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ABSTRACT 

The solution of Composite Spherical Shells subjected to different external loading and boundary 

condition are investigation and analysis  by the application of the classical composite-material 

theory. In this research are used Chebyshev series in matrix form to reformulate the differential 

equations of equilibrium of a composite spherical shell . Two problem are solved by using 

Chebyshev theory, the first problem are solved laminated spherical shell under uniform external 

pressure with open ( "o=10
o
)
 
, the results obtained for maximum stress is (5.298-5.563 N/m) and 

maximum moment is (1.189-1.99 N.m/m).The results are compared with available published results 

and confirmed mach well. The second  problem is solved for a supported shells under unite edge 

line load with different ("o=30
o
 and 80

o
 ), the results is seen the stress for laminated composite 

shells concreted  near the pole or near the equator and the bending is localized around the edges. 

Keywords: Spherical shell, laminated, composite materials , chebyshev series 

بتطبيق متسلسلات شبيشيف ذات الصفائح المركبة حل القشريات الكروية  

 :الخلاصة 

تخمينهـــا وتحليلهـــا بواســـطة القـــشريات الكرويـــة المركبـــة المعرضـــة الـــى احمـــال خارجيـــة مختلفـــة وظـــروف محـــددة  تـــم  حـــل  

مــصفوفة لأعــادة تــشكيل البحــث اســتخدمت  متسلــسلات شيبــشيف فــي شــكل   هــذافــي. التطبيقــات النظريــة الكلاســكية للمــواد المركبــة 

المــسألة الاولــى حــل قــشريات ، مــسئلتين تــم حلهــا بأســتخدام نظريــة شيبــشيف . معــادلات تفاضــلية منتظمــة لقــشريات كرويــة مركبــة 

-5.298(النتـائج المستحــصلة لأقـصى جهــد كانــت ، ) o =100(كرويــة تحـت ضــغط خـارجي منــتظم وبزاويـة منفتحــة  صـفائحية 

. النتـائج تـم مقارنتهـا مـع نتـائج منـشورة وأكـدت تقـارب الحـل). متـر/متـر. نيـوتن1.199-1.189(زم عـ اقـصىو) متر/ نيوتن5.563

أظهـرت النتـائج ان الاجهـادات  ) .800 و o =300(المسألة الثانية حل قشريات مسندة تحت حمل لحافة مـستوية  بزاويـة مختلفـة  

 .     حول الحافات وتمركز الانحناء ،الصفائح المركبة تتمركز قرب القطب او العمودذات للقشريات 
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1. INTRODUCTION  

Laminated composite shells are increasingly being used in various engineering applications 

including aerospace, mechanical, marine and automotive engineering. Spherical shells form an 

important class of structural configurations in aerospace as well as ground structures, as they offer 

high strength-to-weight and stiffness-to-weight ratios. The most method to solve generally 

laminated composite shells having complex geometries, arbitrary loadings and boundary conditions, 

is the finite element method. The advantages and analysis complications of composite materials 

stimulated researchers to develop convenient shell theories and solution techniques for composite 

shells., Noor and Peters (1988) presented static and dynamic analyses of anisotropic shells using 

conical shell frustum elements. Grafton and Strome (1963) investigated axisymmetric shells using 

doubly curved finite shell elements.  

       However, analytical techniques are more suitable for preliminary design requirements. There 

exist a few analytical solutions for non-cylindrical laminated shells of revolution. Lestingiand and 

pandovani (1973) , Pandovan and Lestingi (1974) investigated the influence of material anisotropy 

on shells of revolution using a multisegment numerical integration technique. Tutuncu and Ozturk 

(1997) investigated bending stresses in composite spherical shells under axsymmetric edge-loads. 

Their analysis is confined to a certain class of laminated shells; namely, balanced-symmetric 

laminates. Krishnamurthy K.S. el al. (2003), the authors extended their work on the impact response 

of a laminated composite cylindrical shell as well as a full cylinder by incorporating the classical 

Fourier series method into the finite element formulation and also predicted impact-induced damage 

deploying the semiempirical damage prediction.  Topal U.(2006) used first-order shear deformation 

theory for Mode-Frequency Analysis of Laminated Spherical Shell . Nguyen-Van, N. Mai-Duy and 

T. Tran-Cong (2007) analyzed laminated plate/shell structures based on the first order shear 

deformation theory.  Oktem A.S. and Reaz A. Chaudhuri (2008) used Higher-order theory based 

boundary-discontinuous Fourier analysis of simply supported thick cross-ply doubly curved panels. 

     Alwar et al. (1990,1991) suggested the use of Chebyshev series in the solution of shell problems. 

Their works were confined to specially orthotropic laminated spherical shells, and the solution 

procedure was rather complicated and uneasy to apply to different shell problems.  

     In the present work a variety of problems of generally laminated axisymunctric spherical shells 

are analyzed using the proposed matrix formulation of Chebyrshev series. stress results are obtained 

and compared with the available published results. 

2. MATHEMATICAL ANALYSIS 

2.1 Equilibrium Equations 

The equations of a bending-resistant spherical shell under pressure load are given by 

(Alwar,1991 and Trimosbmkoi , 1959) 
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The shell geometry and stress resultants are depicted  in Fig. 1 . 

 

        Fig. 1 . Spherical Shell (a) Geometry (b) Stress resultants (Harry,1967)  

2.2 Constitutive Relations: 

 The shell constitutive relations between the stress resultants and the strain and curvature 

components according to the classical lamination theory are given by (Jores,1975): 

Ns = A11 s + A12  + A16 s + B11 ks + B12 k + B16 

ks 

N = A12 s + A22  + A26 s + B12 ks + B22 k + B26 

ks 

Ns=Ns=A16 s + A26  + A66 s + B16 ks + B26 k + B66 ks 

                                                                                                                   (2) 

Ms = B11 s + B12  + B16 s + D11 ks + D12 k + D16 

ks 
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M = M12 s + M22  + M26 s + D12 ks + D22 k + D26 

ks 

Ms=Ms=B16 s + B26  + B66 s + D16 ks + D26 k + D66 ks 

The definition of extensional, coupling, and bending stiffness coefficients Aij, Bij, and Dij 

respectively (i,j=1,2,6) is give by ( Jores , 1975) 

2.3 Strain-Displacement Relations 

 The shell strain-displacement relations for small displacements are given by (Harry,1967)  
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Substituting the strain-displacement relations (3) into the stress resultant-strain relations (2), 

and eliminating Qs and Q from eqs. (1) we end up with three equilibrium equations for generally 

laminated arbitrarily loaded spherical shells. In case of axisymmetric generally laminated shell 

problems we have 0=
∂
∂
θ

 and 0v ≠ . Using the non-dimensional coordinate ( ) L/Rs oφ−=ξ  and 

L= R (-o), the system of equations reduces to:  
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      The trigonometric function terms appearing in eq. (4) will be designated as: 
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2.4 Boundary Conditions 

- Pole conditions 

u = v = 0
wwu

R

1
.e.i0kand0

d

dw

2

22

s =
ξ∂

∂
−

ξ∂
∂

−
ξ∂

∂
==

ξ
                                        (6) 

- Clamped-edge conditions 

  u = w = v = 0
d

dw
=

ξ
                                                              (7) 

- Simply supported edge conditions, free to move in the horizontal     direction 

Vertical displacement (- u cos  + w sin ) = v = Ms = 0 

Horizontal force (Ns sin  + Qs cos ) = H                                                                                 (8) 

3. CHEBYSHEV SERIES REPRESENTATION    

 Any continuous function f() in the interval 10 ≤ξ≤ can be written in Chebyshcv series as 

given by  (Alwar and Narasinthan,1990): 

( ) ( )ξ∑=ξ +∞

=
rr

0r

Taf f                                                      (9) 

Where: 

+ sign means that the 1
st
 term is halved. 

ar … are constants to be determined so as to obtain the best possible fit. 

The shifted Chebyshev polynomials satisfy the recurrence relations:   

 Tr+1 () = 2 (2-1) Tr ()- Tr-1 ()           , ∞≤≤ r1                                                       (10) 

and the orthogonally conditions: 
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         For any continuous function f() the series expansion (9) is fast converging, and a good 

approximation is obtained by taking a finite number of terms. Therefore, eq. (9) is approximated by:  

( ) ( )ξ+∑=ξ
=

rr

N
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Taf                                             (11) 

Where, for a known function f(), the coefficients ar are given by: 
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The first derivative f
\ 
() is expressed in Chebyshev series as (alwar and Narasinthan 1990 , Alwar 

and Narasindan 1991):  
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The coefficients 
( )1
ra  satisfy the recursive relation: 
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Similarly higher function derivatives can be written as: 

 ( ) ( ) ( )ξ∑=ξ +−

=
r

2
r

2N

0r

\\ Taf                                     (15) 

 ( ) ( ) ( )ξ∑=ξ +−

=
r

m
r

mN

0r

m Taf  

Where; 

 
( ) ( ) ( )

1Nr1,ra4aa
1
r

2
1r

2
1r

−≤≤=− +−    

 
( ) ( ) ( ) ( )1mNr1,ra4aa

1m
r

m
1r

m
1r

−−≤≤=− −
+−                     (16) 

4- FORMULATION OF EQUILIBRIUM EQUATIONS 
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Expanding u(), v() and w() in (N+1)-term Chebyshev series we have a total of 3N+3 

unknown coefficients. The trigonometric functions (5) appearing in the equilibrium eqs. (4) are also 

expanded in Chebyshev series having M+1 terms. The M+I expansion coefficients can be computed 

easily by forcing the function eqs. (5) to take on their actual values at a number of chosen points in 

the interval 0≤≤1. Using matrix formulation for the functions and function derivatives, and 

applying the rule of matrix multiplication as explained in Alwar and Narasindan 1991 , equilibrium 

eqs. (4) can be written as a system of algebraic equations in the following matrix form: 

 [ ] [ ]


















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04020

50301

A                                                 (17)    

The matrices [A01] to [A04] relate the 1
st
, 2

nd
, 3

rd
 and 4

th
 derivative coefficients of a 

function to the original function coefficients respectively. The first-order-derivative coefficients 

{ar
(1)

} in eq. (13) can be written in terms of the original function coefficients {ai} using matrix 

notation as follows: 

( ){ } [ ]{ }
N...,..........3,2,1,0i

1N....,,.........2,1,0r
;a01A4a i

1
r =

−=
=    

where [A01] is of order N * (N+1). It is composed of an N * N matrix designated as [A] 

matrix and an N * 1 column with zero entries at the left of the matrix [A]. Matrix [A] is an upper 

triangular matrix. Its elements aij are defined as.  





+≤

+>
=

evenjiandjij

oddjiorji
aij

0
  

       From the matrices form (17) for N=5: The matrices [A02], [A03], [A04] and [A0n] are 

obtained as follows: 

[ ] [ ] [ ]01AA02A 1
1,1

−
−−=   [ ] [ ] [ ]02AA03A 1

2,2
−

−−=  

[ ] [ ] [ ]03AA04A 1
3,3

−
−−=   [ ] [ ] ( )[ ]1n0AAn0A 1

n1,n1 −= −
−−                                     (18) 

Where,  

n           the order derivative  

  [A]1-n,1-n matrix [A] after deleting the last (n-1) rows and (n-1) columns. 

                                    -1
[    ]                matrix [A] after deleting the first row.  
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5. RESULTS AND DISCUSSIONS  

Two problems of spherical shells under different loads and boundary conditions will be 

considered.  

Problem 1 

The first problem is a clamped-clamped generally laminated open spherical shell with 

o=10
o
, under uniform external pressure. Convergence and comparison studies for the [90/0] 

laminated shell is with the results of (Alwar and Narasinthan 1990) presented in Table 1. It is clear 

from the table that especially orthotropic lamination are giving the minimum hoop stress resultant 

and meridional moment resultant, so that good convergence to the right answer can be obtained by 

about 16 terms in Chebyshev series.   

Table 1  convergence study for [0/90] spherical shell 

 N=16 N=22 Alwar and 

Narasinthan 

1990 

Max.hoop stress resultant Nθ 5.2989 5.5639 5.410 

Max.deflection W=10
4
E2w h

3
/(pL

4
) 0.1502 0.1489 0.1478 

Max.meridional moment resultant Ms 1.1898 1.997 1.175 

Where : 

p=6900N/m
2
                 E1/E2=20           Nθ= 10

6
 Ns h

3
/(pL

4
) 

R/h=30                          G12/E2=0.5        ν12=0.28  

Mθ=10
6
Ms h

3
/(pL

4
)        ϕ0 =0

0
 , ϕ1 =90

0
   

Problem 2 

The second problem is a generally laminated spherical shell under horizontal edge line load 

as shown in Fig. 2 . The material used has the properties: E1/E2=20, G12/E2=0.5, v12=0.28. The 

radius of the sphere R is 0.15 m, and the thickness h is 0.005 m. The problem is solved for a simply 

supported shell with different o=30
o
 and 80

o
 with non-dimensional meridional coordinate (ζ = 0  

to  1 ) under unit edge line load.  

    From Figs.3,4,5 represent the variation of axial moment, circumferential stress, axial shear stress 

respectively in the meridional direction (ζ) for different laminations (ϕ0 =30
0
 , ϕ1 =150

0
) and with 

different laminate schemes (0/45 , 0/90 , 45/-45 ). Fig.3 It shows the distribution of axial moment 

for the shell and it seen maximum value of axial moment about (1.51 - 2.35) N.m/m at ζ=0.1 and 

0.9, also depend on laminate schemes, also seen that the axial moment is near of the equilibriums 

profile  in range ζ= 0.2 – 0.8 . This indicated the effect of maximum axial moment is localized 
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around the edges ,and diminishes as the edge distance increases.Fig.4 It shows the maximum value 

of the circumferential stress at ζ =0.1 and 0.9 about (0.5-0.75) N/m and depend on laminate 

schemes.Fig.5 It seen the distribution of axial shear stress and it is the maximum value about (0.1,-

0.1) N/m in the same interval of ζ = 0.1 and 0.9 . The results from Fig.4,5 it seen that the laminates 

exhibit substantial differences in the stress distributions for shells opened near the pole or near the 

equator. 

    From Figs.6,7,8 the plotted shows the variation of axial moment, circumferential stress, axial 

shear stress respectively in the meridional direction (ζ) for different laminations (ϕ0 =80
0
 , ϕ1 =120

0
) 

and with different laminate schemes (0/45 , 0/90 , 45/-45 ). Fig.6 the maximum average value of the 

axial moment in this condition equal between (3.9-7.4)N.m/m at ζ=0.1 and 0.9 . Fig.7 shows the 

distribution of the  circumferential stress and it seen the average value between (-13,-9) at  ζ =0.1 

and 0.9 .Fig.8 it seen the axial shear stress with average value (0.5,-0.5) at ζ=0.1 and 0.9. From 

Figs.6,7,8 shows that the maximum  distribution of axial moment around the edges and the the 

stress distributions for the shell opened near the pole. 

 

      

 

       Fig. 2 . Spherical shell under uniform edge load  

 

 

 

 



THE SOLUTION OF LAMINATED COMPOSITE SPHERICAL                                      Dr. Abbass Z. 

 SHELLS BY THE APPLICATION OF CHEBYSHEV SERIES                                              Dr.Saad T. 

 

 704 

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

Meridional direction

A
x
ia
l 
m
o
m
e
n
t 
(N
.m

/m
)

(0/45)

(0/90)

(45/-45)

 

 

Fig. 3 . Variation of axial moment in the meridional direction (ζ)  

                       for different laminations (ϕ0 =30
0
 , ϕ1 =150

0
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Fig. 4 . Variation of circumferential stress in the meridional  

        direction (ζ) for different laminations (ϕ0 =30
0
 , ϕ1 =150

0
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Fig. 5 . Variation of axial shear stress in the meridional direction(ζ) 

 for different laminations  (ϕ0 =30
0
 , ϕ1 =150
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Fig. 6 . Variation of axial moment in the meridional direction (ζ)  

for different laminations (ϕ0 =80
0
 , ϕ1 =120

0
 )     

 

 

 

 



THE SOLUTION OF LAMINATED COMPOSITE SPHERICAL                                      Dr. Abbass Z. 

 SHELLS BY THE APPLICATION OF CHEBYSHEV SERIES                                              Dr.Saad T. 

 

 706 

-20

-15

-10

-5

0

5

0 0.2 0.4 0.6 0.8 1

Meridional direction

C
ir
c
u
m
fe
re
n
ti
a
l 
s
tr
e
s
s
 (
N
/m
)

(0/45)

(0/90)

(45/-45)

 

Fig. 7 . Variation of circumferential stress in the meridional direction (ζ) for different laminations 

(ϕ0 =80
0
 , ϕ1 =120

0
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Fig. 8 . Variation of axial shear stress in the meridional direction (ζ)  

for different laminations  (ϕ0 =80
0
 , ϕ1 =120

0
 )    
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6- CONCLUSION 

The method has been presented for the solution of arbitrarily laminated composite spherical 

shells by expanding displacement functions in Chebyshev series. The method is used to solve a 

variety of spherical shell problems with different fiber orientations and boundary conditions. 
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List of Symbols 

Aij,                extensional stiffness coefficient,  i , j=1,2,6   

Bij,                coupling stiffness coefficient, i , j =1,2,6  

Dij                      bending stiffness coefficients , i, j = 1, 2, 6.  

E                   modulus of elasticity in tension and compression      (N) 

G                   modulus of elasticity in shear                                     (N) 

ks, k, ks        change in curvatures in s, θ  coordinates               (m,deg
0
) 

H                    horizontal force                                                    (N) 

h                     thickness of a shell                                              (m) 

Ms , Mθ           bending moments                                               (N.m/m)  

Msθ                  twisting moment                                                (N.m/m) 

N                    number of terms 

Ns, N, Ns       In-plane normal and shearing stress resultant    (N/m) 

p                     pressure                                                               (N/m
2
) 

R                    radius of spherical shell                                       (m) 

r,s,θ               polar coordinates                                                  (m,m,deg
0
) 

Qs, Q            transverse shear stress                                         (N/m
2
) 

x,y,z               rectangular coordinate                                         (m) 

u,v,w             components of displacements                              (m) 

α                    semi conical angle                                               (deg
0
) 

s              shear strains in polar coordinate 

s, ,          meridional strains                                                (N/m
2
) 

ϕ, ϕi             angle of laminated orientation, i=0,1                (deg
0
) 

ζ                non-dimensional meridional coordinate  

ν                poisons’ ratio 


