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Abstract 

Efficient integer algorithms for the fast generation of 

Conic Sections whose axes are aligned to the coordinate 

axes are described based on a Bresenham-like 

methodology and simulating midpoint algorithm 

concepts. Performance results show that in the case of the 

ellipse, the algorithm is at least as fast as other known 

integer algorithms but requires lower integer range and 

always performs correct region transitions. Also efficient 

techniques for generating hyperbola and parabola are 

designed. 

Introduction 

Conic sections (ellipse, hyperbola and parabola) are 

important geometric primitives and, after the straight line 

and circle, have received much attention from the 

computer graphics community. A number of algorithms 

have appeared in the literature for the generation of these 

primitives [3][5]. We must derived efficient integer 

algorithms for the generation of ellipses hyperbolas and 

parabolas whose axes are aligned with the axes of the 

plane, using a Bresenham-like methodology [2] 

simulating the midpoint technique [1]. 

Our algorithms use integer arithmetic in a straight 

forward manner without any scaling and do not lack in 

performance with regard to any previous algorithm. 

Spacewise, they require a small constant number of 

integer variables. They are also symmetric as to the 

number of arithmetic operations per pixel generated in 

each octant. Erroneous pixels are not generated at region 

boundaries due to a better region transition criterion. In 

the case of the ellipse. Our algorithm requires lower 

integer ravage than Kappel's integer ellipse drawing 

algorithm [3]. Our algorithms are very suitable for 

hardware implementation especially in view of 

increasing display resolutions. Our parabola algorithm in 

particular is suitable for very high resolutions due to the 

elimination of the calculation of a square factor.  

The rest of this paper is organized as follows: 

Section 2 presents a modified Bresenham circle 

algorithm. 

Section 3 describes the derivation of the ellipse 

generating algorithm. Section 4 briefly describes the 

parabola and hyperbola algorithm derivations. Appendix 

A, Appendix B and Appendix C give the ellipse, 

hyperbola and parabola functions wrote using C++. 

Reformatting the bresenham circle algorithm 

We develop a small variation to Bresenham's circle 

generating algorithm which concerns the criterion for 

next pixel selection and octant change detection. We 

shall later use this small change in a generalisation of the 

algorithm to the more complex conic sections[2][5]. 

Consider the second octant of a circle of integer Radius R 

(Fig. 1). As in Bresenham's algorithm, having chosen 

pixel A, we define: 
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Where R1 & R2 are the distances from the circle center 

to B & D pixels respectively. 

We then take [2]: 
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Where d is the decision variable for the selection of the 

next pixel between the two candidates pixels B and D.  

At this point we take a diversion from Bresenham's 

algorithm by setting [ε  = yi - y ] to get: 
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Fig.1 Candidate pixels B or D 
The above expression is monotonically increasing in the 

interval ε  
i

y, . We can therefore use the value of 

d(ε) at ε =1/2, i.e. 

 d(1/2) =1/2 as the decision value: 

if d ≤ 1/2 then pixel B is chosen 

else pixel D is chosen. 

Note that since d is the integer, we can replace the 1/2 by 

0, without affecting the semantics. Note that what we 

really accomplish here is to simulate a midpoint-type 

technique [1]. 

Due to the 8-way symmetry of the circle, we need not 

consider another octant; in the case of the ellipse, which 

has 4-way symmetry, we need to consider 2 regions, 

which make up one-quarter of the ellipse [4][6]. 

Derivation of the ellipse generating algorithm 

Consider an ellipse centered at the origin of the 2D 

cartesian space defined by: 
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The ellipse has a 4-way symmetry and it is therefore only 

necessary to generate its arc in the first quadrant [1][2]. 

Here we distinguish two regions separated by the point 

on the ellipse where dy/dx =-1. In the first region the axis 

of major movement is X and in the second Y (Fig. 2). 
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We must derive an incremental expression for the 

decision variables in Regions 1 and 2, the initial values 

of the decision variables and a condition to detect the 

transition from Region 1 to Region 2. 
 

Decision variable for region 1 

Let us begin by considering the 1st region of Fig. 2, 

where the X-axis is the major axis of movement. Assume 

that the ellipse is generated in a clockwise manner 

starting from the point (0,ry). At each step in the 

generation the X value is therefore always incremented. 

It must be determined whether the Y value should be 

decremented or not. This region corresponds to the 2nd 

octant of the circle (Fig. 1) and we define: 
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as in the case of the circle. Taking as decision variable: 
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the following will hold (Fig. 1): 

if d ≤ 2/2
xr

 then pixel B(xi+1, yi) is chosen 

else pixel D(xi+ 1, yi-1) is chosen: …….. (9) 

The only reason for multiplying by 2
xr

 is to facilitate its 

incremental derivation (see below).  

We next derive the incremental computation of the 

decision variable; its value for the ith step of the 

algorithm in Region 1 is: 

 212
,1 ddxrid 

 

  22221222 yxriyxriyxr  ……… (10) 

Given that  2122222  ixyryrxryxr [equation of ellipse] 
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Fig. 2 Ellipse 
 

We shall now define d1,i + 1 in terms of d1,i: 

   211
22

1

22
11

2
2

22
2

1,1





 iy
x

r
i

y
x

rix
y

r
y

r
x

r
i

d
 

    211
22

1

22
11

2
2

22
2 


 iy

x
r

i
y

x
rix

y
r

y
r

x
r

  

since xi+1=xi+1    
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If d1,i >  2
xr /2 then yi+1=yi - 1 by Equation (2), thus   
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if d1,i ≤ 
2
xr /2 then yi+1=yi  by Equation (2), thus 
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The initial value d1,0 is determined by substituting the 

coordinates of the first pixel of Region 1 (0,ry) for (xi, yi) 

in the expression for d1,i: 

 yrxryrd 212220,1  ………. (16) 

 

Transition from Region 1 to Region 2 

The transition criterion based on midpoints algorithm 

gives correct results but is computationally expensive. 

Kappel's method [4] is efficient but there exist cases 

where an erroneous pixel can arise at region boundaries, 

this is because: 

1. Taking the tangent on integer coordinates rather 

than the true ellipse detect region change. 

2. A drastic change of curvature can take place 

within a single pixel. 

This method proposes a transition criterion, which 

combines the advantages of the above two methods. 

The integer algorithm uses a correct criterion, which is 

based on the value of the error function in the next 

column of pixels. In particular, the value of the error 

function d at the point (xi + 1, yi - 3/2) is considered; note 

that if the ellipse passes under this point then an octant 

transition is required. 

The error function d given in Equation (11) can be in 

terms of ε =(yi - y) in a manner similar to the circle (4): 
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setting ε =3/2 we get: 
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The transition criterion is as follows: 

if d ≤ 
2/2)1(24
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 then we remain in the same region. 

The above criterion is optimized and used in the code 

fragment in Appendix A. we have to note that the above 

criterion works correctly for yi≥1. Square corners can be 

predicted easily in this algorithm using one copy of the 

pixel last printed in the first region. 

The initial value of the decision variable d2,i for Region 

2 (see Equation (23) below) can be calculated by adding 

to the final value of d1,i the difference  d2,i -d1,i. From 

Equation (12) and Equation (23 ): 

d2,i = d1,i -  )12(2)12(2  ixyriyxr  …………. (19) 

 

Decision variable for Region 2 

In Region 2 the expressions for d1 and d2, as can be seen 

from Fig. 3, are: 

d1 = (xi + 1)
2
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Having chosen pixel A(xi, yi), the difference d =d1 - d2 

determines which of the 2 pixels in the next row of pixels 

(y= yi - 1) is closer to the real ellipse: 

if d ≤ 
2
yr /2 then pixel D(xi + 1, yi - 1) is selected 

else pixel C(xi, yi - 1) is selected. 

The decision variable (scaling again by
2
yr ) for Region 2 

step i is defined to be: 
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Fig. 3 Ellipse Construction (Region 2) 
 

An incremental expression for d2,i can be derived in a 

similar manner to d1,i to be: 
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which can be simplified, depending on the value of xi + 1, 

as follows: 

if d2,i >  
2
yr /2 then xi+1 =xi, thus 
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if d2,i < 2
yr /2 then xi+1 = xi + 1 thus 
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The hyperbola and parabola algorithms 

In a similar manner to the ellipse, one can derive 

incremental error expressions for the construction of our 

hyperbola and parabola generating algorithms. 
 

Hyperbola 

Figure 4 shows a hyperbola centered at (0,0), symmetric 

about the X and Y-axes, defined by the equation [12][23] 
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Fig. 4 Hyperbola 
We consider here only the case rx > ry in which the 

hyperbola has 2 regions, one in which the major axis of 

movement is Y (Region 1) i.e. Y will increment 

automatically, and another in which the major axis of 

movement is X (Region 2). 

If rx <= ry there is no Region 2. The two regions are 

separated by the point where the tangent to the hyperbola 

has slope dy/dx =1. 

In Region 1 (see Fig. 5), the expressions for a measure of 

the distance of the true hyperbola to the 2 nearest pixels 

are: 
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Setting ε = x - xi we get: 

d(ε) = d1- d2 
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Fig. 5 Hyperbola Construction (Region 1) 
 

The above expression is monotonically increasing in the 

interval   ,ix . Thus by noting that d (1/2) = -

2
2

r y , the following will hold (Fig. 5):   

if d ≥  -  2
2

r y  then pixel D(xi +1, yi + 1) is chosen 

else pixel C(xi, yi + 1) is chosen:   ........    (30) 

We next derive the incremental computation of the 

decision variable whose value for the ith step of the 

algorithm in Region 1 is: 

di,1 = d1 - d2 
22222222 )1()1(22 
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which can be incrementally derived to be: 
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if d1,i ≥ -  2
2

r y  then xi+1=xi + 1 by Equation (30), thus 
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The initial value d1,0 is determined by substituting the 

coordinates of the first pixel of Region 1 (rx,0) for (xi, yi) 

in the expression for d1,i in Equation (31): 
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In Region 2, expressions for a measure of the distance of 

the true parabola to the 2 nearest pixel centers are: 
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The error term is: 

d2,i = d1 - d2 
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In a manner similar to the ellipse, the transition criterion 

from Region 1 to Region 2 is as follows: 

if d < 4 r y
2

 (xi+1) - 2
2

r y  then we remain in the same 

region else we change region.  

The expression for the initial value of the error term in 

Region 2 can then be derived: 
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Parabola 

Figure 6 shows a parabola centered at (0,0) symmetric 

about the X-axis defined by the equation [3][5]: 

y
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Fig. 6 Parabola 
 

In Region 1 the axis of major movement is Y while in 

Region 2 it is X. The two regions meet at x =p/2, y= p 

where the tangent to the parabola has slope dy/dx= 1. 

In Region 1 the expressions for a measure of the distance 

of the true parabola to the 2 nearest pixels are: 

d1 = px -  pxi  ……….  (42) 

d2 = p(xi + 1) – px  ……….  (43) 

The error term is: 

d1,i = d1 - d2 
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which can be incrementally derived to be: 

if d1,i ≥ 0 then xi+1=xi+1, thus 
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if d1,i<0 then xi+1=xi, thus 
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In Region 2, expressions for a measure of the 

distance of the true parabola to the 2 nearest pixel centers 

are: 

d1 = (yi + 1)
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The error term is: 

d2,i =d1 - d2                                                                   
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which can be incrementally derived to be: 

if d2,i<0 then yi+1=yi+1, thus 
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if d2,i>0 then yi+1=yi, thus 
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The expression for the error, when making the transition 

from Region 1 to Region 2 can be derived to be: 
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The square in the calculation of d2,i gives rise to large 

integers and is unsuitable for hardware implementation. 

We have proved and verified experimentally that the 

final value of d1,i will be 1 or p+1 and: 

if d1,i =1 then d2,i= - 4p + 1,  ………… (53) 

if d1,i =p + 1 then d2,i= - 2p + 1, ………….  (54)  
 

Results 
 

The time performance of the new algorithm was 

compared against the algorithm described by Kappel [4], 

which we derived by suitably scaling by 4 its variables in 

order to achieve the best possible performance. The 

integer Kappel algorithm exhibits similar performance to 

our ellipse algorithm; this should be expected because the 

integer version of Kappel we derived is very similar in 

structure to our algorithm. However, the integer Kappel 

produces arithmetic overflow quicker than ours. It also 

requires a greater integer range as can be seen in Scheme 

1, which compares the two algorithms in terms of the 

maximum integer value required, as ellipse size 

increases. The maximum integer arises in the calculation 

of y_slope in both of the algorithms. 
 

Conclusions 
Despite years of research into basic graphics algorithms, 

new algorithms still emerge. The integer algorithms for 

conic sections described in this paper have 

straightforward Bresenham-like symmetric derivations, 

are at least as fast as previous integer algorithms, require 

lower integer arithmetic precision and do not set 

erroneous pixels at region boundaries, thus incorporating 

Region 2 

Region 1 
dy/dx=1 

P 

P/2 X 



the advantages of well-known previous algorithms. They 

are very suitable for high performance applications. 
 

 

 
Scheme 1. Maximum integer graph 
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 مقاطع مخروطية باستخدام خوارزميات كفوءةتوليد 
 

 عبد العزيز سليمان خليل
 قسم علوم الحاسبات، كلية علوم الحاسبات والرياضيات، جامعة الموصل، الموصل، العراق 

 الملخص

يقدم البحث الحالي وصفا لخوارزميات كفووة  لووليود القعوول المخروعيوة  ات 
محووواور موازيوووة لمحوووور ا حوووداايات، و لوووم بايعومووواد علووو  م  جيوووة م ووواب ة 

خوارزميوووة ال قعوووة الوسوووعية  ومحاكوووا  مفوووا يم   Bresenhamلخوارزميوووة 
أظ ووورت  ووووانف الو فيووو ، لوووي حالوووة ال وووكل البيضوووول، أ  وووا ومولوووم، علووو  اقووول 

وقدير، سرعة وكفواة  الخوارزميوات الصوحيحة المعرولوة با ضوالة ولو  كو  وا 
ووعلب مدى اقل من الأعداد الصوحيحة لوي العمليوات الحسوابية وووودل دوموا 

لوووي  ووو ا البحوووث وصوووميم وق يوووات ولووو  ا وقوووايت م اعقيوووة صوووحيحة  كموووا ووووم 
 كفوة  لووليد القعع ال اقص والقعع المكالئ 
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Appendix A 
Ellipse C++ function code 

void ellipse1(int xc, int yc, long rx, long ry) 

{ 

 long rx2,ry2,tworx2,twory2,x_slop,y_slop; 

 long d,mida,midb; 

 int x,y; 

 x = 0; y = ry; 

 rx2 = rx * rx;         ry2 = ry * ry; 

 tworx2 = 2 * rx2;      twory2 = 2 * ry2; 

 x_slop = 2 * twory2;   y_slop = 2 * tworx2 * ( y - 1 ); 

 mida = rx2 / 2; 

 midb = ry2 / 2; 

 d = twory2 - rx2 - y_slop / 2 - mida; 

 while ( d <= y_slop ) 

  { 

    draw(xc, yc, x, y); 

    if ( d > 0 ) 

    { 

     d -= y_slop; 

     y--; 

     y_slop -= 2 * tworx2; 

    } 

    d += twory2 + x_slop; 

    x++; 

    x_slop += 2 * twory2; 

   } 

  d -= ( x_slop + y_slop ) / 2 + ( ry2 - rx2 ) + ( mida - 

midb ); 

  while( y >= 0 ) 

   { 

    draw(xc, yc, x, y); 

    if( d <= 0 ) 

     { 

      d += x_slop; 

      x++; 

      x_slop += 2 * twory2; 

     } 

    d += tworx2 - y_slop; 

    y--; 

    y_slop -= 2 * tworx2; 

   } 

} 

 

Appendix B 

Hyperbola C++ function code 

void hyperbola(int xc, int yc, long rx,long ry,int bound) 

{ 

 long x,y,d,mida,midb; 

 long tworx2,twory2,rx2,ry2; 

 long x_slop,y_slop; 

 x = rx;           y = 0; 

 rx2 = rx * rx;    ry2 = ry * ry; 

 tworx2 = 2 * rx2; twory2 = 2 * ry2; 

 x_slop = 2 * twory2 * ( x + 1 ); 

 y_slop = 2 * tworx2; 

 mida = x_slop / 2; midb = y_slop / 2; 

 d= tworx2 - ry2 * ( 1 + 2 * rx ) + midb; 

 while( ( d < x_slop ) && ( y<= bound ) ) 

  { 

   draw(x,y); 

   if( d >= 0 ) 

    { 

     d -= x_slop; 

     x++; 

     x_slop += 2 * tworx2; 

    } 

   d += tworx2 + y_slop; 

   y++; 

   y_slop += 2 * tworx2; 

  } 

  d -= ( x_slop + y_slop ) / 2 + ( rx2 + ry2 ) – midb - 

mida; 

  if ( rx > ry ) 

  while( y <= bound ) 

   {draw(xc, yc, x, y); 

     if( d <= 0 ) 

      {d += y_slop; 

        y++; 

        y += 2 * tworx2; 

      } 

     d -= twory2 - x_slop; 

     x++; 

     x_slop += 2 * twory2; 

   } 

 } 

 

Appendix C 

Parabola C++ Function code 

void parabola(int xc, int yc, int p, int bound) 

 {int x,y,d,p2,p4; 

p2 = 2 * p;       p4 = p2 * 2; 

x = 0 ; y = 0; 

d = 1 - p; 

while ( ( y < p ) && ( x <= bound ) ) 

   {draw(xc, yc, x, y); 

     if( d >= 0 ) 

      { x++; 

       d -= p2; 

      } 

     y++; 

     d += 2 * y + 1; 

   } 

 if( d == 1 ) d = 1 - p4; 

            else d = 1 - p2; 

 while( x <= bound ) 

     {draw(xc, yc, x, y); 

       if( d <= 0 ) 

        {y++; 

    d += 4 * y; 

        } 

       x++; 

       d -= p4; 

     } 

} 

 

 

 


