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Abstract

Efficient integer algorithms for the fast generation of
Conic Sections whose axes are aligned to the coordinate
axes are described based on a Bresenham-like
methodology and simulating midpoint algorithm
concepts. Performance results show that in the case of the
Introduction

Conic sections (ellipse, hyperbola and parabola) are
important geometric primitives and, after the straight line
and circle, have received much attention from the
computer graphics community. A number of algorithms
have appeared in the literature for the generation of these
primitives [3][5]. We must derived efficient integer
algorithms for the generation of ellipses hyperbolas and
parabolas whose axes are aligned with the axes of the
plane, using a Bresenham-like methodology [2]
simulating the midpoint technique [1].

Our algorithms use integer arithmetic in a straight
forward manner without any scaling and do not lack in
performance with regard to any previous algorithm.
Spacewise, they require a small constant number of
integer variables. They are also symmetric as to the
number of arithmetic operations per pixel generated in
each octant. Erroneous pixels are not generated at region
Reformatting the bresenham circle algorithm

We develop a small variation to Bresenham's circle
generating algorithm which concerns the criterion for
next pixel selection and octant change detection. We
shall later use this small change in a generalisation of the
algorithm to the more complex conic sections[2][5].
Consider the second octant of a circle of integer Radius R
(Fig. 1). As in Bresenham's algorithm, having chosen
pixel A, we define:

d1=R1% - R?
={y2 + (0 +12 )~ [y? + (5 +17)
_y2Z oyl (1)
d2=R?—R2?
=(y* +(x +27 )~ ((y, —2) +(x +1))
=y’ _(yi _]_)2 ......... 2

Where R1 & R2 are the distances from the circle center
to B & D pixels respectively.
We then take [2]:

d :dl—dZ:(yf—yz)—(yz—(yi _1)2) ....... 3)
Where d is the decision variable for the selection of the
next pixel between the two candidates pixels B and D.

At this point we take a diversion from Bresenham's
algorithm by setting [e =y; -y ] to get:
d(s)=-28"+4ye+1-2y, ....... )

Derivation of the ellipse generating algorithm

Consider an ellipse centered at the origin of the 2D
cartesian space defined by:
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ellipse, the algorithm is at least as fast as other known
integer algorithms but requires lower integer range and
always performs correct region transitions. Also efficient
techniques for generating hyperbola and parabola are
designed.

boundaries due to a better region transition criterion. In
the case of the ellipse. Our algorithm requires lower
integer ravage than Kappel's integer ellipse drawing
algorithm [3]. Our algorithms are very suitable for
hardware implementation especially in view of
increasing display resolutions. Our parabola algorithm in
particular is suitable for very high resolutions due to the
elimination of the calculation of a square factor.

The rest of this paper is organized as follows:

Section 2 presents a modified Bresenham circle
algorithm.

Section 3 describes the derivation of the ellipse
generating algorithm. Section 4 briefly describes the
parabola and hyperbola algorithm derivations. Appendix
A, Appendix B and Appendix C give the ellipse,
hyperbola and parabola functions wrote using C++.
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Fig.1 Candidate pixels B or D
The above expression is monotonically increasing in the
interval ee (—co,y, ). We can therefore use the value of

d(e) ate =1/2, i.e.

d(1/2) =1/2 as the decision value:

if d < 1/2 then pixel B is chosen

else pixel D is chosen.

Note that since d is the integer, we can replace the 1/2 by
0, without affecting the semantics. Note that what we
really accomplish here is to simulate a midpoint-type
technique [1].

Due to the 8-way symmetry of the circle, we need not
consider another octant; in the case of the ellipse, which
has 4-way symmetry, we need to consider 2 regions,
which make up one-quarter of the ellipse [4][6].

The ellipse has a 4-way symmetry and it is therefore only
necessary to generate its arc in the first quadrant [1][2].
Here we distinguish two regions separated by the point
on the ellipse where dy/dx =-1. In the first region the axis
of major movement is X and in the second Y (Fig. 2).



We must derive an incremental expression for the
decision variables in Regions 1 and 2, the initial values

Decision variable for region 1

Let us begin by considering the 1st region of Fig. 2,
where the X-axis is the major axis of movement. Assume
that the ellipse is generated in a clockwise manner
starting from the point (O,ry). At each step in the
generation the X value is therefore always incremented.
It must be determined whether the Y value should be
decremented or not. This region corresponds to the 2nd
octant of the circle (Fig. 1) and we define:

dl:in _y2i (6)

d 2:y2 _(yi _1)2 ...... @)

as in the case of the circle. Taking as decision variable:

d :rxz(dl—dz) ....... ®)

the following will hold (Fig. 1):

ifd< rxz /2 then pixel B(x;+1, y;) is chosen

else pixel D(x;+ 1, y;-1) is chosen: ........ (9)

The only reason for multiplying by I’)% is to facilitate its
incremental derivation (see below).

We next derive the incremental computation of the
decision variable; its value for the ith step of the
algorithm in Region 1 is:

dy ;=ry 2 (d1-d2)

—r, 2y2 1, 2(y; -1 -2r, 2y 2 (10)

Given that (2,2 :rXZr)g _r)g(xi +1)2 [equation of ellipse]
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We shall now define d;; + 1 in terms of dy;:
dl,i+1 = —2rX2r5 + 2r5(xi+1+1)2 + r><2yi2+1 + rxz(yi+1—1)2

2
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therefore
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of the decision variables and a condition to detect the
transition from Region 1 to Region 2.

Ifdy;> r2/2 then y,..=y; - 1 by Equation (2), thus
dy 1=y +2rg 42 (v —Leard (1) =
ifdy ;< rX2 /2 then yi.1=y; by Equation (2), thus

) o (15)
dy1=9

The initial value d, o is determined by substituting the
coordinates of the first pixel of Region 1 (0,ry) for (i, y;)
in the expression for dy ;:

dro=2rd erd(1-2ry ) eeeeee (16)

+2r$ +4r§(xi +1) T

Transition from Region 1 to Region 2

The transition criterion based on midpoints algorithm

gives correct results but is computationally expensive.

Kappel's method [4] is efficient but there exist cases

where an erroneous pixel can arise at region boundaries,

this is because:

1. Taking the tangent on integer coordinates rather
than the true ellipse detect region change.

2. A drastic change of curvature can take place
within a single pixel.

This method proposes a transition criterion, which

combines the advantages of the above two methods.

The integer algorithm uses a correct criterion, which is

based on the value of the error function in the next

column of pixels. In particular, the value of the error

function d at the point (x; + 1, y; - 3/2) is considered; note

that if the ellipse passes under this point then an octant

transition is required.

The error function d given in Equation (11) can be in

terms of € =(y; - y) in a manner similar to the circle (4):

_ 522 2 2 52, .. an
d(e) = 2rxg +4rxyig+rx eryi

setting € =3/2 we get:
d(3/2)= —2rX2(3/2)2 + 4rX2yi (3/2)+ rx2 - 2rX2yi

:4r)(2(y| _]_)+rX2 [2 coveneenns (18)
The transition criterion is as follows:

ifd< 4rxz(yi “1)+ rxz / then we remain in the same region.

The above criterion is optimized and used in the code
fragment in Appendix A. we have to note that the above
criterion works correctly for y>1. Square corners can be
predicted easily in this algorithm using one copy of the
pixel last printed in the first region.

The initial value of the decision variable d2,i for Region
2 (see Equation (23) below) can be calculated by adding
to the final value of dy; the difference d,;-d;;. From
Equation (12) and Equation (23 ):

dpi=dy- 2 2y; 71)45(% H) eeeeeeeeees (19)

Decision variable for Region 2

In Region 2 the expressions for d1 and d2, as can be seen
from Fig. 3, are:

dl=(x+1)%-x% ... (20)



Having chosen pixel A(X;, Vi), the difference d =d1 - d2
determines which of the 2 pixels in the next row of pixels
(y=1y;- 1) is closer to the real ellipse:

ifd< r)% /2 then pixel D(x; + 1, y; - 1) is selected
else pixel C(x;, y; - 1) is selected.

The decision variable (scaling again by rg) for Region 2

step i is defined to be:
d. . :rj(dlde)

2,i
:rz(x. +1)2+r2x.272r2x2 ........... (22)
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Fig. 3 Ellipse Construction (Region 2)

An incremental expression for d,; can be derived in a
similar manner to d ; to be:

22 2 2 22
doign =G +y Xiga * 1y K T — 1y X

2 2 .2 2
fry (xi +1) +2rX 74rx (yi 71).........(24)

which can be simplified, depending on the value of x; . 1,
as follows:

if dy;> r& /2 then X1 =X;, thus
_ 2

2i+1 =9 * 20y

if d,; < r}?/z then X1 = x; + 1 thus
3 2 2

241" d2,i + 4ry (xi +1) + 2rX

The hyperbola and parabola algorithms

In a similar manner to the ellipse, one can derive

incremental error expressions for the construction of our
hyperbola and parabola generating algorithms.

d _ 4rx2 (y, — D)oo (25)

d _ 4r)(2(y| 71) ......... (25)

Hyperbola
Figure 4 shows a hyperbola centered at (0,0), symmetric
about the X and Y-axes, defined by the equation [12][23]
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Fig. 4 Hyperbola
We consider here only the case r, > r, in which the
hyperbola has 2 regions, one in which the major axis of
movement is Y (Region 1) i.e. Y will increment
automatically, and another in which the major axis of
movement is X (Region 2).
If r, <= r, there is no Region 2. The two regions are
separated by the point where the tangent to the hyperbola
has slope dy/dx =1.
In Region 1 (see Fig. 5), the expressions for a measure of
the distance of the true hyperbola to the 2 nearest pixels
are:

_2y2_ 2,2 27
dl—ryx ry i (@7)
20w a2 242 28
d2=ry (xj+1)“ -ryx (28)
Setting & = X - X; we get:
d(e) = d1- d2
=522 20 b2 o2y 29
2rys +Ary Xje—Try 2ryxI (29)
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Fig. 5 Hyperbola Construction (Region 1)

The above expression is monotonically increasing in the
interval ge[—xi ,+ooJ. Thus by noting that d (1/2) = -

ri/z , the following will hold (Fig. 5):

ifd> - /2 then pixel D(x; +1,y; + 1) is chosen
else pixel C(x;, y; + 1) is chosen: ........ (30)
We next derive the incremental computation of the
decision variable whose value for the ith step of the
algorithm in Region 1 is:
di,l =dl-d2

2,2 2 2 22 2 2
=200 26 (Y, + D7 =X =1 (X D)7 (31)
which can be incrementally derived to be:



if dy;>- /2 then .= + 1 by Equation (30), thus
dy,=d,, +2r2 +4r7(y, +1) = 4r (X, +1) e (32)

1,i+1
if dy; < - >/ 2 then x,.1 = x; by Equation (30), thus

d1,i-+—l = dl,i + 2r><2 + 4r><2 (yl + l) """""" (33)

The initial value dyo is determined by substituting the
coordinates of the first pixel of Region 1 (r,,0) for (x;, i)
in the expression for dy ;in Equation (31):

dl,O = ZrXZ - ry2 @+ 2rx) ............ (34)

In Region 2, expressions for a measure of the distance of
the true parabola to the 2 nearest pixel centers are:

dlzl’xz(yi +1)2_rX2y2 ................. (35)

2,2 2.2
d2=rx Yo Y (36)
The error term is:
d2,i =dl-d2
:2rX2r$—2r§ (X +1)2+rX2(yi +1)2+rX2yi2 """""" @37)
which can be incrementally derived to be:

if dy; < r§/2 then y;.1 = y;+1, thus

2 2 2
d d —2ry —4ry (xi +1)+4rX (yi +1)

2+l " "2
ifdyi> ri/z then y;.1=y;, thus

_ o2 40200 LAY e (39)
d2,i+1 _dz,i 2ry 4ry (xi +1)
In a manner similar to the ellipse, the transition criterion
from Region 1 to Region 2 is as follows:

2
ifd<4 [y (x+1) - ri/z then we remain in the same

region else we change region.
The expression for the initial value of the error term in
Region 2 can then be derived:

dy =01 ; —r§ (1425 ) =12 (L4 2y; ) o (40)

Parabola

Figure 6 shows a parabola centered at (0,0) symmetric
about the X-axis defined by the equation [3][5]:

V2= 2PX e, (41)

Region 2
dy/dx=1
Region 1

»
»

P/2 X

Fig. 6 Parabola

In Region 1 the axis of major movement is Y while in
Region 2 it is X. The two regions meet at x =p/2, y=p
where the tangent to the parabola has slope dy/dx= 1.

In Region 1 the expressions for a measure of the distance
of the true parabola to the 2 nearest pixels are:

dl= PX - PXi eeeennnnt (42)
d2=p(X; + 1) = PX ..o (43)
The error term is:

d;j=dl-d2

:(yi +1)2 —PXj — p(xi +1) e (44)

which can be incrementally derived to be:
if d1,i2 0 then X;;1=x;+1, thus

d,, =0, =2(y, +) +1-2p overvo. (45)
if d1'i<0 then Xx;.1=X;, thus
dl,i+l = dl,i +2(y, +D+1 . (46)

In Region 2, expressions for a measure of the
distance of the true parabola to the 2 nearest pixel centers
are:

di=(y+1)7°-y? ... (47
d2:y2 _yi2 ............ (48)

The error term is:

d,;=d1 - d2

~(yj +1)2 +yi24p(xi 1) e (49)

which can be incrementally derived to be:
if d,;<0 then y;.1=y;+1, thus

do jiq1=0s i +4(yj +1)—4p - (50)
if d,;>0 then yi.1=y;, thus
d2,i+1:d2,i _4p ...........

The expression for the error, when making the transition
from Region 1 to Region 2 can be derived to be:

_ 2 e, (52)
Ay ip1=Gp; ¥ ¥ ~P@%+3)

The square in the calculation of d,; gives rise to large
integers and is unsuitable for hardware implementation.
We have proved and verified experimentally that the
final value of dy; will be 1 or p+1 and:

if dl,i =1 then dzyiz - 4p +1, . (53)
ifd;j=p+1thendyi=-2p+1,............. (54)
Results

The time performance of the new algorithm was
compared against the algorithm described by Kappel [4],
which we derived by suitably scaling by 4 its variables in
order to achieve the best possible performance. The
integer Kappel algorithm exhibits similar performance to
our ellipse algorithm; this should be expected because the
integer version of Kappel we derived is very similar in
structure to our algorithm. However, the integer Kappel
produces arithmetic overflow quicker than ours. It also
requires a greater integer range as can be seen in Scheme
1, which compares the two algorithms in terms of the
maximum integer value required, as ellipse size
increases. The maximum integer arises in the calculation
of y_slope in both of the algorithms.

Conclusions

Despite years of research into basic graphics algorithms,
new algorithms still emerge. The integer algorithms for
conic sections described in this paper have
straightforward Bresenham-like symmetric derivations,
are at least as fast as previous integer algorithms, require
lower integer arithmetic precision and do not set
erroneous pixels at region boundaries, thus incorporating



the advantages of well-known previous algorithms. They
are very suitable for high performance applications.
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Appendix A

Ellipse C++ function code

void ellipsel(int xc, int yc, long rx, long ry)
{

long rx2,ry2,tworx2,twory2,x_slop,y_slop;
long d,mida,midb;

int x,y;
X=0;y=ry,
X2 =rx * rx; ry2 =ry *ry;

tworx2 =2 *rx2;  twory2 =2 *ry2;

x_slop =2 *twory2; y slop=2*tworx2*(y-1);
mida=rx2/2;

midb =ry2 / 2;

d =twory2 - rx2 - y_slop / 2 - mida;

while (d <=y slop)

draw(xc, yc, X, Y);
if(d>0)
{
d-=vy_slop;
y--
y_slop -= 2 * tworx2;
}
d += twory2 + x_slop;
X++;
x_slop += 2 * twory?2;
}
d-=(x_slop+y slop)/2+(ry2-rx2)+ ( mida -
midb );
while(y>=0)
{
draw(xc, yc, X, y);
if(d<=0)
{
d +=x_slop;
X++;
x_slop +=2 * twory?2;
}
d +=tworx2 - y_slop;
Y-
y_slop -= 2 * tworx2;
}
}

Appendix B

Hyperbola C++ function code

void hyperbola(int xc, int yc, long rx,long ry,int bound)
{

long x,y,d,mida,midb;

long tworx2,twory2,rx2,ry2;

long x_slop,y_slop;

X =rX; y=0;

X2 =rx*rx; ry2=ry*ry;

tworx2 = 2 * rx2; twory2 = 2 * ry2;
x_slop =2 *twory2 * (x+1);

y_slop = 2 * tworx2;

mida = x_slop / 2; midb =y slop/ 2;
d=tworx2 - ry2 * (1 + 2 *rx ) + midb;

while( (d <x_slop ) && (y<=bound ) )
{
draw(x,y);
if(d>=0)
{
d -=x_slop;
X++;
X_slop += 2 * tworx2;
}
d +=tworx2 +y_slop;
y++,
y_slop += 2 * tworx2;
¥
d-=(xslop+y slop)/2+(rx2+ry2)—midb -
mida;
if(rx>ry)
while( y <= bound )
{draw(xc, yc, X, y);
iftd<=0)
{d +=y slop;
y++
y += 2 * tworx2;
}
d -=twory2 - x_slop;
X++;
x_slop += 2 * twory?2;
}
}

Appendix C
Parabola C++ Function code
void parabola(int xc, int yc, int p, int bound)
{int x,y,d,p2,p4;
p2=2*p; p4d=p2*2;
x=0;y=0;
d=1-p;
while ((y<p) && (x<=bound))
{draw(xc, yc, X, y);
if(d>=0)
{x++;
d-=p2;
}
y++,
d+=2*y+1,

}
if(d==1)d=1-p4;
elsed=1-p2;
while( x <=bound )
{draw(xc, yc, X, y);
iftd<=0)
{y++;
d+=4*y;
}
X++;
d-=p4;
}



