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Abstract 

   The yield strength of Low/Medium Cr- Mo ferritic steels has been analyzed by a well selected 

artificial neural networks (ANN) model using data sets obtained from ASTM publications. The 

qualitative and quantitative effects of chemical composition, heat treatment and test temperature 

have been studied.  The proposed ANN model was obtained by applying averaging process to the 

first best three models. The first one consists of 24 input nodes (the input variables), 23 hidden 

nodes and the output node which is the target for the required yield strength. Among the previous 

variables, it was found that the heat treatment ones have the greatest contribution to the yield 

strength especially the tempering one i.e. the average contribution of about 15% was obtained. 

  

Keywords: yield strength, ferritic steels, artificial neural networks, 2¼Cr-1Mo steels, averaging process.  

  الخلاصة

 من خلال اقتراح موديـل مناسـب مـن  Cr-Mo     تم تحليل مقاومة الخضوع للصلب الفرايتي الواطئ والمتوسط

تم دراسة التأثيرات النوعية و الكمية للتركيب الكيميائي و المعاملة الحرارية و درجة . الشبكات العصبية الصناعية

تـم الحـصول علـى  . ASTM باستخدام مجموعة بيانـات مـأخوذة مـن نـشرات حرارة الاختبار على مقاومة الخضوع

إن أفضل موديل من بين هذه الثلاثة كان يتكون . النموذج المقترح بتطبيق طريقة المعدل لأفضل ثلاث موديلات

و   عقـدة فـي الطبقـة المخفيـة وعقـدة واحـدة  للهـدف المطلـوب 23و ) المتغيرات( عقدة في الطبقة الأولى 24من 

لــوحظ بــان متغيــرات المعاملــة الحراريــة ذات تــأثير اكبــر علــى مقاومــة . هــو مقاومــة الخــضوع فــي الطبقــة الأخيــرة

الخــضوع مقارنــة مــع المتغيــرات الأخــرى و بــالأخص متغيــر درجــة حــرارة معاملــة التطبيــع حيــث تــم الحــصول علــى 
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Introduction 

   In high temperature environments not lower than 400°C austenitic stainless steels, high Cr steels 

with a Cr content of 9 to 12 %, low/medium Cr steels and carbon steels have been used selectively 

in respective matched fields. Among the various steels mentioned above, low/medium Cr steels 

contain more amounts of Cr than carbon steels and therefore they are superior in oxidation 

resistance, high temperature corrosion resistance, strength at elevated temperatures and creep 

strength.Furthermore, although low/medium Cr steels are inferior to austenitic stainless                                

steels in strength at elevated temperatures or creep strength, they have smaller thermal expansion 

coefficient, much more inexpensive and characterized by superior toughness, weldability and 

thermal conductivity [Kawano, K., 2003]. 

   There have been numerous attempts to model metal mechanical properties using linear 

regression analysis. The developed linear equation may contain non-linear terms, forming a 

pseudo-linear equation. The strength of a metal is frequently modeled as functions of chemical 

composition in which the form of the equation has to be specified before performing the analysis 

[Lalam, S., H., 2000].The following model is an example in which alloying elements are based 

on weight percent:  

YS = 104.1 + 32.6 Mn + 84 Si + 17.5 d
-1/2 

                                                                               (1)                                    

Where YS and d represent yield strength in MPa and grain size in µm for steels having an 

essentially ferritic microstructure [Vodopivec, F., 2007]. It should be mentioned that the stress-

strain curves of ferritic alloys don’t show a well defined yield point, so the term yield strength refers 

to 0.2% offset yield strength. 

   Artificial neural networks (ANN)are computational networks that attempt to simulate those 

processes occurring in the human brain and nervous system that enable pattern recognition, 

information filtering and functional control. They are part of a larger group of methods used for 

data mining i.e. the use of databases to extract models to classify or predict classes or trends. 

Decision trees, Bayesian belief networks, regression analysis, fuzzy logic and neural networks are 

all examples of data mining methods [Dunne, D.; 2004]. 

   Modeling mechanical properties of ferritic steels by ANN has been studied by many researchers. 

Cole and Bhadeshia 1999 [Cole, D., 1999] and Murugananth 2002 [Murugananth, M., 2002] 

investigated the modeling of creep rupture strength of  ferritic  power  plant steels  as  a function of 

chemical composition, heat treatment, test temperature and time. Also, Murugananth 2002 

[Murugananth, M., 2002] studied Charpy toughness, elongation and ultimate tensile strength and 

yield strength of ferritic steel welds. Dimitriu and Bhadeshia 2007 [Dimitriu, R. C., Apr.2007 and 

Dimitriu, R. C., Sep.2007] developed a single hidden layer ANNs model to predict the hot strength 

of ferritic steels as a function of chemical composition and heat treatment variables.  

   The purpose of the present work is to exploit the modeling capabilities of neural networks in the 

prediction of yield strength of ferritic steels based on composition, heat treatment and test 

temperature variables using the data of experimental work carried out by ASTM (refer to Table 1).  
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 Neural Networks Modeling 

   The essentials of using ANNs in the modeling field have been studied in many researches and text 

books such as [MacKay, D., 2003, Baughman, D.R. 1995 and Simpson, P., 1990]. In general, there 

are two methods of learning neural networks: supervised and unsupervised learning. Supervised 

networks are the networks in which data is given in the form of inputs and targets, unsupervised 

networks are given data in the form of inputs only , then the network could be used to discover 

patterns in the inputs to transfer the high dimensional inputs into low dimensional ones [MacKay, 

D., 2003]. In supervised networks after selecting the training data and testing data, the program sets 

automatically the initial values of the weights (the model parameters) and calculates the predicted 

values of strength for both data sets. Then the training and testing errors (RMS error) are calculated 

between the predicted strength and the true strength (strength in data). The aim of the program is to 

reduce the testing error to minimum value which means obtaining the required model (refer to 

Fig.7-a). It should be mentioned that the neural model includes a huge number of weights 

(parameters) so it isn’t suitable to put on papers and use it manually so it needs a computerization. 

Also the program (algorithm) needs to define two values concerning the training process: 

momentum coefficient and learning rate (both take the range of values between 0.0 and 1.0 and 

need to be tried to find the suitable value).        

    In the present analysis, supervised method has been used after preparation of the data concerning 

the ferritic steels shown in Table 1.  

 Selection of the Best Model 

    In this work the software package of Qnet 2000 (version 2K) for WINDOWS [Vesta Services, 

Inc., 2000] is used to conduct the ANNs models. After changing the necessary variables 

(momentum and learning rate) and using the same size of data for training and testing (50% of the 

total data for each), a number of 60 models has been generated. The best model configuration 

among the whole models was 23 hidden nodes with sigmoidal transfer function. The process of 

averaging is used to get the committee models over the first best ten models as cited in ref. 

[Bhadeshia, H., K., D., H., 1997].     This process is done after creating the suitable program using 

FORTRAN 90 language (refer to      Fig.7-b). The first best three models when have been averaged, 

give the final model as shown in Fig.1.       

Results and Discussion 

   The best model predictions when checked (using Qnet 2000 software) against the contributions of 

each input node (shown in Table 1), have resulted in the histogram shown in Figure 2. The 

differences between the effect of heat treatment variables and the others are noticeable. These 

differences tend to tell us that the input nodes of heat treatments are more effective in the value of 

yield strength of ferritic steels than the other nodes. Regarding the categorized nodes (16, 18, 20 

and 22 in Table 1), one can conclude that they are not highly correlated with the other heat 

treatment ones i.e. their contributions are not small as compared to the related heat treatment 

temperature node. For the present steels the histogram shows that tempering temperature is the most 

affecting node. As we know in practice that increasing tempering temperature or time decreases the 

strength because of the variations in the type of carbide and or its concentration (refer to Fig.2).  
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Metallurgical Aspects 

   As mentioned previously, the heat treatment nodes have significant effect on strength rather than 

the alloying elements nodes and the tempering temperature node has the greatest effect among the 

other heat treatment ones.   

   To explain the relative importance of each node from the metallurgical point of view, the 

following rules will be presented. 

   Most of the alloying elements (nodes) such as: C, Mn, Si, Ni and Cu don’t show a significant 

effect on yield strength in the short term of use or test of the steel (tensile test is a short term test). 

Its effects on the strength are remarkable in the long term of testing or using (creep phenomenon) 

[Komai, N. 2002 and Fujimitsu, M., 1991]. Mo and Cr in the long term may lead to the coarsening 

of carbides they form thus facilitate the movement of dislocations i.e. reduces the strength [Komai, 

N. 2002]. 

   Some elements (nodes) such as Sn, Zr and Al are added to steel to get certain properties such as 

deoxidization or suppression of impurities effects (P and S) rather than the gain of strength [Miyata, 

K. 1997 and Nobuyoshi, K., 1998]. 

   In view of the foregoing, the results of the present model concerning the alloying elements are 

matched to a great extent.  

   To explain the effects of heat treatment temperature nodes, if a certain steel of specified chemical 

elements (nodes) is taken. Austenising temperature of quenching or normalizing or full annealing is 

a certain temperature depends on the steel composition only [Gorni, A., A., 2007]. The range of 

changing this temperature is so small for a given steel and nevertheless it wouldn’t change the 

resulted structure to a great extent. Thus, the existence of this node has its effects but the change of 

it wouldn’t affect the strength remarkably. 

   Annealing temperature node in the range less than that of austenising (less than the range of full 

annealing) is so dependant on the previous state of the steel such as casting, welding and cold 

working and so on [Higgins, R., A., 1999]. Thus, it depends on variables out of the variables of the 

present model so its effect would be rather small as compared to the other heat treatment ones.  

   Finally, the node regarding tempering temperature existence and change has a wide range of 

effects because of the significant effects on the resulted microstructure (refer to Fig. 2). The 

mechanical properties are known to be susceptible to the microstructural changes, so these 

properties are so dependant on the tempering temperature node. 
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Table 1- Input parameters and their ranges for the present ANNs [Sturrock, C.P., 1995 and 

Armanios, E.A., 1997]. 

№ Input Variables Minimum Maximum 

1 %C 0.05 0.27 

2 %Si 0.0 1.55 

3 %Mn 0.17 0.81 

4 %P 0.0 0.03 

5 %S 0.0 0.29 

6 %Ni 0.0 0.62 

7 %Cr 0.69 9.54 

8 %Mo 0.0 1.3 

9 %Cu 0.0 1.3 

10 %Al 0.0 0.8 

11 %N 0.0 0.025 

12 %V 0.0 0.026 

13 %Sn 0.0 0.04 

14 %Zr 0.0 0.077 

15 %Ti 0.0 0.54 

16 Annealing (An) 
(a)

 0 (off) 1(on) 

17 Annealing Temperature (°C)
 (b) 

  690.56 1148.89 

18 Normalizing (Nr) 
(a)

 0 (off) 1(on) 

19 Normalizing Temperature (°C)
 (b) 

  843.3 1148.89 

20 Tempering (Te) 
(a)

 0 (off) 1(on) 

21 Tempering Temperature (°C)
 (b) 

  565.56 815.56 

22 Quenching (Q) 
(a)

 0 (off) 1(on) 

23 Quenching Temperature (°C)
 (b) 

  621.11 1065.56 

24 Test Temperature (°C) 21.11 982.22 

   
                 (a) 

 The variable here refers to a switch (off or on). 

                      (b) 
 The range of this variable concerns value of 1 (on) for previous binary variable.  
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Comparative Case Study   

   The present ANN model predictions have been compared with that of Dimitriu neural model 

[Dimitriu, R. C., Sep., 2007] as based on the experimental work cited in ref.  [Sangdahl, G. S., 

1982].  

  These experiments (Tables 2 and 3) have not been used in the present model training or testing. 

The input variables and their ranges of Dimitriu model are shown in Table 4.The results of 

comparison are shown in Figures 4, 5 and 6. 

Conclusions 

    In the present case, the use of ANN has been successfully managed in the prediction of the yield 

strength of ferritic steels as a function of chemical composition and heat treatment parameters. For a 

given ferritic alloy in the range of this study, heat treatment variables especially the tempering one 

play a dramatic role in the final strength with a contribution of 15% which is much greater than that 

of the other variables. The comparison with Dimitriu model showed good superiority of the present 

one and near the lower bound of error for the selected 2¼Cr-1Mo steels plates. 

Table 2- Chemical analysis of the plates 2, 4 and 7 as cited in ref. [Sangdahl, G. S., 1982]. 

 

 Chemical Analysis 

Plate № %C %Si %Mn %P %S %Cr %Mo %Ni %Al %Cu %Sn 

2
(a)

 0.13 0.23 0.52 0.011 0.021 2.23 0.95 0.18 0.031 0.17 0.012 

4
(a)

 0.13 0.21 0.48 0.011 0.023 2.13 1.0 0.08 0.003 0.1 0.006 

7
(a)

 0.1 0.21 0.48 0.012 0.023 2.39 0.95 0.23 0.003 0.18 0.012 

(a)
  normalized at 900°C for 12 hour and tempered at 690°C for 12 hour. 

Table 3- Tensile test results of the plates 2, 4 and 7 as cited in ref. [Sangdahl, G. S., 1982]. 

Plate № Test T(°C) 21 316 371 427 482 538 593 

2 528 425 433 424 404 342 261 

4 524 447 457 446 413 370 286 

7 

TS(MPa) 

509 379 392 398 380 333 253 

2 298 246 258 252 243 219 198 

4 296 264 265 291 254 257 220 

7 

YS (MPa) 

283 233 212 210 220 207 185 

2 24 21 19 21 21 26 36 

4 26 20 19 21 21 24 33 

7 

%EL 

27 25 21 21 23 24 37 

2 %RA 40.4 59.9 55.8 57.6 60.2 67.5 82.0 
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4 60.0 59.0 58.9 64.3 66.3 73.6 82.6 

7 67.1 63.5 60.0 60.6 62.6 69.4 82.7 

 

Table 4- Variables used for predicting YS of Dimitriu model [Dimitriu, R. C., Sep., 2007]. 

№ Variable Minimum Maximum 

1 %C  0.09 0.34 

2 %Si  0.18 0.86 

3 %Mn  0.38 1.44 

4 %P  0.01 0.03 

5 %S  0 0.02 

6 %Ni  0 0.6 

7 %Cr  0 12.38 

8 %Mo  0.01 1.05 

9 %Cu  0 0.25 

10 %Al  0 0.04 

11 %N  0 0.04 

12 %V ~ ~ 

13 %Sn ~ ~ 

14 %Zr ~ ~ 

15 %Ti ~ ~ 

16 Annealing (An) 
(a)

 ~ ~ 

17 Annealing Temperature (°C)
 (b) 
  ~ ~ 

18 Normalizing (Nr) 
(a)

 ~ ~ 

19 Normalizing Temperature (°C)
 

(b) 

~ ~ 

20 Tempering (Te) 
(a)

 ~ ~ 

21 Quenching (Q) 
(a)

 ~ ~ 

22 Quenching Temperature (°C)
 (b) 
  ~ ~ 

23 Austenising time (min.) 10 540 

24 Tempering time (min.) 30 660 

25 Austenising temperature (°C) 870.15 970.15 

26 Tempering temperature (°C) 625.15 750.15 

27 Test temperature (°C) 20.15 700.15 
                       (a) 

 The variable here refers to a switch (off or on). 

                       (b) 
 The range of this variable concerns value of 1 (on) for previous binary 

variable.  

                      ~  : not specified in this model. 
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Figure1- Effect of averaging process on Yield Strength model. 

           

Figure 2- Tempered martensite carbides transformation sequence in 2¼Cr-1Mo steel 

[Bhadeshia, H. K. D. H., 1999].  
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Figure 3- A histogram showing contributions of input nodes on YS model. 
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         Figure 4- Comparison between predicted and true (experimental data) YS. 
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             Figure 5- Comparison between predicted and true (experimental data) YS. 
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           Figure 6- Comparison between predicted and true (experimental data) YS. 
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Figure 7- Flow charts of programs used in the present  work: (a) Neural networks 

computation flow chart and (b) Models in committee flow chart (averaging). 
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Nomenclature 

ANN: artificial neural networks. 

%EL : elongation. 

K      : Constant (0, 1,…, N). 

L       : Data line l ( x ; t ). 

LCC : linear correlation coefficient. 

M     : alloying element forming carbides. 

N      : Number of data lines. 

%RA: reduction of area. 

RMS: root mean square value error. 

t       : Target value (strength from data). 

TS    : tensile strength. 
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w0 ,…. wh : Weights of the hidden and output layers (parameter value). 

y      : predicted value of strength. 

YS   : yield strength. 

 

 

 

 

 

 

 


