
Generating Conic Sections Using an Efficient Algorithms

Abdul-Aziz Solyman Khalil

Department of Computer Science, College of Computers and Mathematical Sciences, University of Mosul, Mosul, Iraq

Abstract

Efficient integer algorithms for the fast generation of

Conic Sections whose axes are aligned to the coordinate

axes are described based on a Bresenham-like

methodology and simulating midpoint algorithm

concepts. Performance results show that in the case of the

ellipse, the algorithm is at least as fast as other known

integer algorithms but requires lower integer range and

always performs correct region transitions. Also efficient

techniques for generating hyperbola and parabola are

designed.

Introduction

Conic sections (ellipse, hyperbola and parabola) are

important geometric primitives and, after the straight line

and circle, have received much attention from the

computer graphics community. A number of algorithms

have appeared in the literature for the generation of these

primitives [3][5]. We must derived efficient integer

algorithms for the generation of ellipses hyperbolas and

parabolas whose axes are aligned with the axes of the

plane, using a Bresenham-like methodology [2]

simulating the midpoint technique [1].

Our algorithms use integer arithmetic in a straight

forward manner without any scaling and do not lack in

performance with regard to any previous algorithm.

Spacewise, they require a small constant number of

integer variables. They are also symmetric as to the

number of arithmetic operations per pixel generated in

each octant. Erroneous pixels are not generated at region

boundaries due to a better region transition criterion. In

the case of the ellipse. Our algorithm requires lower

integer ravage than Kappel's integer ellipse drawing

algorithm [3]. Our algorithms are very suitable for

hardware implementation especially in view of

increasing display resolutions. Our parabola algorithm in

particular is suitable for very high resolutions due to the

elimination of the calculation of a square factor.

The rest of this paper is organized as follows:

Section 2 presents a modified Bresenham circle

algorithm.

Section 3 describes the derivation of the ellipse

generating algorithm. Section 4 briefly describes the

parabola and hyperbola algorithm derivations. Appendix

A, Appendix B and Appendix C give the ellipse,

hyperbola and parabola functions wrote using C++.

Reformatting the bresenham circle algorithm

We develop a small variation to Bresenham's circle

generating algorithm which concerns the criterion for

next pixel selection and octant change detection. We

shall later use this small change in a generalisation of the

algorithm to the more complex conic sections[2][5].

Consider the second octant of a circle of integer Radius R

(Fig. 1). As in Bresenham's algorithm, having chosen

pixel A, we define:
2211 RRd

 2222 11 iii xyxy

 i
i yy 2 ……. (1)

22 22 RRd

 2222 111
iii

xyxy

 22 1
i

yy ……… (2)

Where R1 & R2 are the distances from the circle center

to B & D pixels respectively.

We then take [2]:

 2222 121
ii

yyyyddd ……. (3)

Where d is the decision variable for the selection of the

next pixel between the two candidates pixels B and D.

At this point we take a diversion from Bresenham's

algorithm by setting [ε = yi - y] to get:

ii

yyd 2142 2 …….. (4)

Fig.1 Candidate pixels B or D
The above expression is monotonically increasing in the

interval ε
i

y, . We can therefore use the value of

d(ε) at ε =1/2, i.e.

 d(1/2) =1/2 as the decision value:

if d ≤ 1/2 then pixel B is chosen

else pixel D is chosen.

Note that since d is the integer, we can replace the 1/2 by

0, without affecting the semantics. Note that what we

really accomplish here is to simulate a midpoint-type

technique [1].

Due to the 8-way symmetry of the circle, we need not

consider another octant; in the case of the ellipse, which

has 4-way symmetry, we need to consider 2 regions,

which make up one-quarter of the ellipse [4][6].

Derivation of the ellipse generating algorithm

Consider an ellipse centered at the origin of the 2D

cartesian space defined by:

1
2

2

2

2

yr

y

xr

x
 ………….. (5)

The ellipse has a 4-way symmetry and it is therefore only

necessary to generate its arc in the first quadrant [1][2].

Here we distinguish two regions separated by the point

on the ellipse where dy/dx =-1. In the first region the axis

of major movement is X and in the second Y (Fig. 2).

A(xi, yi)

C(xi, yi -1)

B(xi+1, yi)

D(xi+1, yi -1)

(xi+1, yi)
ε

R1

R2 Circle

center

We must derive an incremental expression for the

decision variables in Regions 1 and 2, the initial values

of the decision variables and a condition to detect the

transition from Region 1 to Region 2.

Decision variable for region 1

Let us begin by considering the 1st region of Fig. 2,

where the X-axis is the major axis of movement. Assume

that the ellipse is generated in a clockwise manner

starting from the point (0,ry). At each step in the

generation the X value is therefore always incremented.

It must be determined whether the Y value should be

decremented or not. This region corresponds to the 2nd

octant of the circle (Fig. 1) and we define:

221 yiyd …….. (6)

 2122 iyyd …… (7)

as in the case of the circle. Taking as decision variable:

 212 dd
x

rd
……. (8)

the following will hold (Fig. 1):

if d ≤ 2/2
xr

 then pixel B(xi+1, yi) is chosen

else pixel D(xi+ 1, yi-1) is chosen: …….. (9)

The only reason for multiplying by 2
xr

 is to facilitate its

incremental derivation (see below).

We next derive the incremental computation of the

decision variable; its value for the ith step of the

algorithm in Region 1 is:

 212
,1 ddxrid

 22221222 yxriyxriyxr ……… (10)

Given that 2122222 ixyryrxryxr [equation of ellipse]

 212222122222
,1

 iy
x

r
i

y
x

rix
y

r
y

r
x

r
i

d
…. (11)

Fig. 2 Ellipse

We shall now define d1,i + 1 in terms of d1,i:

 211
22

1

22
11

2
2

22
2

1,1

 iy
x

r
i

y
x

rix
y

r
y

r
x

r
i

d

 211
22

1

22
11

2
2

22
2

 iy

x
r

i
y

x
rix

y
r

y
r

x
r

since xi+1=xi+1

 (12) 21
1

22
1

2

12422122222 2

i
y

x
r

i
y

x
r

i
x

y
rr

i
x

y
r

y
r

x
r

y

But

 2)1(222
,1

2
122222 iyxriyxridixyryrxr ,

therefore

 (13) .12422212

2221
1

22
1

2
,11,1

i
x

y
r

y
r

i
y

x
r

i
y

x
r

i
y

x
r

i
y

x
r

i
d

i
d

If d1,i > 2
xr /2 then yi+1=yi - 1 by Equation (2), thus

 12412422,11,1 ixyriyxryridid
 ……… (14)

if d1,i ≤
2
xr /2 then yi+1=yi by Equation (2), thus

 12422
,11,1

 i

x
y

r
y

r
i

d
i

d
 …….. (15)

The initial value d1,0 is determined by substituting the

coordinates of the first pixel of Region 1 (0,ry) for (xi, yi)

in the expression for d1,i:

 yrxryrd 212220,1 ………. (16)

Transition from Region 1 to Region 2

The transition criterion based on midpoints algorithm

gives correct results but is computationally expensive.

Kappel's method [4] is efficient but there exist cases

where an erroneous pixel can arise at region boundaries,

this is because:

1. Taking the tangent on integer coordinates rather

than the true ellipse detect region change.

2. A drastic change of curvature can take place

within a single pixel.

This method proposes a transition criterion, which

combines the advantages of the above two methods.

The integer algorithm uses a correct criterion, which is

based on the value of the error function in the next

column of pixels. In particular, the value of the error

function d at the point (xi + 1, yi - 3/2) is considered; note

that if the ellipse passes under this point then an octant

transition is required.

The error function d given in Equation (11) can be in

terms of ε =(yi - y) in a manner similar to the circle (4):

i

y
x

r
x

r
i

y
x

r
x

rd
2

2
22

4
22

2 ………. (17)

setting ε =3/2 we get:

i

y
x

r
x

r
i

y
x

r
x

rd 2
2

2
23

2
4223

2
223

2/2)1(24 xriyxr ………. (18)

The transition criterion is as follows:

if d ≤
2/2)1(24

x
r

i
y

x
r

 then we remain in the same region.

The above criterion is optimized and used in the code

fragment in Appendix A. we have to note that the above

criterion works correctly for yi≥1. Square corners can be

predicted easily in this algorithm using one copy of the

pixel last printed in the first region.

The initial value of the decision variable d2,i for Region

2 (see Equation (23) below) can be calculated by adding

to the final value of d1,i the difference d2,i -d1,i. From

Equation (12) and Equation (23):

d2,i = d1,i -)12(2)12(2 ixyriyxr …………. (19)

Decision variable for Region 2

In Region 2 the expressions for d1 and d2, as can be seen

from Fig. 3, are:

d1 = (xi + 1)
2
 - x

2
 ……….. (20)

222
i

xxd
 ……….. (21)

Region 1

Region 2

1
dx

dy

ry

rx
(0,0)

Having chosen pixel A(xi, yi), the difference d =d1 - d2

determines which of the 2 pixels in the next row of pixels

(y= yi - 1) is closer to the real ellipse:

if d ≤
2
yr /2 then pixel D(xi + 1, yi - 1) is selected

else pixel C(xi, yi - 1) is selected.

The decision variable (scaling again by
2
yr) for Region 2

step i is defined to be:

)21(2
,2

dd
y

r
i

d

222222)1(2 x
y

r
i

x
y

r
i

x
y

r
 ……….. (22)

Given that 2)1(22222 iyxryrxrxyr [equation of ellipse],

(23) ..2)1(2

2)1(22222 22

,2

i
x

y
r

y
x

r
i

x
y

rrrd
iyxi

Fig. 3 Ellipse Construction (Region 2)

An incremental expression for d2,i can be derived in a

similar manner to d1,i to be:

(24))1(
2

4
2

2
2

)1(
2

222
)1

1
(

22

1

2

,21,2

i
y

x
r

x
r

i
x

y
r

i
x

y
r

i
x

y
r

i
x

y
r

i
d

i
d

which can be simplified, depending on the value of xi + 1,

as follows:

if d2,i >
2
yr /2 then xi+1 =xi, thus

)1(
2

4
2

2
,21,2

 i

y
x

r
x

r
i

d
i

d ………. (25)

if d2,i < 2
yr /2 then xi+1 = xi + 1 thus

)1(
2

4
2

2)1(
2

4
,21,2

 i

y
x

r
x

r
i

x
y

r
i

d
i

d ……… (25)

The hyperbola and parabola algorithms

In a similar manner to the ellipse, one can derive

incremental error expressions for the construction of our

hyperbola and parabola generating algorithms.

Hyperbola

Figure 4 shows a hyperbola centered at (0,0), symmetric

about the X and Y-axes, defined by the equation [12][23]

1
2

2

2

2

yr

y

xr

x ……….. (26)

Fig. 4 Hyperbola
We consider here only the case rx > ry in which the

hyperbola has 2 regions, one in which the major axis of

movement is Y (Region 1) i.e. Y will increment

automatically, and another in which the major axis of

movement is X (Region 2).

If rx <= ry there is no Region 2. The two regions are

separated by the point where the tangent to the hyperbola

has slope dy/dx =1.

In Region 1 (see Fig. 5), the expressions for a measure of

the distance of the true hyperbola to the 2 nearest pixels

are:

22221 ixyrxyrd ………… (27)

222)1(22 xyrixyrd ………… (28)

Setting ε = x - xi we get:

d(ε) = d1- d2

=
ixyryrixyryr 22224222 ……….. (29)

Fig. 5 Hyperbola Construction (Region 1)

The above expression is monotonically increasing in the

interval ,ix . Thus by noting that d (1/2) = -

2
2

r y , the following will hold (Fig. 5):

if d ≥ - 2
2

r y then pixel D(xi +1, yi + 1) is chosen

else pixel C(xi, yi + 1) is chosen: (30)

We next derive the incremental computation of the

decision variable whose value for the ith step of the

algorithm in Region 1 is:

di,1 = d1 - d2
22222222)1()1(22

iyiyixyx
xrxryrrr (31)

which can be incrementally derived to be:

C(xi, yi+1)

A(xi, yi)

D(xi+1, yi+1)

B(xi+1, yi)

ε x

1
dx

dy

x

y

rx

Region 1

Region 2

A(xi, yi)

C(xi, yi -1)

B(xi+1, yi)

D(xi+1, yi -1)

ε

if d1,i ≥ - 2
2

r y then xi+1=xi + 1 by Equation (30), thus

)1(4)1(42 222

,11,1

 iyixxii
xryrrdd (32)

 if d1,i < - 2
2

r y then xi+1 = xi by Equation (30), thus

)1(42 22

,11,1

 ixxii
yrrdd (33)

The initial value d1,0 is determined by substituting the

coordinates of the first pixel of Region 1 (rx,0) for (xi, yi)

in the expression for d1,i in Equation (31):

)21(2 22

0,1 xyx
rrrd (34)

In Region 2, expressions for a measure of the distance of

the true parabola to the 2 nearest pixel centers are:

222)1(21 yxriyxrd (35)

22222 iyxryxrd (36)

The error term is:

d2,i = d1 - d2

222)1(22)1(22222 iyxriyxrixyryrxr (37)

which can be incrementally derived to be:

if d2,i ≤ 22
r x then yi+1 = yi+1, thus

)1(24)1(2422
,21,2

 i

y
x

r
i

x
y

r
y

rdd
ii

 (38)

if d2,i > 22
r x then yi+1=yi, thus

)1(2422
,21,2

 i

x
y

r
y

rdd
ii

 (39)

In a manner similar to the ellipse, the transition criterion

from Region 1 to Region 2 is as follows:

if d < 4 r y
2

 (xi+1) - 2
2

r y then we remain in the same

region else we change region.

The expression for the initial value of the error term in

Region 2 can then be derived:

)21(2)21(2
,1,2 iyxrixyridid (40)

Parabola

Figure 6 shows a parabola centered at (0,0) symmetric

about the X-axis defined by the equation [3][5]:

y
2
 = 2px (41)

Fig. 6 Parabola

In Region 1 the axis of major movement is Y while in

Region 2 it is X. The two regions meet at x =p/2, y= p

where the tangent to the parabola has slope dy/dx= 1.

In Region 1 the expressions for a measure of the distance

of the true parabola to the 2 nearest pixels are:

d1 = px - pxi ………. (42)

d2 = p(xi + 1) – px ………. (43)

The error term is:

d1,i = d1 - d2

)1(2)1(ixpipxiy ……… (44)

which can be incrementally derived to be:

if d1,i ≥ 0 then xi+1=xi+1, thus

pydd
iii

21)1(2
,11,1

 ………. (45)

if d1,i<0 then xi+1=xi, thus

1)1(2
,11,1

 iii

ydd …………. (46)

In Region 2, expressions for a measure of the

distance of the true parabola to the 2 nearest pixel centers

are:

d1 = (yi + 1)
2
 - y

 2
 ……….. (47)

222 iyyd ………… (48)

The error term is:

d2,i =d1 - d2

)1(422)1(ixpiyiy ……… (49)

which can be incrementally derived to be:

if d2,i<0 then yi+1=yi+1, thus

piyidid 4)1(4,21,2
 …….. (50)

if d2,i>0 then yi+1=yi, thus

pidid 4,21,2
 ……….. (51)

The expression for the error, when making the transition

from Region 1 to Region 2 can be derived to be:

)32(
,21,2

2
 i

xpy
i

d
i

d
i

 ………. (52)

The square in the calculation of d2,i gives rise to large

integers and is unsuitable for hardware implementation.

We have proved and verified experimentally that the

final value of d1,i will be 1 or p+1 and:

if d1,i =1 then d2,i= - 4p + 1, ………… (53)

if d1,i =p + 1 then d2,i= - 2p + 1, …………. (54)

Results

The time performance of the new algorithm was

compared against the algorithm described by Kappel [4],

which we derived by suitably scaling by 4 its variables in

order to achieve the best possible performance. The

integer Kappel algorithm exhibits similar performance to

our ellipse algorithm; this should be expected because the

integer version of Kappel we derived is very similar in

structure to our algorithm. However, the integer Kappel

produces arithmetic overflow quicker than ours. It also

requires a greater integer range as can be seen in Scheme

1, which compares the two algorithms in terms of the

maximum integer value required, as ellipse size

increases. The maximum integer arises in the calculation

of y_slope in both of the algorithms.

Conclusions
Despite years of research into basic graphics algorithms,

new algorithms still emerge. The integer algorithms for

conic sections described in this paper have

straightforward Bresenham-like symmetric derivations,

are at least as fast as previous integer algorithms, require

lower integer arithmetic precision and do not set

erroneous pixels at region boundaries, thus incorporating

Region 2

Region 1
dy/dx=1

P

P/2 X

the advantages of well-known previous algorithms. They

are very suitable for high performance applications.

Scheme 1. Maximum integer graph

References
1. D. Hearn & M. Baker, “Computer Graphics C

Version”, (2nd Ed.), 1997, Prentice-Hall, 97-112.

2. J. D. Foley, A. van Dam, S. K. Feiner, J. F.

Hughes, “Computer Graphics: Principles and

Practice”, (2nd Ed.) , 1997, Addison-Wesley, 55-

72.

3. Kappel M. R., “An Ellipse-Drawing Algorithm

for Raster Displays”, 1985, Springer-Verlag,

Berlin, 115-135.

4. Rogers, David., “Procedural Elements for

Computer Graphics”, 1985, NY: McGraw-Hill

Book Company, New York, 54-70.

5. Van Aken, J. R., “An efficient ellipse-drawing

algorithm. CG&A”, 1984, 22-45.

 مقاطع مخروطية باستخدام خوارزميات كفوءةتوليد

 عبد العزيز سليمان خليل
 قسم علوم الحاسبات، كلية علوم الحاسبات والرياضيات، جامعة الموصل، الموصل، العراق

 الملخص

يقدم البحث الحالي وصفا لخوارزميات كفووة لووليود القعوول المخروعيوة ات
محووواور موازيوووة لمحوووور ا حوووداايات، و لوووم بايعومووواد علووو م جيوووة م ووواب ة

خوارزميوووة ال قعوووة الوسوووعية ومحاكوووا مفوووا يم Bresenhamلخوارزميوووة
أظ ووورت ووووانف الو فيووو ، لوووي حالوووة ال وووكل البيضوووول، أ وووا ومولوووم، علووو اقووول

وقدير، سرعة وكفواة الخوارزميوات الصوحيحة المعرولوة با ضوالة ولو كو وا
ووعلب مدى اقل من الأعداد الصوحيحة لوي العمليوات الحسوابية وووودل دوموا

لوووي ووو ا البحوووث وصوووميم وق يوووات ولووو ا وقوووايت م اعقيوووة صوووحيحة كموووا ووووم
 كفوة لووليد القعع ال اقص والقعع المكالئ

 2000000000

 1500000000

 1000000000

 500000000

100 200 300 400 500 600 700 800 900 1000

 50 100 150 200 250 300 350 400 450 500

rx and ry values

 Our algorithm

 Kappel algorithm

M
a
x
im

u
m

 I
n

te
g
er

 U
se

d

Appendix A
Ellipse C++ function code

void ellipse1(int xc, int yc, long rx, long ry)

{

 long rx2,ry2,tworx2,twory2,x_slop,y_slop;

 long d,mida,midb;

 int x,y;

 x = 0; y = ry;

 rx2 = rx * rx; ry2 = ry * ry;

 tworx2 = 2 * rx2; twory2 = 2 * ry2;

 x_slop = 2 * twory2; y_slop = 2 * tworx2 * (y - 1);

 mida = rx2 / 2;

 midb = ry2 / 2;

 d = twory2 - rx2 - y_slop / 2 - mida;

 while (d <= y_slop)

 {

 draw(xc, yc, x, y);

 if (d > 0)

 {

 d -= y_slop;

 y--;

 y_slop -= 2 * tworx2;

 }

 d += twory2 + x_slop;

 x++;

 x_slop += 2 * twory2;

 }

 d -= (x_slop + y_slop) / 2 + (ry2 - rx2) + (mida -

midb);

 while(y >= 0)

 {

 draw(xc, yc, x, y);

 if(d <= 0)

 {

 d += x_slop;

 x++;

 x_slop += 2 * twory2;

 }

 d += tworx2 - y_slop;

 y--;

 y_slop -= 2 * tworx2;

 }

}

Appendix B

Hyperbola C++ function code

void hyperbola(int xc, int yc, long rx,long ry,int bound)

{

 long x,y,d,mida,midb;

 long tworx2,twory2,rx2,ry2;

 long x_slop,y_slop;

 x = rx; y = 0;

 rx2 = rx * rx; ry2 = ry * ry;

 tworx2 = 2 * rx2; twory2 = 2 * ry2;

 x_slop = 2 * twory2 * (x + 1);

 y_slop = 2 * tworx2;

 mida = x_slop / 2; midb = y_slop / 2;

 d= tworx2 - ry2 * (1 + 2 * rx) + midb;

 while((d < x_slop) && (y<= bound))

 {

 draw(x,y);

 if(d >= 0)

 {

 d -= x_slop;

 x++;

 x_slop += 2 * tworx2;

 }

 d += tworx2 + y_slop;

 y++;

 y_slop += 2 * tworx2;

 }

 d -= (x_slop + y_slop) / 2 + (rx2 + ry2) – midb -

mida;

 if (rx > ry)

 while(y <= bound)

 {draw(xc, yc, x, y);

 if(d <= 0)

 {d += y_slop;

 y++;

 y += 2 * tworx2;

 }

 d -= twory2 - x_slop;

 x++;

 x_slop += 2 * twory2;

 }

 }

Appendix C

Parabola C++ Function code

void parabola(int xc, int yc, int p, int bound)

 {int x,y,d,p2,p4;

p2 = 2 * p; p4 = p2 * 2;

x = 0 ; y = 0;

d = 1 - p;

while ((y < p) && (x <= bound))

 {draw(xc, yc, x, y);

 if(d >= 0)

 { x++;

 d -= p2;

 }

 y++;

 d += 2 * y + 1;

 }

 if(d == 1) d = 1 - p4;

 else d = 1 - p2;

 while(x <= bound)

 {draw(xc, yc, x, y);

 if(d <= 0)

 {y++;

 d += 4 * y;

 }

 x++;

 d -= p4;

 }

}

