, while the 

temperature and concentration gradients at the surface decreases. This continues to be true 

until a certain value of   is reached, beyond which as   increases further, the trend starts to 

reverse, and the thermal and concentration boundary layer thickness decreases while the 

temperature and concentration gradients at the surface increases. At a fixed value of  , as n  

increases the thermal and concentration boundary layer thickness decreases. 

The variations of local Nusselt and Sherwood numbers with   at values of n  are 

illustrated in Figure (3). At a given value of n   as   increases from 0 the local Nusselt and 

Sherwood numbers decreases, reaches a minimum value at a certain value of  , and then 

increases again as   approaches 1. It is also clear that for a higher value of n , the local 

Nusselt and Sherwood numbers is larger. For all values of n  the local Nusselt and Sherwood 

numbers for pure free convection at 0  is higher than that of pure forced convection at 

1 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The behavior of the curves with a minimum value at a certain   value is due to the 

definition of the local Nusselt and Sherwood numbers Parameters and does not indicate that 

the xNu  and xSh  values for mixed convection is smaller than that for pure free and forced 

convection. For example, for 1n  and at 5.0 , with 210xPe  and 310xRa , one finds 

Figure (3): Effect of exponent n (UP). 
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262.16xNu  as compared with 951.12xNu  for pure free convection at 0  and 

281.11xNu  for pure forced convection at 1 . 

 

Effect of inertia parameter R :  

 At a given value of   an increase in the parameter R  reduces the fluid velocity. 

However, at 0  the velocity profiles thin near the surface, while it thick far from the 

surface as the parameter R  increases. Also, at a given value of   an increase in the 

parameter R  increases the fluid temperature and concentration. When 1  increasing of R  

has no effect on the temperature and concentration profiles. 

The variations of local Nusselt and Sherwood numbers with   at values of R  are 

given in Figure (4). The local Nusselt and Sherwood numbers decreases with an increase in 

R . This is evident from the fact that inertia effect tends to retard the momentum transport in 

the boundary layer and to reduce the heat and mass transfer. Also, the inertia term has a 

pronounced effect on the heat and mass transfer rates for higher values of R . Moreover, all 

curves corresponding to different values of R  are seen to converge to one point in the forced 

convection limit. This implies that the inertia term has little significance in forced convection 

when the Ergun’s correlation is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of thermal dispersion parameter sD :  

 At a given value of   both momentum and thermal boundary layer thickness increases as 

sD  increases, while concentration boundary layer thickness decreases slightly. However, as 

  goes to 1 this effect on concentration profile is diminished until it is neglected when 

1 . Since the value of                   

 0,f   is always positive, it can be noticed from equation (23) that dispersion always 

enhances the heat transfer coefficient as shown in Figure (5 a). Starting from 0 , it is clear 

that, increasing of sD  leads to a small increase in the local Sherwood number, and as   

increases to 1 this small increase diminished gradually until it is neglected as presented in 

Figure (5 b).  
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Figure (4): Effect of inertia parameter R  (UP).  
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Effect of Lewis number Le :  

 Increases in the values of Le  resulted in decreases in the mass diffusivity. This, in turn, 

results in decrease in the concentration buoyancy forces and therefore the flow velocity. Also, 

increases in the values of Le  result in increases in the thermal boundary layer thickness. 

However, for larger values of Le  the decrease in the flow velocity and the increase in the 

fluid temperature are small. When, 1  the increase in Le  value has no effect on the 

thermal boundary layer thickness. As expected, increasing the value of Le  produces lower 

concentrations. Due to the above reasons the local Nusselt number decreases and the local 

Sherwood number increases as the value of Le  increases as depicted in Figure (6). 

Furthermore, in Figure (6 a) all curves corresponding to different values of Le  are seen to 

converge to one point in the forced convection limit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of buoyancy ratio N :  

 Increasing the buoyancy ratio parameter results in increase of the buoyancy effect, 

causing higher flow velocities near the horizontal flat plate. The high velocity near the 

surface will carry more heat and mass out of the surface, thus decreases the thermal and 

concentration boundary layer thickness. This causes increases in the temperature and 

concentration gradients at the surface, which produces increases in the heat and mass transfer 

rates as shown in Figure (7). Also, from Figure (7), it can be seen that all curves 
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Figure (5): Effect of thermal dispersion parameter sD  (UP). 

(a) (b) 

0.0 0.2 0.4 0.6 0.8 1.0
0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

 

 

 Le = 0.5

 Le = 5

 Le = 10

 Le = 100

N
u

x 
/ 

(P
e1

/2
x


 -1

)

 
0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

 

 

 Le = 0.5

 Le = 5

 Le = 10

 Le = 100

S
h

x 
/ 

(P
e1

/2
x


 -1

)

 

Figure (6): Effect of Lewis number Le (UP).   
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corresponding to different N  values are converge to one point at 1 . This means that the 

buoyancy ratio has large influence on free convection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of surface mass flux parameter wf :  

 Surface fluid suction ( wf  > 0) has the effect of reducing the velocity, temperature, and 

concentration boundary layer thickness. Consequently, the rate of heat and mass transfer 

increases. On the other hand, surface fluid injection or blowing ( wf < 0) produces the 

opposite effect, namely, a decrease in the surface heat and mass transfer rates. The behaviors 

of local Nusselt and Sherwood numbers are illustrated in the Figure (8), as the surface mass 

flux parameter wf  moves from injection domain to suction domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Results under VP condition:  

Figures (9-14) presents the influence of the various parameters under variable 

permeability condition on the heat and mass transfer rates. For any particular parameter, 

variable permeability effect increase the velocity and reduce the thermal and concentration 

boundary layers in comparison with its counterpart for the case of uniform permeability. This 

leading is to an enhancement of heat and mass transfer rates. Starting from 0 , as the 

inertia effect parameter increases, the momentum boundary layer thickness decreases while 

the thermal and concentration boundary layer thickness increases. This continues to be true 

until a certain value of   is reached, beyond which as   increases further the momentum 

0.0 0.2 0.4 0.6 0.8 1.0

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

 

 

 N = 0

 N = 1

 N = 5

 N = 8

N
u

x 
/ 

(P
e1

/2
x


 -1

)


0.0 0.2 0.4 0.6 0.8 1.0

2.4

2.8

3.2

3.6

4.0

4.4

4.8

5.2

5.6

 

 

 N = 0

 N = 1

 N = 5

 N = 8

S
h

x 
/ 

(P
e1

/2
x


 -1

)



Figure (7): Effect of buoyancy ratio N  (UP). 
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Figure (8): Effect of surface mass flux parameter wf  (UP).  
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boundary layer thickness increases while the thermal and concentration boundary layer 

thickness decreases. Due to the above reason, as R  increases the curves of local Nusselt and 

Sherwood numbers decreases and then they increases in the form illustrated in Figure (10). 
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Figure (9): Effect of exponent n  (VP). 
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Figure (10): Effect of inertia parameter R  (VP).  
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Figure (11): Effect of thermal dispersion parameter sD  (VP). 
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Conclusions 
The results indicated that under uniform permeability condition as the power law 

index for surface temperature and concentration increases, the local Nusselt and Sherwood 

numbers are increases. The local Nusselt and Sherwood numbers decreases with an increase 

in inertia effect parameter. Increasing the thermal dispersion parameter enhances the heat 

transfer rate and leads to a small increase in the mass transfer rate. The local Nusselt number 

decreases and the local Sherwood  

number increases as the value of Lewis number increases. Increasing the 

buoyancy ratio parameter increases the heat and mass transfer rates. Surface fluid suction has 

the effect of increasing the rates of heat and mass transfer. Surface fluid injection has the 

opposite effect. For any particular parameter, variable permeability leads to an enhancement 

of heat and mass transfer rates. 
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