MCD-Domain of type A+x B[x] and A+xB[[x]]

Mahera Rabee Q.

Department of Mathmatics, College of Education, University of Tikrit, Tikrit, Iraq

Abstract:

In this paper we study MCD-Domain of type A+xB[x] and A+xB[[x]].

Let R be a commutative Ring with unity and S be a subset of R. The set of all nonzero common divisors of the elements in S by $CD_R(S)$. An element m in $CD_R(S)$ is called a maximal common divisor (for short an MCD) of S if m is associated with any element in $CD_R(S)$

Introduction:

In this paper we study maximal common divisor (for short an MCD) domain of type A+XB[x] and A+XB[[x]], and we shall given a new proof of [2], Theorem [1.1], and see also [5], corollary [1.5], and its power series an analogue.

First we recall some basic definitions and facts. We let R be a(commutative) domain with quotient field k. An element of R is called reducible if it is a product of two nonzero non units in R, it is called irreducible (or an atom) if it is a nonzero non unit and is not reducible. The set of units is denoted by U(R), two nonzero elements a and b of R are called associate if a=ub for some unit u, we denote the this by a \sim b.

A domain R is called pre-schreier if whenever an nonzero $x \in R$ divides a_1a_2 with $a_1,a_2 \in R$, x can be written as $x=x_1x_2$ s.t. x_i divides a_i , i=1,2.

Let S be a subset of R . We denote the set of all nonzero common divisor of the elements in S by $CD_R(S)$. An element m in $CD_R(S)$ is called a maximal common divisor (for short an MCD) of S, if m is associate with any element in $CD_R(S)$ which is divisible by m. thus an element m of R is an MCD of S if and only if m divides each element in S and the set (1/m) $S = \{s/m \setminus s \in S \}$ has GCD 1 (GCD=greatest common divisor). More particularly , 1 is an MCD of S if an only if is a GCD of S. The set maximal common divisor of S is denoted by $MCD_R(S)$.it is easy to show that a nonzero element m of R is an MCD of two nonzero elements a and b if and only if the element ab/m belongs to R and is minimal common multiple of a and b .

A domain R is called an MCD domain if every finite set of nonzero elements in R has an MCD . Recall that R is a weak GCD domain if every two nonzero elements in R have an MCD.[4]

A nonzero polynomial in R[x] is called indecomposable if it is not a product of two non constant polynomials in R[x].

An element $\alpha \in R \setminus \{0\}$ is LCM –prime to S if $\alpha R \cap tR = \alpha tR$ (equivalent to $tR : \alpha = tR$) for each $t \in S$.

A set S is called splitting multiplicative system in R if for each nonzero element of R can be written as product between an element of S and an element LCM-prime to S.

O MCD -domains:

We recall from [3,Theorem 1.4] that the following conditions are equivalent:

which is divisible by m. A domain R is called MCD-Domain if every finite set of nonzero elements in R has an MCD.

In corollary (III) and corollary (IIII) we shall given a new proof of [2,Theorem 1.1], and see also [5, corollary 1.5] and for its power series analogue.

- 1- R is an atomic MCD –domain , another world (for each $n \geq 2$ and $a_1, \ldots, a_n \in R \setminus \{0\}$, there are $c_1, \ldots, c_n \in R$ with no common factors and irreducible $b_1, \ldots, b_n \in R$ such that $a_i = b_1, \ldots, b_m$ c_1 for each $1 \leq i \leq n$).
- 2- any polynomial extension of R is atomic.
- 3-R[x,y] is atomic

Proof:

We have already observed that $(1) \Rightarrow (2)$, and $(2) \Rightarrow (3)$ is clear . for $(3) \Rightarrow (1)$, we first observed that for any field F and any b, $a_0, \ldots, a_n \in F \setminus \{0\}$, $a_n x^n + \ldots + a_1 x + a_0$

 $\begin{array}{llll} +bY\in F[X,Y] \mbox{ is irreducible . hence , given } a_1,\ldots,a_n\\ \in R\backslash\{0\}, \ a_nx^{n\cdot2}+\ldots\ldots+\ a_2+a_1Y=\ b_1,\ldots,b_m & (c_nx^{n\cdot2}+\ldots\ldots+\ c_2+c_1Y) \mbox{ , where } b_1,\ldots,b_m\in R \mbox{ are irreducible and } c_1,\ldots,c_n\in R \mbox{ have no common factors , since } R]X,Y] \mbox{ is atomic . Thus (1) holds.} \end{array}$

Similarly, we have the following:

Proposition (1):

Let $\,R\,$ be a domain . The following two conditions are equivalent :

1-R is atomic , and the set of coefficients of any indecomposable polynomial in R has an MCD .

2-R[x] is atomic.

Proof:

 $(1) \Rightarrow (2)$

We prove by induction on the degree , that any nonzero noninvertible polynomial $\ f$ in R[x] is a product of atoms . the assertion is clear if deg f =0 .

Let deg. $f \neq 0$.since f is a product of indecomposable polynomials , we may assume that f is indecomposable . Let m be an MCD in R of the coefficients of f . write f = mg with $g \in R[x]$. If m is not a unit then it is a product of atoms in R and so also in R[x].

We now show that g is an atom. If not ,let $g=g_1g_2$ be a nontrivial decomposition of g .since g is indecomposable .we may that $g_1 \in R$.Hence ,mg₁ is common divisor of all the coefficient of f ,so g_1 is invertible in R ,a contradiction . We conclude that R[x] is atomic.

$$(2) \Rightarrow (1)$$

Let $f=a_nx^n+\ldots+a_0$ be an indecomposable polynomial in R[x] of positive degree .Let $f=f_1f_2$ f_k be an irreducible decomposition of f . since f is indecomposable ,we may assume that f_1,\ldots,f_{k-1} are in R . Let $m=f_1,\ldots,f_{k-1}$, so m is a common divisor of the coefficients of f .Let g0 be a common divisor of the coefficients of g1.

c=md with d \in R. Thus in R[x], the element c=md divides f=mf_k, so d | f_k. since f_k is irreducible of positive degree ,we obtain that d is invertible so m is an MCD of the coefficient of f.

In particular ,if R[x] is atomic ,then R is weak GCD [3,Theorem 1.3(a)] . And for its power series R[[x]] analogue .

Proposition (2):

The Following conditions are equivalent:

- 1- R is an MCD-domain.
- 2- R[x] is an MCD -domain.
- 3- Any polynomial extension of R is an MCD –domain.
- 4- R[x] is a weak GCD domain.
- 5- any polynomial extension of R is a weak GCD domain .

Proof:

It is enough to prove the implication $(4) \Rightarrow (1) \Rightarrow (3)$. $(4) \Rightarrow (1)$.

Let r_1, \dots, r_n be elements in $R \backslash \{0\}$ (n ≥ 2) and let $f(x) = r_1 + r_2 x + \dots + r_{n-1} x^{n-2}$. We have $CD_R (\{r_1, \dots, r_n\}) = MCD_{R[x]} (\{f, r_n\})$,and also $MCD_R (\{r_1, \dots, r_n\}) = MCD_{R[x]} (\{f, r_n\})$. It follows that R is an MCD domain.

$$(1) \Longrightarrow (3)$$

Let x be a set of independent in determinates over R. And F be a finite nonempty subset of $R[x]\setminus\{0\}$. There exists a polynomial g in $CD_{R[x]}(F)$ of highest total degree

Let c be an MCD in R of all coefficient of the polynomial in $(1/g)F = \{f/g \backslash f \in F\}. Thus \\ c \in MCD_{R[x]}((1/g)F), and \quad so \quad cg \in MCD_{R[x]}(F) \quad .We \\ conclude that <math display="inline">R[x]$ is an MCD domain .

We have already observed that $(4) \Rightarrow (5)$, and $(5) \Rightarrow (4)$ is clear by [3, Theorem 1.3].

We conjecture that if R[x] is atomic ,then R[x, y] is atomic ,that is, we have the following .

Conjecture I:

The following conditions are equivalent:

- 1- R[x] is atomic.
- 2-R[x,y] is atomic.
- 3- R is an atomic MCD domain.

By propositions (2) , conjecture I is equivalent to the assertion that if the domain R[x] is atomic ,then R is an MCD domain .In view of proposition (1) ,the previous conjecture follows from the following conjecture restricted to atomic domains .

Conjecture II:

For any domain R and nonzero finitely generated ideal I of R there exists an indecomposable polynomial f in R[x] with content I.

Now the following some remarks and some proposition conjecture to prove [2,Theorem 1.1] .

Remarks:

Let R=A+XB[X] and A be a domain and $S\subseteq A$ a multiplicative system:

i- if $a \in A$ is LCM –prime to S and a divides a product bs with $b \in A$ and $s \in S$, then a divides b ,because $b \in A_a : S = A_a$, $bs = \{b, s \in A_a\}$

ii- if $a,b \in A$,a is LCM – prime to S and a divides b in A_s , then a divides b in A ,because $b \in A_a$: $S = A_a$ for some $s \in S$.

iii- By (ii) if f,g are in A +xA_s[x], $f(0) \neq 0$ is LCM – prime to S and f divides g in A_s [x].

iiii- By (ii) if (f,g) are in A +x A_s [[x]],f(0) \neq 0 is LCM-prime to S and f divides g A_s [[x]], then f divides g in A +x A_s [[x]].(A_s [[x]] =power series).

Proposition (3):

Let A be a domain .then A is a GCD-domain if and only if A is pre-Schreier MCD-domain.

Proof:

Assume that A is a pre-Schreier MCD domain. Let $a_1,b_1 \in A \setminus \{0\}$. Then factoring out an MCD of a_1 and b_1 it suffices to show that $a_1A \cap b_1 A = a_1 b_1 A$ provided a_1 and b_1 are relatively prime.

Assume that m is a common multiple of a_1 and b_1 say $m=a_1a_2=b_1b_2$ with $a_2,b_2\in A$, there exist $c_{ij}\in A$ s.t. c_{1j} $c_{2j}=a_i$, c_{i1} $c_{i2}=b_i$, $1\le i$, $j\le 2$.

By Theorem 2.2[1] (A ring R is a Schreier Ring if and only if it is an integrally closed integral domain s.t. For any two Factorizations of an element a (\neq 0)of R ,a = p_1p_2 $p_m = q_1q_2$ $q_n \exists$ elements r_{ij} (i=1......m ,j=1......n) s.t.

$$P_i = \prod_{\it i} \ r_{ij} \ \text{, } q_j \ = \ \prod_{\it i} \ r_{ij} \ . \label{eq:pi}$$

In other words :any two factorization of a have a common refinement).

Then c_{11} is invertible , hence a_1b_1 divides m , because a_1 b_1 c^{-1}_{11} $c_{22}=a_1$ c_{12} $c_{22}=a_1$ $a_2=m$. Converse is obvious.

Proposition (4):

Let A be a domain and $S\subseteq A$ a splitting multiplicative system .If A is an MCD –Domain ,then A_s is MCD – Domain .

Proof:

Since $S \subseteq \bigcup (A_s)$, A is an MCD –Domain and S is splitting ,it suffices to show that ,if x_1, \ldots, x_n is a set of nonzero LCM-prime to S elements of A s.t.

 GCD_A $(x_1,...,x_n)=1$.then any LCM-prime to splitting multiplicative system of A which divides each x_i in A_s is a unit of A . But this is a consequence of remark (ii) before .

Proposition (5):

Let A be a domain and $S \subseteq A$ a splitting multiplicative system .If A is an MCD –Domain then so is $A + x A_s [x]$.

Proof:

Since A is an MCD –Domain and S is splitting multiplicative system $A_s[x]$ is MCD –Domain (propositions (2),(4) and [4,prposition 1.2]).

Let $R = A + x A_s[x]$.

Let us show that any finite set f_1, f_2, \dots, f_n of nonzero elements of R has MCD in R

Let $f\in R$ be an MCD of $f_1,...,f_n$ in $A_s[x]$. We may assume that f divides $f_1,...,f_n$ in R. Indeed if $f(0){=}0$, \exists $s\in S$ s.t. f/s divides $f_1,....,f_n$ in R. In this case we replace f by f/s. If $f(0){\neq}0$, write f(0)=as with $s\in S$, $a\in A$ and a LCM-prime to S.

Factoring out S ,we may assume that f(0) is LCM-prime to S .

By Remark (iii) ,f divides $f_1, f_2, ..., f_n$ in R.

Factoring out of f, we may assume that each common factor of $f_1,...,f_n$ in R lies in S. Then $f_1(0),...,f_n(0)$ are not all zero other wise some x/s with $s \in S$ is a common factor of $f_1,...,f_n$ in R. Let a be an MCD in A of

 $f_1(0),...,f_n(0)$ and write a=bs with $s \in S$,b $\in A$ and b LCM –prime to S.

Factoring out S from $f_1,...,f_n$ we may assume that $S{=}1$. Then $f_1(0)$,..., $f_n(0)$ have no non unit common divisor in S . Indeed if $t \in S$ divides $f_1(0)$,..., $f_n(0)$ in A ,then ta divides $f_1(0),...,f_n(0)$ in A, because a is LCM-prime to S ,hence t is a unit in A, because a is an MCD of $f_1(0),...,f_n(0)$. let f be a common divisor of f_1 ,..., f_n in R . then f(0) divides $f_1(0)$,..., $f_n(0)$ in A and B a preceding reduction f(0) . S . hence f(0) is a unit of A , thus f is a unit of R . There for f_1,f_2,\ldots,f_n because relatively prim in R.

Proposition (6):

Let A be domain and $S \subseteq A$ a splitting multiplicative system. If A and $A_s[[x]]$ an are MCD-Domain then so is $A+A_s[[x]]$.

Proof:

Since is an MCD-Domain and S is splitting multiplicative system , $A_s[x]$ is MCD-Domain (proposition (2),(4) and [4, proposition 1.2]).

Let R $A+xA_s[[x]]$

Let us show that any finites set $f_1,...,f_n$ of nonzero elements of R has MCD in R.

Let $f \in R$ be an MCD of f_1, \ldots, f_n in $A_s[[x]]$. We may assume that f divides f_1, \ldots, f_n in R. Indeed if f(0) = 0 $\exists s \in S$ s.t. f/s divides f_1, \ldots, f_n in R. In this case we replace f by f/s. If $f(0) \neq 0$, write f(0) =as with $s \in S$, a $\in A$ and a LCM-prime to S.

Factoring out S , we may assume that f(0) is LCM – prime to S.

By remark (iiii) if divides $f_1, ..., f_n$ in R.

Reference:

1- cohn P.M., "Bezout Rings and their Subring", proc.cambridge phila .soc. 64 (1968), 251 – 264.
2-Costa Douglas

Joel.Mott,M.Zafrullah, "Theconstruction $D+xD_s[x]$ ", J.Aljebra,53 (1978),423-439.

Factoring out of f ,we may assume that each common factor of f_1 ,..., f_n in R has the constant term in S .Then $f_1(0),...,f_n(0)$ are not all zero other wise some x/s with $s\in S$ is a common factor of $f_1,...,f_n$ in R .Let a be an MCD in A of $f_1(0),...,f_n(0)$ and write $a{=}bs$ with $s\in S$,b $\in A$ and b LCM –prime to S.

Factoring out S from $f_1,...,f_n$ we may assume that $S{=}1$. Then $f_1(0)$,..., $f_n(0)$ have no non unit common divisor in S . Indeed if t S divides $f_1(0)$,..., $f_n(0)$ in A ,then ta divides $f_1(0),...,f_n(0)$ in A, because a is LCM-prime to S ,hence t is a unit in A, because a is an MCD of $f_1(0),...,f_n(0)$. let f be a common divisor of f_1 ,..., f_n in R . then f(0) divides $f_1(0)$,..., $f_n(0)$ in A and B a preceding reduction $f(0) \in S$. hence f(0) is a unit of A, thus f is a unit of R. There for f_1,f_2,\ldots,f_n because relatively prim in R.

We conjecture that A+XB[X] and A+XB[[X]] are GCD-Domain if and only if S is a splitting multiplicative system ,B= A_s and A is GCD-Domain.

In corollary III and IIII that proof of [2,Theorem 1.1] and [5,Corollary 1.5]

Corollary III:

Let $A\subseteq B$ be an extension domain and $S=U(B)\bigcap A$. then A+XB[X] is a GCD-Domain if and only if S is a splitting multiplicative system $_{,}B=A_{_{S}}$ and A is GCD-Domain.

Corollary IIII:

Let $A \subseteq B$ be an extension domain and $S=U(B) \cap A$. Then A+XB[[X]] is a GCD-Domain if and only if S is a splitting multiplicative system $B=A_s$, A and $A_s[[x]]$ are GCD-Domain.

- 3- D.D.Anderson ,D.F.Anderson ,And M.Zafrullah ," *Factorization in integral Domains* ",J.pure Appl.Aljebra 69 (1990) 1-19.
- 4- Roitman Moshe, "polynomial Extension of atomic Domains", J. pure Appl. Algebra 78(1993), 187-199.
- 5- Zafrullah M.,"The D+xD_s[x] construction from GCD-Domain ",J.pure Algebra 50 (1988)93-107

A+xB[[x]] مجال الـ MCD من النوع A+xB[x]

ماهرة ربيع قاسم

قسم الرياضيات، كلية التربية، جامعة تكريت، تكريت، جمهورية العراق

الملخص:

وهو الذي يقسم m .يسمى المجال R بمجال القاسم المشترك $CD_R(S)$ الأعظم (MCD) إذا كان لأي مجموعة منتهية غير صفرية من عناصر R قاسم مشترك أعظم (MCD) .

النتيجة III و IIII إعطاء برهان جديد للنظري[١,١، ٢] والنتيجة[٥,١,٥] وبطريقة مشابهة بالنسبة لمتسلسلة القوى .

في هذا البحث دراسة مجال الـ MCD من النوع A+x B[x] و A+xB[[x]]

لتكن R حلقة أبدالية ذات عنصر محايد و S مجموعة جزئية من S . S هجموعة كل القواسم المشتركة غير الصغرية في S . latin S من هذه المجموعة S S يسمى بالقاسم المشترك الأعظم S الختصارا S إذا كان S مكافئ لأي عنصر من عناصر (اختصارا S إذا كان S مكافئ لأي عنصر من عناصر