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Abstract

The non-Darcy mixed convection from a horizontal permeable surface
embedded in a saturated porous medium with the simultaneous heat and mass transfer
has been studied. Uniform and variable permeability effects are also investigated.
Variable surface temperature and concentration was considered as a surface condition.
Nonsimilar governing equations are obtained by using a suitable transformation and
solved numerically by a finite difference method. It is observed that for uniform
permeability surface fluid suction and increasing the power law index, thermal
dispersion parameter, and buoyancy ratio increases the heat and mass transfer rates.
Surface fluid injection and increasing the inertia effect parameter have opposite effect.
Increasing Lewis number decreases the heat transfer rate and increases the mass
transfer rate. For any particular parameter, variable permeability enhances the heat
and mass transfer rates.

Keywords: Porous medium, Mixed convection, Horizontal plate, Nonsimilarity
solutions, Heat and mass transfer.
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Nomenclature

a, &a, | Constants, equation (7). Greek letters , N
A — A, | Coefficients, equation (16). a | Thermal diffusivity of fluid (m*/s ).
b Inertia coefficient (Ergun’s correlation) defined | &, | Effective thermal diffusivity,of
in equation (3) (]/m% the porous medium mZ/S). , N
B1 - B12 Coefficients, equation (17). ﬂc Coefficient of concentration expansion (m‘*/kg).
c Specific heat of fluid (J/Kkg - K). L | Coeff. of thermal expansion (1/K)).
C Concentration (kg/md ) Y Parameter defined in equation (12).
d &d™ | Constants, equation (9). O | Thermal boundary layer thickness (m) .
d p Particle diameter (m) . AT | Temperature difference
ET.(X)-T.] (K).
D Mass diffysivity of the porous A | Subinterval in the ¢ -direction.
medium ( 83
D, hermal dis rS|on parameter ) Amn | Subinterval in the 77 -direction.
T (m Pe’? + Ra*) ] .
f Dlmensmnless stream function. 4 Nonsimilarity parameter.
f, rface mass flpix arameter n Pseudosimilarity variable.
=(-V x)/l-| FPe 4 Ram)]} .
g Gravitational acceleration (m/ S 0 Dimensionless temperature.
h Local heat transfer coefficient K Coefficient, equation (9).
Eor6)-T. | Ww/m* k)
hm Local mass transfer coefficient A Thermal conductivity ratio of the fluidphase to that
= mW/[CW (x)—C. ]} (m/s). of the solid phase.
i Index of mesh points in the ¢ -direction. )2 Dynamic viscosity of fluid (kg/s : m).
] Index of mesh points in the 77 -direction. v Kinematic viscosity of fluid (m‘/s )
K Thermal conductivity of fluid (W/m - K). o | Density of fluid (kg/m?)
K Permeability of porous medium (mz ) z Prefix indicating summation. N
Le Lewis number (= a/ D). T, | Local wall shear stress (kg/m.s‘ )
m, Local surface mass flux (kg/m‘ . S) (Y Velocity component Y -direction (m/s).
n Constant, equation (7). ¢ Porosity of the porous medium.
N Buoyancy ratio @ | Dimensionless concentration.
EplC.(x)-C. VA [T (x)-T.]
Nu, Local Nusselt number (= hx/K). | Stream function.
Ng & N,| Integer numbers greater than zero. Subscripts
Pe, Local Peclet number (=,UwX/Ql) e Effective
quw Local surface heat flux (W / ) na Assumed value not affected by the
firstconvergence criterion.
R Inertia effect parameter new New value.
L( b, a/vx)Pe’? + Ra¥?f ] .
Ra, Local Raylelgh number old Old value.
=K. 96 xATp, /(o).
Sh, Local Sherwood number (= h_x/D). S Dispersive.
T Temperature (K ). SO Solid phase.
u Velocity component in the X direction st Stagnant.
(m/s).
U_ Free stream velocity (m/ S). w Surface conditions.
VW Surface blowing or suction velocity o0 Free stream conditions.
(m/s).
X Axial coordinate (m)
y Normal coordinate (m)
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Introduction

In recent years, much work has been dedicated to the area of convective heat
transfer in porous media because of its relevance to a variety of situations occurring in
engineering and nature. Among these works, natural and forced convection studies occupy
the majority of investigations. The interfacial area of mixed convection which connect natural
and forced convection, in comparison, has not been given due attention in porous media [1].
The convection heat transfer phenomena in nature are often accompanied by mass transfer,
that is, by the transport of a certain substance that acts as a component (constituent, species)
in the fluid mixture. Convection mass transfer processes alone (in the absence of heat
transfer) constitute the backbone of many operations in the chemical industry. This seems
like enough reason to include mass transfer in the studies. An additional argument in favor of
this decision is the analogy that exists between convective mass transfer and convective heat
transfer [2].

Simultaneous heat and mass transfer from different geometries embedded in
porous media has many engineering and geophysical applications. These applications include
migration of water in geothermal reservoirs, underground spreading of chemical wastes and
other pollutants, thermal insulation, enhanced oil recovery, packed-bed catalytic reactors,
cooling of nuclear reactors, grain storage, and evaporative cooling and solidification [3].

When the flow velocity and the pores of the porous medium matrix are small, the
porous medium can be modeled by the Darcy law, which assumes a linear empirical relation
between the Darcian velocity and the pressure drop across the porous medium. To acquire a
better understanding of convective heat transfer in a porous medium, incorporating the effects
of various non-Darcy flow phenomena, which are often encountered in many practical
situations, into the analysis is necessary. These non-Darcy effects include boundary viscous
resistance, flow inertia force, near-wall porosity variation, and thermal dispersion (A
secondary effect of a porous medium on the flow appears as a result of mixing and
recirculation of local fluid particles through tortuous paths formed by the porous medium
solid particles, this effect is classified as thermal dispersion [3]). Inclusion of these non-
Darcy effects in the analysis is essential for porous media with a higher flow velocity and/or
larger pore sizes, where Darcy’s law is inadequate [4].

Previous works on mixed convection over horizontal surfaces(4-14) were done
without taking into consideration the convection mass transfer process in the analysis
(concentration equation and its relevant boundary conditions). Previous works were carried
out for impermeable surfaces (i.e., there was no surface blowing or suction velocity).
Furthermore, variation of permeability and porosity of the porous medium was included in
the previous studies without including the non-Darcian effects in the analysis with these
variations.

In this work the problem that will be considered is the simultaneous heat and
mass transfer by mixed convection from a semi-infinite horizontal permeable surface
embedded in a fluid-saturated porous medium and in the presence of :

1. Surface blowing or suction.

2. The porous medium inertia and thermal dispersion effects.

3. Incorporating the variation of permeability and thermal conductivity due to packing of
particles.

This will be done for power law variations of the surface temperature and
concentration.
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Problem formulation

Consider steady, laminar coupled heat and mass transfer by mixed convection
flow of fluid over a semi-infinite permeable horizontal plate embedded in a fluid-saturated
porous medium. The coordinate system is shown in Figure (1). For the mathematical analysis
of the problem, we assume that gravitational acceleration (g) is acting downward in the

negative Yy -direction. Fluid is assumed to be incompressible, Newtonian, and has constant

properties except the density in the buoyancy term of the balance of the momentum equation
that is approximated according to the Boussinesq approximation. The surface temperature
and concentration are assumed to have power law variations with the horizontal distance
along the plate. The temperature and concentration of the free stream are assumed to be
constant. The temperature and concentration at the plate surface are always greater than the
free stream values existing far from the plate surface. Permeability and thermal resistance are
functions of the vertical coordinate y. The flow is assumed to be two-dimensional and the
porous medium is assumed to be non-deformable. At any point in the porous medium, the
solid matrix is in thermal equilibrium with the fluid filling the pores. Under these
assumptions and the application of Boussinesq and boundary layer approximations, the
governing equations are given by [22]:

Boundary layer

Uniform —>
flow >(00004504 10 %4 0040 20 Ug040

] Horizontal plate

Surface mass transfer
velocity

Figure (1): Mixed convection flow adjacent to a permeable horizontal
plate embedded in a saturated porous medium.

1. Continuity equation.

a—u+a—U:O.

1
x oy 1)
Where uand v are the velocity components in the x and y directions respectively.
2. Momentum equation.
2bp Ku|ou u oK  p u’K db LK oT oC
{1+”—}—=———p > [ﬂT—wc —} 2)
uoJoy Koy ooy OX OX
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Where p_,u, p;,and . are the density, dynamic viscosity, thermal expansion coefficient,

and concentration expansion coefficient of the fluid respectively; K is the permeability of the
porous medium; T, C, and g are the temperature, concentration, and gravitational

acceleration respectively; b represents an Ergun ’s correlation for a column of packed
spheres, it is given as [2]:

o L750-¢) @)
(¢d,)

Where ¢ and d, refer to porosity of the porous medium and particle diameter respectively.

3.Energy equation.

oT  oT 0°T 0T Oa,

TR LA L @
ox oy oy oy oy
4.Concentration equation.
2
oy oy

Where «, and D are the effective thermal diffusivity and the mass diffusivity of the porous
medium respectively.

5. Boussinesq approximation.

As stated earlier the properties of the fluid are assumed to be constant except the
density variation in the buoyancy force, which is approximated according to the Boussinesq
approximation. This variation, due to both temperature and concentration gradients, can be
described by the following equation [15]:

p:poo[l_ﬂT(T _Tw)_ﬂC(C_Coo)] (6)
6. Boundary conditions.

The boundary conditions for the problem of power law variations of surface
temperature and concentration can be written as:

y=0: v=V, T=T,(x)=T,+ax" C=C,(x)=C, +a,x" 7)
y—>w: u=U, T=T, C=C (8)

In equations (7 & 8), T, and C,, are the surface temperature and concentration, respectively.
V,, is the surface blowing or suction velocity; U_, T_, and C_ are the free stream velocity,

w

temperature, and concentration, respectively; a,, a,, and n are constants.
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7. Permeability and porosity.

It will be assumed that the permeability and porosity of the porous medium vary
exponentially from the surface due to packing of particles next to the surface [14,16-19].

K=K, ([+de”*)  p=¢,[+der) ©)

Where K_ and ¢, are the permeability and porosity at the edge of the boundary layer,

respectively. d and d* are constants, whose values are taken 3.0 and 1.5 [14,16-19],
respectively. x will be explained with the proceed in the analysis. The porosity of a packed-
sphere bed decreases from a value of 0.9 ~ 1.0 at the surface to 0.38 ~ 0.4 in the bulk of the
bed [4].

8. Effective thermal diffusivity.
The quantity «, = ke/(pwc) in equation (4) is the effective thermal diffusivity of

the porous medium, with k, denoting the effective thermal conductivity of the saturated
porous medium and (pwc) the product of density and specific heat of the fluid. The effective
thermal conductivity k, can be written as [4,8]:

k, =k, +k, (10)
Where Kk, is the stagnant thermal conductivity and k, is the thermal dispersive conductivity.

The stagnant thermal conductivity of the porous medium for packed beds of spherical
particles as a function of the medium porosity ¢ and the thermal conductivity ratio between

the fluid and the solid A can be expressed as in the following correlation [4,8,20]:

K ofJivg)s Zﬂ{ -4y |n(i]-7—+1— 7‘1} (11)

-2y (@-) ) 2 1-¥
Where k is the thermal conductivity of the fluid, A4 =k/k,, is the thermal conductivity ratio
of the fluid phase to that of the solid phase, and the parameter y is a function of the porosity,
which can be expressed by [4,8,20]:

y =125~ ¢)/g]™ (12)

In the case of prevalent inertia effect, the thermal dispersion effect may become important. In
order to examine the effect of thermal dispersion on heat transfer rate, the following thermal
dispersion model will be used in the analysis [4,8,21]:

ky =0.04(p..clud, (1-¢)/¢ (13)
Next, the system of equations (1-5) together with the boundary conditions (7 & 8) will be
transformed into a dimensionless form.

9. Dimensionless variables.

In order to obtain a system of equations applicable to the entire regime of mixed
convection, the following dimensionless variables are introduced [7,8,22]:
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n=lpei’2§’l : §={1+Ra—%,/z} (14)
X Pe;

£(&n)=w(x y)(aPe?c™)

0( ) (T T, )/[T.,(0)-T.] (15)

o(¢,n)=(C-c.)[C.(x)-C.]

Where nn, f, 8, @, and « are the pseudosimilarity variable, dimensionless stream function,
dimensionless temperature, dimensionless concentration, and thermal diffusivity of fluid
respectively. y is the stream function, which is defined by u=0w/dy and v=-0w/ox

such that the continuity equation, equation (1), is automatically satisfied; Pe, =U_x/« is the
local Peclet number, Ra, =K _gB; xATp, /(au) is the local Rayleigh number, and the
parameter ¢ is the nonsimilarity mixed-convection parameter. A value of £ =0 corresponds
to pure free convection, while ¢ =1 represents pure forced convection. It will choose

x=x¢/Pel’? such that equation (9) and ¢, are purely function of 7 only [19]. By

substituting equations (14) and (15) into equations (2), (4), and (5), the following nonsimilar
system of dimensionless equations are obtained [22]:

10. Dimensionless momentum equation.
e ATET= A E - A(F)

Where N =4.[C,(x)-C,|/5. [T, (x)-T,] represents the buoyancy ratio, A — A, are as
follows:

A = z(bﬁjR(u de”)

00

Where R=(K_b, o /vx)(Pe;V 2 +Ra’® )2 is the porous medium inertia effect parameter.

N A - 1750, (34—2¢)(1+ de)
(1+ de‘”) dp¢ b,
3 . 1 1 1(1
A= (=g (v de) As=§[n(1—«:)—§(4—é)} A6=§[5—n]c(1—4)

11. Dimensionless energy equation.

[%+ B, f ’}9"—{52{—%"' 83{84{85}"' BGB7}}_ Bgf — Bg[Blof"'_ By, f ”]}9'

—nfo= Blz[‘%’f ie'}
og¢ og¢ (17)
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Where B, — B,, are as follows:

B, = 0.04D, ()
¢

Where D, = (dp/xXPe]X/2 + Ra“x/'s)2 is the porous medium thermal dispersion parameter.

g _—fde” oo 1 5 :(éj (1-9) {(1—¢)T9
P (1-¢)? T a-x) Y9 )pra-a) ¢
19
1+ A4 1 1 (295%(1_@{(1; )}
_(1— T il 2o 2= a0 ) =
B, =(1 A)L_ﬂyln(ﬁy} 2} 2(1 ) B, =|1+ pym
B, = QA (1) 7+l y-1 B, == (n—lj(l—g)+§ B, =0.04D,
-y &) 2 1-k 3 2 2
_gde” _(1-9) J[Lj _
BlO_ ¢2 Bll_ ¢ 812_3 2 n é,(l é,)
12. Dimensionless concentration equation.
1 ob  of
—®"+B,fd'—nfd=A| f'"—-——' 18
e e A{ ¢ ¢ } 9

Where Le = /D is the Lewis number.

13. Dimensionless boundary conditions.

of (£,0
{10 a TN,
6(¢.0)=1 (19)
®(£,0)=1
Where f, =(-V, x)/ [ac(Pe’X/2 + Rafs)] is the surface mass flux parameter. f, increases
from injection to suction; i.e. from -1 to 1.
F(¢m)=¢"
0(¢,0)=0 (20)
(¢, 0)=0

Physical quantities of interest include the velocity components u and v in the x
and y directions, the local Nusselt number Nu, =hx/k, where the local heat transfer

coefficient h=q, /[T, (x)-T,] and q, =—k,(6T/dy),,,, the local Sherwood number
Sh, =h x/D, where the local mass transfer coefficient h_=m,/[C,(x)-C.] and
m,, = -D(8C/dy),_,, the local surface shear stress z,,, defined as z,, = (u/dy),_, . In terms
of the new variables, these quantities have the expressions:
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u=(, /2t (21)
u:—%PeyZ%{Bgf +A5nf'+A6§f—§} 22)
% - —{% B, f '(g,o)}e'(g,o) (23)
% =-a(¢0) (24)
: < = £7(¢,0) (25)

! yaz(PeX]/2 +Ral? )3

The primes in equations (16-25) denote partial differentiation with respect to 7. The presence
of 9/64 in these equations makes them nonsimilar [9].

Numerical scheme
The numerical scheme to solve equations (16-18) adopted here is based on a
combination of the following concepts [23]:
1.The boundary conditions for 7 =co are replaced by f'(¢,n,.. )=¢2%, 0(¢. 7., )=0,
and ®(¢,n,, )=0 where 7, is a sufficiently large value of 7 where the boundary
conditions (20) for velocity is satisfied.

2.The two-dimensional domain of interest (£,7 ) is discretized with an equispaced mesh
inthe ¢ direction and another equispaced mesh in the » direction.

3.The partial derivatives with respect to ¢ and 7 are all evaluated by the central
difference approximations. The central difference approximation for the partial
derivatives with respect to £ vanish when ¢ =0 and ¢ =1.

4.Two iteration loops based on the successive substitution are used because of the
nonlinearity of the equations.

5.1n each inner iteration loop, the value of ¢ is fixed, while each of equations (16-18) is
solved as a linear second-order boundary-value problem of ordinary differential
equation (ODE) on the n domain. The inner integration is continued until the nonlinear
solution converges for the fixed value of ¢ .

6.1In the outer iteration loop, the value of ¢ is advanced from 0.1 to 0.9. The derivatives
with respect to ¢ are updated after every outer iteration step.

Fortran language is used to program the system of nonlinear equations. The
program is divided into three parts: the first part obtains the solution of the pure free
convection by setting the nonsimilarity parameter equal to zero. The second part obtains the
solution of pure forced convection by setting the nonsimilarity parameter equal to one. The
third part obtains the solution of mixed convection region for the nonsimilarity parameter
values lies between O and 1 (i.e., 0 < { <1).

In this work ¢, =0.39, d, =0.005m, A4 =1 [4], and s{ep sizes of An=0.02
and A¢ =0.1 are input to the program. A convergence criterion of 3| f,..,(j,i)— fo (j.i) <
0.001 is adopted in the program for all types of convection. Where f}(j,i)and f,,(j,i) are

new

the new and old value of f. For the mixed convection region, as well as the above
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mentioned convergence criterion there is another convergence criterion on the whole region
of mixed convection that it

Rori=1,.., N,

3| e (J,1) = Foa(J, i) < 0.001
If (yes) 'fhen next i. If (no) then updates the values of f’s, @’s, and ®’s for the mixed
convection region (0 < ¢ < 1) and repeat the solution process for this region. Where fna(j, i)
represent the assumed value of f that is not affected by the first convergence criterion.

Results and discussion

Numerical results were obtained and presented. These results cover the values of
the exponent n, which is physically realistic. The range of n values for which the present
problem is physically realistic can be found following the criterion given by Aldoss et al. [7]
and Chen [8]. The criterion is based on the requirements that both u and o, , must increase
or at least remain constant with respect to x as long as the wall temperature at x > 0 is
different from that of the surroundings. To meet these requirements, it is found that o, varies
like x®"? and u varies like x®#I"@21 for pure free convection. Thus, the range of
exponent n is 0.5<n<2. In order to illustrate the effect of all involved parameters on the
local Nusselt and Sherwood numbers a parametric study is performed. Table (1) shows the
input values of the parameters to the program.

Table (1): Input values of the parameters to the program when
(¢, =039, d, =0.005m, 1=1, Ap=0.02, A =0.1).

Run number f, n R N D, Le
1 0 0.5 0 0 0 1
2 0 1 0 0 0 1
3 0 15 0 0 0 1
4 0 2 0 0 0 1
5 0 0.5 0 5 0 10
6 0 1 0 5 0 10
7 0 15 0 5 0 10
8 0 2 0 5 0 10
9 0 1 0 2 0 10
10 0 1 0.1 2 0 10
11 0 1 1 2 0 10
12 0 1 10 2 0 10
13 0 1 1 2 15 10
14 0 1 1 2 20 10
15 0 1 1 2 25 10
16 0 1 1 2 30 10
17 0 1 0 1 0 0.5
18 0 1 0 1 0 5
19 0 1 0 1 0 10
20 0 1 0 1 0 100
21 0 1 0 0 0 10
22 0 1 0 1 0 10
23 0 1 0 5 0 10
24 0 1 0 8 0 10
25 -1 1 0 1 0 0.5
26 -0.5 1 0 1 0 0.5
27 0 1 0 1 0 0.5
28 0.5 1 0 1 0 0.5
29 1 1 0 1 0 0.5
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Figure (2): Comparisons of velocity profile, temperature profile, and local Nusselt
number for Darcy and non-Darcy solution.

The whole runs are achieved two times one under uniform permeability (UP)
condition when d =d” =0, while the other under variable permeability (\VP) condition when

d =3 and d* =1.5.The results have been obtained for various values of the parameters. In
order to validate the numerical results, the present results are compared with those of
previously published works on special cases of the problem. These favorable comparisons
give confidence in the numerical results to be reported in the next sections. Comparisons of
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velocity profile, temperature profile, and local Nusselt number for Darcy and non-Darcy
solution are shown graphically in Figure (2). In tabulated form, comparisons of

Nux/(Pejx/zcj’l) values for Darcy solution at values of ¢ and n are listed in Table (2). These
comparisons were found to be in excellent agreement

Table (2): Comparisons of Nu, / (Pexﬂzg ’1) values for Darcy solution at values of £ and n.

4 n=0.5 n=1.0 n=15 n=2.0
0.0 0.8165 1.0995 1.3458 1.5710
0.1 0.7373 0.9930 1.2156 1.4191
0.2 0.6648 0.8959 1.0970 1.2808
0.3 0.6036 0.8134 0.9956 1.1613
0.4 0.5619 0.7547 0.9208 1.0708
0.5 0.5510 0.7313 0.8852 1.0231
0.6 0.5775 0.7523 0.9002 1.0314
0.7 0.6356 0.8160 0.9670 1.0997
0.8 0.7126 0.9089 1.0722 1.2148
0.9 0.7980 1.0162 1.1973 1.3552
1.0 0.8863 1.1285 1.3294 1.5046

(a) Aldoss et al. [7]

4 n=0.5 n=1.0 n=15 n=2.0
0.0 0.8156 1.0990 1.3456 1.5170
0.1 0.7361 0.9922 1.2153 1.4191
0.2 0.6635 0.8950 1.0966 1.2806
0.3 0.6025 0.8127 0.9951 1.1641
0.4 0.5614 0.7543 0.9204 1.0706
0.5 0.5509 0.7311 0.8850 1.0229
0.6 0.5775 0.7523 0.9002 1.0314
0.7 0.6356 0.8160 0.9670 1.0998
0.8 0.7125 0.9089 1.0722 1.2148
0.9 0.7980 1.0161 1.1973 1.3552
1.0 0.8862 1.1284 1.3293 1.5045

(b) Chen [8]

¢ n=0.5 n=1.0 n=15 n=20
0.0 0.8158 1.0989 1.3452 1.5702
0.1 0.7361 0.9921 1.215 1.4186
0.2 0.6635 0.8951 1.0966 1.2805
0.3 0.6026 0.8128 0.9953 1.1612
0.4 0.5615 0.7542 0.9203 1.0705
0.5 0.5508 0.7307 0.8845 1.0223
0.6 0.5774 0.7519 0.8996 1.0307
0.7 0.6355 0.8158 0.9667 1.0993
0.8 0.7125 0.9088 1.072 1.2146
0.9 0.7979 1.0161 1.1972 1.3549
1.0 0.8862 1.1281 1.329 1.5041

(c) Present work
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1. Results under UP condition:

In this section the results under uniform permeability condition for different
parameters will be presented and discussed. These parameters include power law index n,
inertia effect parameter R, thermal dispersion parameter D,, Lewis number Le, buoyancy

ratio N, and surface mass flux parameter f . To conserve space, the variations of velocity,

temperature, and concentration profiles with pseudosimilarity variable at selected values of
the nonsimilarity mixed convection parameter and any specified parameter will be described
only and not shown graphically.

Effect of exponentn:

At a given value of n the velocity gradient at the surface is found to be greater at lower
values of ¢ . At a given value of £, as n increases the velocity gradient is larger and the
momentum boundary layer thickness is smaller. It is noticed that at a given value of n, as ¢

increases the thermal and concentration boundary layer thickness increases, while the
temperature and concentration gradients at the surface decreases. This continues to be true
until a certain value of £ is reached, beyond which as ¢ increases further, the trend starts to

reverse, and the thermal and concentration boundary layer thickness decreases while the
temperature and concentration gradients at the surface increases. At a fixed value of £, as n

increases the thermal and concentration boundary layer thickness decreases.
The variations of local Nusselt and Sherwood numbers with £ at values of n are

illustrated in Figure (3). At a given value of n as ¢ increases from O the local Nusselt and
Sherwood numbers decreases, reaches a minimum value at a certain value of £, and then
increases again as ¢ approaches 1. It is also clear that for a higher value of n, the local

Nusselt and Sherwood numbers is larger. For all values of n the local Nusselt and Sherwood
numbers for pure free convection at £ =0 is higher than that of pure forced convection at

¢ =1.
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Figure (3): Effect of exponent n (UP).

The behavior of the curves with a minimum value at a certain ¢ value is due to the
definition of the local Nusselt and Sherwood numbers Parameters and does not indicate that
the Nu, and Sh, values for mixed convection is smaller than that for pure free and forced

convection. For example, for n=1 and at £ =0.5, with Pe, =10 and Ra, =10°, one finds
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Nu, =16.262 as compared with Nu, =12.951 for pure free convection at =0 and
Nu, =11.281 for pure forced convection at £ =1.

Effect of inertia parameterR:

At a given value of £ an increase in the parameter R reduces the fluid velocity.
However, at £ =0 the velocity profiles thin near the surface, while it thick far from the
surface as the parameter R increases. Also, at a given value of ¢ an increase in the
parameter R increases the fluid temperature and concentration. When £ =1 increasing of R
has no effect on the temperature and concentration profiles.

The variations of local Nusselt and Sherwood numbers with £ at values of R are
given in Figure (4). The local Nusselt and Sherwood numbers decreases with an increase in
R. This is evident from the fact that inertia effect tends to retard the momentum transport in
the boundary layer and to reduce the heat and mass transfer. Also, the inertia term has a
pronounced effect on the heat and mass transfer rates for higher values of R. Moreover, all
curves corresponding to different values of R are seen to converge to one point in the forced
convection limit. This implies that the inertia term has little significance in forced convection
when the Ergun’s correlation is used.
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Figure (4): Effect of inertia parameter R (UP).

Effect of thermal dispersion parameter D,:

At a given value of £ both momentum and thermal boundary layer thickness increases as
D, increases, while concentration boundary layer thickness decreases slightly. However, as
¢ goes to 1 this effect on concentration profile is diminished until it is neglected when
¢ =1. Since the value of
f’(g” ,O) is always positive, it can be noticed from equation (23) that dispersion always
enhances the heat transfer coefficient as shown in Figure (5 a). Starting from £ =0, it is clear
that, increasing of D, leads to a small increase in the local Sherwood number, and as ¢

increases to 1 this small increase diminished gradually until it is neglected as presented in
Figure (5 b).
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Figure (5): Effect of thermal dispersion parameter D, (UP).

Effect of Lewis number Le:

Increases in the values of Le resulted in decreases in the mass diffusivity. This, in turn,
results in decrease in the concentration buoyancy forces and therefore the flow velocity. Also,
increases in the values of Le result in increases in the thermal boundary layer thickness.
However, for larger values of Le the decrease in the flow velocity and the increase in the
fluid temperature are small. When, ¢ =1 the increase in Le value has no effect on the

thermal boundary layer thickness. As expected, increasing the value of Le produces lower
concentrations. Due to the above reasons the local Nusselt number decreases and the local
Sherwood number increases as the value of Le increases as depicted in Figure (6).
Furthermore, in Figure (6 a) all curves corresponding to different values of Le are seen to
converge to one point in the forced convection limit.
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Figure (6): Effect of Lewis number Le (UP).

Effect of buoyancy ratioN :

Increasing the buoyancy ratio parameter results in increase of the buoyancy effect,
causing higher flow velocities near the horizontal flat plate. The high velocity near the
surface will carry more heat and mass out of the surface, thus decreases the thermal and
concentration boundary layer thickness. This causes increases in the temperature and
concentration gradients at the surface, which produces increases in the heat and mass transfer
rates as shown in Figure (7). Also, from Figure (7), it can be seen that all curves
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corresponding to different N values are converge to one point at £ =1. This means that the
buoyancy ratio has large influence on free convection.
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Figure (7): Effect of buoyancy ratio N (UP).

Effect of surface mass flux parameter f:
Surface fluid suction ( f, > 0) has the effect of reducing the velocity, temperature, and

concentration boundary layer thickness. Consequently, the rate of heat and mass transfer
increases. On the other hand, surface fluid injection or blowing ( f,< 0) produces the
opposite effect, namely, a decrease in the surface heat and mass transfer rates. The behaviors
of local Nusselt and Sherwood numbers are illustrated in the Figure (8), as the surface mass
flux parameter f, moves from injection domain to suction domain.
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Figure (8): Effect of surface mass flux parameter f, (UP).

2. Results under VP condition:

Figures (9-14) presents the influence of the various parameters under variable
permeability condition on the heat and mass transfer rates. For any particular parameter,
variable permeability effect increase the velocity and reduce the thermal and concentration
boundary layers in comparison with its counterpart for the case of uniform permeability. This
leading is to an enhancement of heat and mass transfer rates. Starting from¢ =0, as the
inertia effect parameter increases, the momentum boundary layer thickness decreases while
the thermal and concentration boundary layer thickness increases. This continues to be true
until a certain value of ¢ is reached, beyond which as ¢ increases further the momentum
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boundary layer thickness increases while the thermal and concentration boundary layer
thickness decreases. Due to the above reason, as R increases the curves of local Nusselt and
Sherwood numbers decreases and then they increases in the form illustrated in Figure (10).
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Figure (10): Effect of inertia parameter R (VP).
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Figure (11): Effect of thermal dispersion parameter D, (VP).

36



Al-Rafidain Engineering Vol.21 No. 1 February 2013

—o—Le=05

2.4k 1
\ —o—le=05 201N, —o—le=5 e
221\, —o—Le=5 . \4> —2—Le=10 4>/
—s—Le=10 SN —o—Lle=100
" @
20t —o—Le =100 4 Eatedy —y o
i L
2’.’ <18 \ \ E_) F ol
<16 -\Z?i \ =
= 4)\ *
Z 14l \K \m\m/m ] & s ,\¢\¢\¢\ - /Ab/&/& 4
' Q\% m\“’\@\o:j;:?;’—o/@/O/
®. —
(a) 12f == 1 (b) — o I
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
g ¢

= L N
o "] o

Nu, / (Pel2¢ 1)
-

QD
Qe
=
N

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

o
o

Figure (13): Effect of buoyancy ratio N (VP).

Conclusions

The results indicated that under uniform permeability condition as the power law
index for surface temperature and concentration increases, the local Nusselt and Sherwood
numbers are increases. The local Nusselt and Sherwood numbers decreases with an increase
in inertia effect parameter. Increasing the thermal dispersion parameter enhances the heat
transfer rate and leads to a small increase in the mass transfer rate. The local Nusselt number
decreases and the local Sherwood

number increases as the value of Lewis number increases. Increasing the
buoyancy ratio parameter increases the heat and mass transfer rates. Surface fluid suction has
the effect of increasing the rates of heat and mass transfer. Surface fluid injection has the
opposite effect. For any particular parameter, variable permeability leads to an enhancement
of heat and mass transfer rates.
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