Journal of Kerbala University, Vol. 9 No.2 Scientific . 2011

Certain Forms of β^{**} -Continuous Functions

Abstract:

In this work, we obtain new weak and strong forms of β^{**} -continuous functions Using the concept of g β -closed set.

We also obtain a characterization of β - $T_{\frac{1}{2}}$ spaces.

المستخلص

في هذا البحث قدمنا أنماط ضعيفة وقوية من الدوال المستمرة
$$eta^{**}$$
 باستخدام مفهوم المجموعات المغلقة g eta .
أيضا حصلنا تمييز للفضاءات eta_1 - eta .

1- Introduction:

In this paper, we introduce Weak form of β^{**} -continuous functions called M- β^{**} -continuous functions by using g β -closed sets obtain some basic properties of such functions also we introduce and study contra- β^{**} -continuous functions.

This notion is a stronger form of M- β^{**} -continuous functions.

Finally we introduce and study perfectly contra- β^{**} -continuous functions which is a strong form of β^{**} -continuous functions.

Throughout this paper (X, τ) and (Y, σ) (or X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated.

2- Basic definitions:

In this section we recall the basic definitions needed in this work.

2-1 Definition:[1]

Let (X, \mathcal{T}) be a topological space , let $A \subseteq X$ then we say that:

- i- A is semi-open if A⊆cl Int A. The complement of semi-open set is called semiclosed.
- ii- A is α -open if A \subseteq Int cl Int A The complement of α -open set is called α -closed.
- iii- A is β -open if A \subseteq cl Int cl A The complement of β -open set is called β -closed.

Journal of Kerbala University, Vol. 9 No.2 Scientific . 2011

2-2 Definition:[2]

- i- the intersection of all semi-closed sets containing A is called the semi-closure of A and is denoted by SclA
- ii- the intersection of all α -closed sets containing A is called the α -closure of A and is denoted by α clA.
- iii- the intersection of all β -closed sets containing A is called the β -closure of A and denoted by β clA.

2-3 Definition:[1]

- i- the family of all semi-open sets in X is denoted by SO(X).
- ii- the family of all α -open sets in X is denoted by α O(X).
- iii- the family of all β -open sets in X is denoted by $\beta O(X)$.

2-4 Definition:[2]

A subset F of (X, au) is said to be :

- i- g- closed in $(X, \mathcal{T})[2]$ if $F \subseteq O$ and O is open \Longrightarrow cl $(F) \subseteq O$.
- ii- $g\alpha$ closed in $(X, \tau)[2]$ if $F \subseteq O$ and O is α open $\Longrightarrow \alpha \operatorname{cl}(F) \subseteq O$.
- iv- gs- closed in $(X, \mathcal{T})[2]$ if $F \subseteq O$ and O is open \Longrightarrow scl $(F) \subseteq O$.
- v- sg-closed in (X, τ), [2] if F \subseteq O and O is semi-open \Rightarrow scl(F) \subseteq O.

vi- $g\beta$ -closed in (X, τ) if $F \subseteq O$ and O is β -open $\Rightarrow \beta \operatorname{cl}(F) \subseteq O$.

A subset W is said to be (g-open, glpha-open, gs-open, geta-open, geta-open) if its complement

 $W^c = X-W$ is (g-closed, $g\alpha$ - closed, gs- closed, sg- closed, $g\beta$ - closed).

2-5 Definition:[3]

A function $f: (X, \tau) \to (Y, \sigma)$ is called: i- β^{**} -continuous[3] if for each $v \in \beta O(Y, \sigma)$ (that is v is β -open in Y)we have $f^{-1}(v) \in \beta O(X, \tau)$.(I,e. $f^{-1}(v)$ is β -open in X). ii- β^{**} -closed if for every β -closed set W of (X, τ) , f(W) is β -closed in (Y, σ) . iii- β^{**} -open if for every β -open set W of (X, τ) , f(W) is β -open in (Y, σ) . iii- contra- β -closed if f(U) is β -open in Y for each closed set U of X.

3- Main Results:

Before, we state the main results of this paper, we introduce the following definitions.

3-1 Definition:

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be M- β^{**} -continuous if $\beta \operatorname{cl}(F) \subseteq f^{-1}(O)$ whenever O is a β -open subset of (Y, σ) , F is a g β - closed subset of (X, τ) , and F $\subseteq f^{-1}(O)$.

3-2 Definition:

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be M- β - closed if , f(W) $\subseteq \beta$ intA whenever A is a g β - open subset of (Y, σ). W is a β - closed subset of (X, τ), and f(W) \subseteq A.

3-3 Theorem:

i- f: (X, τ) \rightarrow (Y, σ) is M- β^{**} -continuous if $f^{-1}(O)$ is β - closed in (X, τ) for every β open O in (Y, σ), (that is if f is contra- β^{**} -continuous) [3]. ii- f: (X, τ) \rightarrow (Y, σ) is M- β - closed if f(W) is β -open in (Y, σ) for every β - closed subset W of (X, τ) (that is if f is contra- β^{**} - closed). **Proof:**

- Let $F \subseteq f^{-1}(O)$, where O is β open in (Y, σ) and F is a g β -closed subset of (X, τ). i-Therefore $\beta \operatorname{cl}(F) \subseteq \beta \operatorname{cl}(f^{-1}(O)) = f^{-1}(O)$.thus f is M- β^{**} -continuous.
- Let $f(W) \subset A$, where W is a β closed subset of (X, τ) and A is a g β open subset of ii-(Y, σ), therefore β int(f(W)) $\subseteq \beta$ int(A) then f(W) $\subseteq \beta$ int(A) thus f is M- β -closed.

3-4 Remark:

i- Clearly β^{**} -continuous functions are M- β^{**} -continuous. ii- β^{**} -closed functions are M- β - closed. **Proof:**

let $f: (X, \tau) \rightarrow (Y, \sigma)$ be β^{**} -continuous, let O be β - open in i- (Y, σ) , hence $f^{-1}(O)$ is also β - open. Now F is $g\beta$ - closed so $F \subseteq f^{-1}(O) \Longrightarrow \beta \operatorname{cl}(F) \subseteq f^{-1}(O)$. let $f: (X, \tau) \rightarrow (Y, \sigma)$ be β^{**} -closed, let W be β - closed in (X, τ) , so f(W) is also β closed. Now A is g β - open so f(W) \subseteq A \implies f(W) $\subseteq \beta$ int (A) (take the dual of the definition of g β - closed).

<u>3-5 Theorem:</u> Let $f: (X, \mathcal{T}) \rightarrow (Y, \sigma)$ be a function from a space (X, \mathcal{T}) to space $(\mathbf{Y}, \boldsymbol{\sigma})$:

- let all subsets of (X, τ) be clopen , then f is M- β^{**} -continuous if and only if f is contrai- β^{**} -continuous(that is $f^{-1}(0)$ is β -closed in (Y, σ)).
- Let all subsets of (Y, σ) be clopen, then f is M- β closed if and only if f is contra- β^{**} iiclosed .(that is f(W) is β - open in (Y, σ) for every β - closed subset W of (X, τ).

Proof:

- i- Assume that f is M- β^{**} -continuous. Let A be an arbitrary subset of (X, τ) such that $A \subseteq V$, where V is β open in (X, τ) then by hypothesis $\beta \operatorname{cl}(V) = V$ therefore all subsets of (X, τ) are $g\beta$ -closed (and hence all are $g\beta$ -open). So for any O which is β -open in (Y, σ) , $f^{-1}(O)$ is $g\beta$ -closed in (X, τ) . Since f is M- β^{**} -continuous, $\beta \operatorname{cl}(f^{-1}(O)) \subseteq f^{-1}(O)$, therefore $\beta \operatorname{cl}(f^{-1}(O)) = f^{-1}(O)$,
- I.e. $f^{-1}(O)$ is β closed in (X, τ), so f is contra- β^{**} -continuous.
- ii- Assume that f is M- β closed as in (i), we obtain that all subsets of (Y, σ) are g β -open. Therefore for any β -closed subset W of (X, τ), f(W) is g β - open in Y.

since f is M- β - closed, f(W) $\subseteq \beta$ int (f(W)). Hence f(W)= β int(f(W)), i. e, f(W) is β -open.

3-6 Corollaries:

Let $f: (X, \mathcal{T}) \to (Y, \sigma)$ be a function from a topological space (X, \mathcal{T}) to a topological space (Y, σ) :

i- Let all subsets of (X, τ) be clopen, then f is M- β^{**} -continuous if and only if f is β^{**} -continuous.

ii- Let all subsets of (Y, σ) be clopen, then f is M- β - closed if and only if f is β^{**} -closed.

3-7 Example:

If $f: X \to Y$ is β^{**} -continuous, then f need not be contra- β^{**} -continuous, for example: The identity function on the topological space (X, τ) where $\tau = \{\phi, X, \{a\}, \{a, b\}\}, X = \{a, b, c\}$, is β^{**} -continuous but not contra- β^{**} -continuous.

3-8 Definition:

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called perfectly contra- β^{**} -continuous if the inverse of every β -open set in Y is β -clopen in X.

3-9 Remark:

Every perfectly contra- β^{**} -continuous function is contra- β^{**} -continuous and β^{**} -continuous.

3-10 Theorem:

If a function $f: (X, \tau) \to (Y, \sigma)$ is β^{**} -continuous function and M- β -closed, then $f^{-1}(A)$ is a g β -closed whenever A is a g β -closed subset of (Y, σ) .

Proof:

Let A be a g β -closed subset of (Y, σ) suppose that $f^{-1}(A) \subseteq O$ where O is β -open in (X, τ) , now $O^c \subseteq f^{-1}(A^c)$, so $f(O^c) \subseteq f^{-1}(A^c)$, but f is M- β - closed then $f(O^c) \subset \beta \operatorname{int}(A^c) = (\beta \operatorname{cl}(A))^c$. It follows that : $O^{c} \subseteq f^{-1}(\beta \operatorname{cl}(A))^{c}$ and hence : $f^{-1}(\beta \operatorname{cl}(A)) \subseteq O$. Since f is β^{**} -continuous, $f^{-1}(\beta \operatorname{cl}(A))$ is β -closed thus we have: $\beta \operatorname{cl}(f^{-1}(A)) \subseteq \beta \operatorname{cl}(f^{-1}(\beta \operatorname{cl}(A)) = f^{-1}(\beta \operatorname{cl}(A)) \subseteq O$. This implies that $f^{-1}(A)$ is $g\beta = \beta \operatorname{cl}(f^{-1}(A)) \subseteq \beta \operatorname{cl}(f^{-1}(A)) \subseteq \beta \operatorname{cl}(A)$. closed in (X, \mathcal{T}).

<u>3-11 Remark:</u> Let $f: (X, \mathcal{T}) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \gamma)$ be two functions such that $g \circ f: (X, \mathcal{T}) \rightarrow (X, \tau)$ $(\mathbf{Z}, \boldsymbol{\gamma})$ then :

g of is contra- β^{**} -continuous if g is β^{**} -continuous and f is contra- β^{**} -continuous. ig o f is contra- β^{**} -continuous if g is contra - β^{**} -continuous and f is β^{**} -continuous. ii-

3-12 Theorem:

If $f: (X, \tau) \rightarrow (Y, \sigma)$ is M- β^{**} -continuous and is an open, $g\beta$ -closed subset of (X, τ) , then the restriction $f_A = f/A : (A, \tau_A) \longrightarrow (Y, \sigma)$ is M- β^{**} -continuous. **Proof:**

Assume F is a g β -closed subset relative to A and G is a β -open subset of (Y, σ) for which $F \subseteq (f_A)^{-1}(G)$.then $F \subseteq f^{-1}(G) \cap A$.

On the other hand, F is $g\beta$ -closed in X. since f is M- β^{**} -continuous, then β cl(F) $\subseteq f^{-1}(G)$.this implies that $\beta \operatorname{cl}(F) \cap A \subseteq f^{-1}(G) \cap A$, using that fact that $\beta \operatorname{cl}(F) \cap A$ $=\beta \operatorname{cl}_{A}(F)[3].$

We have : $\beta \operatorname{cl}_{A}(F) \subseteq (f_{A})^{-1}(G)$ Thus $f_A: (A, \tau_A) \rightarrow (Y, \sigma)$ is M- β^{**} -continuous.

4- A Characterization of β - T_1 Spaces

In this section, we give a characterization of the class of β - T_1 spaces.

Journal of Kerbala University, Vol. 9 No.2 Scientific . 2011

4-1 Definition :[4]

A space (X, τ) is said to be $\beta - T_{\frac{1}{2}}$ space, if every g β -closed set is β -closed.

4-2 Theorem:

Let (X, τ) be a space, then (X, τ) is a $\beta - T_{\frac{1}{2}}$ space if and only if $f: (X, \tau) \to (Y, \sigma)$

is M- β^{**} -continuous, for every space (Y, σ) (and every function f: (X, τ) \rightarrow (Y, σ)). **Proof:**

$$\Rightarrow$$
)

Let F be a g β -closed subset of (X, τ) and $F \subseteq f^{-1}(O)$ where O is β -open in (Y, σ) since (X, τ) is a β - $T_{\frac{1}{2}}$ space F is β -closed(I.e. $F = \beta$ cl(F))

Therefore $\beta \operatorname{cl}(F) \subseteq f^{-1}(O)$ and hence f is M- β^{**} -continuous. \Leftarrow)

Let W be a g β -closed subset of (X, τ) and Y be the set X with the topology $\sigma = \{\phi, Y, W\}$

Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function by assumption f is $M \cdot \beta^{**}$ -continuous since Wis $g\beta$ -closed in (X, τ) and β -open in (Y, σ) and $W \subseteq f^{-1}(W)$, it follows that $\beta \operatorname{cl}(W)$ $\subseteq f^{-1}(W) = W$. Hence W is β -closed in (X, τ) , therefore (X, τ) is $a\beta \cdot T_{\frac{1}{2}}$ space.

References

- (1) Abed El-Monsef M. E., β -Opens and β -Continuous Functions, Bull. Fac. Sci, Assint Umr. 12(1983),(77-90).
- (2) Levine N., Generalized Closed Sets in Topology, Rend. Cire Mat. 19(1970),(89-96).
- (3) Mustafa Hadi J., Central- β -Continuous Functions First Kufa conference (2008), Kufa Univ.
- (4) Noiri T., Properties of β -Connected Spaces, Acta Math. Hung, 101(2003),(227-236).