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ABSTRACT

The solution of Composite Spherical Shells subjected to different external loading and boundary
condition are investigation and analysis by the application of the classical composite-material
theory. In this research are used Chebyshev series in matrix form to reformulate the differential
equations of equilibrium of a composite spherical shell . Two problem are solved by using
Chebyshev theory, the first problem are solved laminated spherical shell under uniform external
pressure with open ( [1,=10°), the results obtained for maximum stress is (5.298-5.563 N/m) and
maximum moment is (1.189-1.99 N.m/m).The results are compared with available published results
and confirmed mach well. The second problem is solved for a supported shells under unite edge
line load with different ([1,=30° and 80° ), the results is seen the stress for laminated composite
shells concreted near the pole or near the equator and the bending is localized around the edges.
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1. INTRODUCTION

Laminated composite shells are increasingly being used in various engineering applications
including aerospace, mechanical, marine and automotive engineering. Spherical shells form an
important class of structural configurations in aerospace as well as ground structures, as they offer
high strength-to-weight and stiffness-to-weight ratios. The most method to solve generally
laminated composite shells having complex geometries, arbitrary loadings and boundary conditions,
is the finite element method. The advantages and analysis complications of composite materials
stimulated researchers to develop convenient shell theories and solution techniques for composite
shells., Noor and Peters (1988) presented static and dynamic analyses of anisotropic shells using
conical shell frustum elements. Grafton and Strome (1963) investigated axisymmetric shells using
doubly curved finite shell elements.

However, analytical techniques are more suitable for preliminary design requirements. There
exist a few analytical solutions for non-cylindrical laminated shells of revolution. Lestingiand and
pandovani (1973) , Pandovan and Lestingi (1974) investigated the influence of material anisotropy
on shells of revolution using a multisegment numerical integration technique. Tutuncu and Ozturk
(1997) investigated bending stresses in composite spherical shells under axsymmetric edge-loads.
Their analysis is confined to a certain class of laminated shells; namely, balanced-symmetric
laminates. Krishnamurthy K.S. el al. (2003), the authors extended their work on the impact response
of a laminated composite cylindrical shell as well as a full cylinder by incorporating the classical
Fourier series method into the finite element formulation and also predicted impact-induced damage
deploying the semiempirical damage prediction. Topal U.(2006) used first-order shear deformation
theory for Mode-Frequency Analysis of Laminated Spherical Shell . Nguyen-Van, N. Mai-Duy and
T. Tran-Cong (2007) analyzed laminated plate/shell structures based on the first order shear
deformation theory. Oktem A.S. and Reaz A. Chaudhuri (2008) used Higher-order theory based
boundary-discontinuous Fourier analysis of simply supported thick cross-ply doubly curved panels.

Alwar et al. (1990,1991) suggested the use of Chebyshev series in the solution of shell problems.
Their works were confined to specially orthotropic laminated spherical shells, and the solution
procedure was rather complicated and uneasy to apply to different shell problems.

In the present work a variety of problems of generally laminated axisymunctric spherical shells
are analyzed using the proposed matrix formulation of Chebyrshev series. stress results are obtained
and compared with the available published results.

2. MATHEMATICAL ANALYSIS

2.1 Equilibrium Equations

The equations of a bending-resistant spherical shell under pressure load are given by
(Alwar,1991 and Trimosbmkoi , 1959)
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The shell geometry and stress resultants are depicted in Fig. 1.

Axis of sysnsacisy

Fig. 1. Spherical Shell (a) Geometry (b) Stress resultants (Harry,1967)

2.2 Constitutive Relations:

The shell constitutive relations between the stress resultants and the strain and curvature
components according to the classical lamination theory are given by (Jores,1975):

N, = An U + Ap Lo + A U + Bn ks + Bp k7 + Bis
kOO0 O0O00O0O00O00O00ooooooooon

N = Ap ¢ + Ax Lo + Ay U + Bp ks + Bxn k7 + By
‘[Senininininininininininininininininininininininln

Nso=Ni=Aj6 s+ Ao [+ Ase Ls + Big ks + Bas ko) + Beg ks ooonooooconooooconononnooonon
(2)

Mg = By s + B Uy + B o + Dip k¢ + Dio ko + Dy
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The definition of extensional, coupling, and bending stiffness coefficients Aj, Bj, and Dj;
respectively (1,j=1,2,6) is give by ( Jores , 1975)

2.3 Strain-Displacement Relations
The shell strain-displacement relations for small displacements are given by (Harry,1967)
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Substituting the strain-displacement relations (3) into the stress resultant-strain relations (2),
and eliminating Qs and Q. from eqgs. (1) we end up with three equilibrium equations for generally
laminated arbitrarily loaded spherical shells. In case of axisymmetric generally laminated shell

problems we have %= 0 and v # 0. Using the non-dimensional coordinate &= (s —R¢,)/L and

L=R ([I-0J,), the system of equations reduces to:

2 L d¢ | R? R? R3sin¢

[Q”cotd) +Q20 cotd)}ng{Qlé +Q17 C°t2¢+ 2Q2400t2¢J v (4)
R R“sin¢

3 2 2
1 dw Rjcotd 1 d7w +[M+R200t ¢J ld_W+R7cot¢W:0

1
343 R 2?2 g2 (R R? Ld Rr2
The trigonometric function terms appearing in eq. (4) will be designated as:

1 I 1 IS 1

F, __
P osin’ g’

- - F, =sin
' sing’ > sin’¢’ s=sing,
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2.4 Boundary Conditions
- Pole conditions
2 2
w=v=2"_0and kszote.i@—a—w—a—wzo (6)
g R 08 g2
- Clamped-edge conditions
u=w=v= dw =0 (7)
dg

- Simply supported edge conditions, free to move in the horizontal  direction
Vertical displacement (- ucos [J +wsin [J) =v=M;=0
Horizontal force (Ng sin [1 + Qg cos [1) =H ()

3. CHEBYSHEYV SERIES REPRESENTATION

Any continuous function f()) in the interval 0 <& <1can be written in Chebyshcv series as

given by (Alwar and Narasinthan,1990):

0= “atE)r ©

Where:
+ sign means that the 1™ term is halved.
a; ... are constants to be determined so as to obtain the best possible fit.
The shifted Chebyshev polynomials satisfy the recurrence relations:
Teo (0)=220-1) Ty ()- Ty (1) ,1<r<o (10)

and the orthogonally conditions:
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for m#n

for m=n=#0
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for m=n=0

For any continuous function f([1) the series expansion (9) is fast converging, and a good
approximation is obtained by taking a finite number of terms. Therefore, eq. (9) is approximated by:

N
f(&)= ;0 +a,T; (€) (11)

Where, for a known function f([1), the coefficients a, are given by:

2 1 fE)T ()

1
P = d
) Jeig

The first derivative f (1)) is expressed in Chebyshev series as (alwar and Narasinthan 1990 , Alwar
and Narasindan 1991):

0<r<N (12)

P )=y *a, O, () (13)

The coefficients ag) satisfy the recursive relation:

(l) =4ra

o . z<r<N (14)

a(l) —-a
1

r—

Similarly higher function derivatives can be written as:

' (e)- Nioz a1, (o) (15)
-3 e
Where;
2@ —al2) _arl) | 1<ren-d
a™ _alm) g i eN- (o) (16)

4- FORMULATION OF EQUILIBRIUM EQUATIONS
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Expanding u([J), v([1) and w([J) in (N+1)-term Chebyshev series we have a total of 3N+3
unknown coefficients. The trigonometric functions (5) appearing in the equilibrium egs. (4) are also
expanded in Chebyshev series having M+1 terms. The M+I expansion coefficients can be computed
easily by forcing the function egs. (5) to take on their actual values at a number of chosen points in
the interval 0<[]<1. Using matrix formulation for the functions and function derivatives, and
applying the rule of matrix multiplication as explained in Alwar and Narasindan 1991 , equilibrium
egs. (4) can be written as a system of algebraic equations in the following matrix form:

[1 0 3 0 5] 01 0 3 0 5]
02040 0020 40
[A]l=]0 0 3 0 5 [A01]=|0 0 0 3 0 5 (17)
00040 0000 40
0 0 0 0 5 00000 5

The matrices [A01] to [A04] relate the 1%, 2™, 3™ and 4™ derivative coefficients of a
function to the original function coefficients respectively. The first-order-derivative coefficients
{a'"} in eq. (13) can be written in terms of the original function coefficients {a;} using matrix
notation as follows:

{39)}=4[A01]{ai} : r.: 01,2, N-1

where [A01] is of order N * (N+1). It is composed of an N * N matrix designated as [A]
matrix and an N * 1 column with zero entries at the left of the matrix [A]. Matrix [A] is an upper
triangular matrix. Its elements a;; are defined as.

a;

_J0 i>j or i+j odd
- j i<j and i+ even

From the matrices form (17) for N=5: The matrices [A02], [A03], [A04] and [AOn] are
obtained as follows:

[a02)=[a], . ~'[ao1] [a0s]=[A] 5, A02]
[A0aJ=[A] 5 5 ~'[a03] [Aon}=[A} 1 ~'[AO(-1)] (18)
Where,
n the order derivative
[Alin1m matrix [A] after deleting the last (n-1) rows and (n-1) columns.
N matrix [A] after deleting the first row.
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5. RESULTS AND DISCUSSIONS

Two problems of spherical shells under different loads and boundary conditions will be
considered.

Problem 1

The first problem is a clamped-clamped generally laminated open spherical shell with
[1,=10°, under uniform external pressure. Convergence and comparison studies for the [90/0]
laminated shell is with the results of (Alwar and Narasinthan 1990) presented in Table 1. It is clear
from the table that especially orthotropic lamination are giving the minimum hoop stress resultant
and meridional moment resultant, so that good convergence to the right answer can be obtained by
about 16 terms in Chebyshev series.

Table 1 convergence study for [0/90] spherical shell

N=16 N=22 Alwar and
Narasinthan
1990
Max.hoop stress resultant Ny 5.2989 5.5639 5.410
Max.deflection W=10"E,w h*/(pL") 0.1502 0.1489 0.1478
Max.meridional moment resultant Mg 1.1898 1.997 1.175
Where :
p=6900N/m’ E|/E,=20 No= 10° N, h*/(pL*)
R/h=30 G12/Ex=0.5 v12=0.28

Mo=10°M;h¥/(pLY) 6o =0", ¢; =90°
Problem 2

The second problem is a generally laminated spherical shell under horizontal edge line load
as shown in Fig. 2 . The material used has the properties: E/E,=20, G/E»=0.5, v1,=0.28. The
radius of the sphere R is 0.15 m, and the thickness h is 0.005 m. The problem is solved for a simply
supported shell with different [1,=30° and 80° with non-dimensional meridional coordinate ({ = 0
to 1) under unit edge line load.

From Figs.3,4,5 represent the variation of axial moment, circumferential stress, axial shear stress
respectively in the meridional direction ({) for different laminations (¢ =30° , ¢, =150°) and with
different laminate schemes (0/45 , 0/90 , 45/-45 ). Fig.3 It shows the distribution of axial moment
for the shell and it seen maximum value of axial moment about (1.51 - 2.35) N.m/m at (=0.1 and
0.9, also depend on laminate schemes, also seen that the axial moment is near of the equilibriums
profile in range (= 0.2 — 0.8 . This indicated the effect of maximum axial moment is localized
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around the edges ,and diminishes as the edge distance increases.Fig.4 It shows the maximum value
of the circumferential stress at { =0.1 and 0.9 about (0.5-0.75) N/m and depend on laminate
schemes.Fig.5 It seen the distribution of axial shear stress and it is the maximum value about (0.1,-
0.1) N/m in the same interval of { = 0.1 and 0.9 . The results from Fig.4,5 it seen that the laminates
exhibit substantial differences in the stress distributions for shells opened near the pole or near the
equator.

From Figs.6,7,8 the plotted shows the variation of axial moment, circumferential stress, axial
shear stress respectively in the meridional direction (¢) for different laminations (¢ =80" , ¢; =120°)
and with different laminate schemes (0/45 , 0/90 , 45/-45 ). Fig.6 the maximum average value of the
axial moment in this condition equal between (3.9-7.4)N.m/m at (=0.1 and 0.9 . Fig.7 shows the
distribution of the circumferential stress and it seen the average value between (-13,-9) at { =0.1
and 0.9 .Fig.8 it seen the axial shear stress with average value (0.5,-0.5) at {=0.1 and 0.9. From
Figs.6,7,8 shows that the maximum distribution of axial moment around the edges and the the
stress distributions for the shell opened near the pole.

Fig. 2 . Spherical shell under uniform edge load
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Fig. 3 . Variation of axial moment in the meridional direction ({)
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Fig. 4 . Variation of circumferential stress in the meridional

direction (¢) for different laminations (¢, =30° , ¢; =150
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Fig. 6 . Variation of axial moment in the meridional direction ({)

for different laminations (¢, =80° , ¢, =120")
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Fig. 7 . Variation of circumferential stress in the meridional direction ({) for different laminations
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Fig. 8 . Variation of axial shear stress in the meridional direction ({)

for different laminations (¢, =80, ¢;=120°)
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6- CONCLUSION

The method has been presented for the solution of arbitrarily laminated composite spherical
shells by expanding displacement functions in Chebyshev series. The method is used to solve a
variety of spherical shell problems with different fiber orientations and boundary conditions.
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List of Symbols
Ajj, extensional stiffness coefficient, i, j=1,2,6
Bj;, coupling stiffness coefficient, i, j =1,2,6

Dj; bending stiffness coefficients , i,j =1, 2, 6.

E modulus of elasticity in tension and compression  (N)

G modulus of elasticity in shear (N)
ks, ko, ks change in curvatures in s, 0 coordinates (m,dego)
H horizontal force (N)

h thickness of a shell (m)

M, Mg bending moments (N.m/m)
\Y, I twisting moment (N.m/m)
N number of terms

N;, N, Ny In-plane normal and shearing stress resultant (N/m)

p pressure (N/m?)
R radius of spherical shell (m)
r,s,0 polar coordinates (m,m,deg")
Qs, Q transverse shear stress (N/mz)
X,Y,Z rectangular coordinate (m)
u,v,w components of displacements (m)

o semi conical angle (deg”)
Oso shear strains in polar coordinate

O, 0o, meridional strains (N/mz)
0, O angle of laminated orientation, i=0,1 (deg’)

¢ non-dimensional meridional coordinate

\ poisons’ ratio
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