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This review was assigned to illustrate the melatonin (MLT) effect on reproduction in sheep (ewes). 

However, the pathway by which MLT charge the seasonal reproduction are imperfectly understood in 

sheep, the researchers consents that MLT regulates reproduction under influence of day length 

(photoperiod) to guarantee that birth happen in appropriate date of the year, it’s called neuro-endocrine 

process. This mechanism mediates by the pineal hormone (MLT). The major role of MLT in ewes is to 

translate the photo signals into endocrine pulses (gonadotropin-releasing hormone (GnRH) secretion) at 

the end of the retino-pineal pathway. In sheep, the MLT receptors distributed in premammillary 

hypothalamus (PMH), pituitary gland and Suprachiasmatic nucleus (SCN), therefore, many brain loci are 

participating for MLT pathways to modify the seasonal reproduction. Melatonin stimulates GnRH 

secretion through effect in different regions and neurons in hypothalamus such as a pre-mammillary 

nucleus, Arcuate and several factors like kisspeptin, RF-amide related peptide-3 (RFRP-3) and Tyrosine 

Hydroxylase (TH). In addition, its indirectly control prolactin (PRL) output via an effect on Tuberalin 

release, which is mediate the mechanism of MLT activity on pituitary PRL secretion and regulate his 

seasonal cyclicity. The alter in day length is the principle ecological factor that control the breeding in 

seasonal domestic animals. Several reproductive activities are related to short days and begin during 

autumn when the day becomes short and a decline in temperature (short-day breeder). While expanding 

in the duration of light lead to a cessation in reproduction activities during late winter and early spring. In 

conclusion, according to the major physiological role of MLT, it can be used in different aspects in ewes 

reproduction industry such as induce oestrus, increment the ovulation rate and In vitro embryo production. 
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 Abstract 

 

 اجدور الميلاتونين في تكاثر النع

 الخلاصة

. على الرغم من إن المسار الذي يتحكم هرمون )تم اجراء هذه المراجعة لتوضيح تأثير الميلاتونين على التكاثر في الأغنام )النعاج

ثير الميلاتونين من خلاله بالتناسل الموسمي غير مفهوم بشكل كامل في الأغنام ، يتوافق الباحثون على أن الميلاتونين ينظم التكاثر تحت تأ

الغدد الصماء. -بعملية الترابط العصبية طول اليوم )الفترة الضوئية( لضمان حدوث الولادة في التوقيت المناسب من السنة ، وتسمى هذه

تتوسط هذه الآلية هرمون الصنوبرية )الميلاتونين(. ان الدور الرئيسي للميلاتونين في النعاج هو ترجمة الإشارات الضوئية إلى دفقات 

الاغنام, تتوزع مستقبلات افرازية من الغدد الصماء )إفراز الهرمون المحفز لغشاء القند( في نهاية المسار الشبكي الصنوبري. في 

في مسارات  الميلاتونين في المنطقة المهادية قبل الحلمية, الغدة النخامية والنواة والنواة فوق التصالبية, لذلك، العديد من مواقع الدماغ تشارك

لتأثير في مناطق وخلايا عصبية الميلاتونين لتحفيز التناسل الموسمي.  يحفز الميلاتونين إفراز الهرمون المحفز لغشاء القند من خلال ا

ين(, اميد مختلفة في منطقة ما تحت المهاد مثل نواة ما قبل الحلمية، النواة الوطائية المقوسة وعدد من العوامل المحفزة مثل القبُل او الكيسببت

ج البرولاكتين  من خلال التأثير على والانزيم المختزل للتايورسين. بالإضافة إلى ذلك ، فانه يتحكم بشكل غير مباشر في إنتا RFالببتيد 

، والذي يتوسط آلية نشاط الميلاتونين على إفراز البرولاكتين من الغدة النخامية وينظم دورته الموسمية. التغيير في طول توبيرالينإطلاق 

ن الفعاليات التناسلية مع الأيام القصيرة اليوم هو العامل البيئي الأساسي الذي يتحكم في تربية الحيوانات الحقلية الموسمية. ترتبط العديد م

وتبدأ خلال فصل الخريف عندما يصبح النهار قصيرًا تبدأ درجات الحرارة في الانخفاض. بينما تؤدي الزيادة في مدة الضوء إلى التوقف 

تعدد الأشكال ، يمكن استخدامه في في أنشطة التكاثر خلال أواخر الشتاء وأوائل الربيع. وفقًا لدورالميلاتونين الفسيولوجي الرئيسي الم

 جوانب مختلفة في الصناعة التكاثرية للنعاج كاستحداث الشبق، زيادة نسبة الخصب وإنتاج الأجنة في المختبر.
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Introduction 

           The MLT of cattle Pineal gland (PG) is 

discovered in 1958, the and distinguished as (N-

acetyl-5-methoxy-tryptamine) by dermatologist 

Aaron Lerner and his colleagues, the  MLT is 

came from lightening skin of Lerners coworkers 

during the work on amphibians, certain fishes and 

reptiles (1). Melatonin is a small indole molecule 

that has the following chemical names: ‘5-

Methoxy-N-acetyltryptamine’ and ‘N-Acetyl-5-

methoxytryptamine’ with atomic formula: 

C13H16N2O2 (Hattori et al., 1995), MLT half-

life in sheep is (16-18) min. (2). Melatonin has a 

major factor that coordinate the reproduction in 

seasonal estrous animal model, in ewes, the MLT 

can prompt estrous and enhance litter size (3), 

increment the ovulation rate (4), improve luteal 

activity by a reduction in the antiluteolytic 

mechanisms, it also increases embryo viability 

and improve lamb production (5). Furthermore, 

the MLT treatment have an effect on ovine 

fecundity, fertility and sex ratio (6). In ram, MLT 

could improve the spermatozoal progressive 

motility and the fertile spermatozoa quantity (7).  

           Melatonin was considered as direct potent 

and indirect antioxidants (free radical scavengers) 

that maximized many antioxidant enzymes 

expression like superoxide dismutase and 

glutathione peroxidase (8). This review was 

designed to describe the MLT effect on 

reproduction in ewe. 

1. Biosynthesis of Melatonin  

             Biosynthesis of MLT occured through 

the precursor tryptophan in four enzymatic steps 

hydroxylation, decarboxylation, acetylation and 

methylation (9).  Firstly, ‘L-tryptophan’ is 

hydroxylated at indole ring through ‘tryptophan 

hydroxylase’ (10). Then, the intermediate ‘5-

hydroxyl-L-tryptophan’ is decarboxylated via ‘5-

hydroxy-L-tryptophan decarboxylase’ to produce 

serotonin called ‘5-hydroxytryptamine’ (11). 

After that, ‘serotonin’ is transformed into ‘N-

acetyl-serotonin’ via ‘serotonin arylalkylamine 

N-acetyl transferase’ (AA-NAT) and by ‘acetyl-

CoA’ (12). At the end, ‘N-acetyl-serotonin’ 

changed over into MLT by ‘Hydroxyindole O-

methyl transferase (HIOMT)’ through 

methylation of the hydroxyl group (13). 

Whereas levels of 

HIOMT action stay decently consistent, the 

diurnally MLT production is controlled by a 

concurrent rhythm of AA-NAT enzyme action 

(14).  The Pineal is a unique endocrine gland that 

is affected straightly by outer/external conditions 

by means of retina and changes over natural 

environmental signals into neuroendocrine 

messages (15). The neural information that is 

produced in the retina passed to hypothalamic 

SCN via retino-hypothalamic tract (16).  The 

SCN is connected to the PG by many synaptic 

ways include hypothalamus (paraventricular 

nucleus) that connects and sends neural signals 

into ‘spinal cord’, the spinal neurons 

(sympathetic spinal neurons) send the neural 

signals to ‘superior cervical ganglion (SCG)’ 

neurons (17).  Finally, the noradrenergic 

sympathetic neurons of the SCG are synapses to 

the PG via noradrenergic fibers (18). 

           These sympathetic fibers spur both MLT 

receptors (α- and β- adrenergic receptors) in the 

pinealocyte to made intracellular increment of 

‘cyclic Guanosine Monophosphate (cGMP)’ and 

‘cyclic Adenosine Monophosphate (cAMP)’; 

these increase in intracellular cAMP improved 

Nacetyltransferase (NAT) activity (19). The AA-

NAT function is controlled by ‘retino-pineal 

path’, and that represent crucial component of 

MLT synthesis (20). (Figure 1). 
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Figure 1: The neural pathway and MLT 

production (21). 

2. Secretion and excretion of Melatonin  

           The MLT which is synthesized by 

pinealocyte and diffuses directly into 

cerebrospinal Fluid (CSF) and capillary blood 

without store inside the PG (22). The MLT could 

reach the CSF via two ways, the first deliver 

during daytime via the little number of distended 

pinealocytes of the PG which is located at the 

basal part of pineal recess, so the interstitial fluid 

discharged into ventricular lumen or through the 

connection with CSF (23). The rest pinealocyte of 

PG that secreted the MLT straight forward to 

blood flow and are taken up from the blood to 

CSF by the choroid plexus (24). The brain 

conveyed MLT through the blood capable to 

elicit the effectiveness of light (photoperiod) on 

reproduction (23). 

         The metabolism of MLT occurs via 

cytochromes P450 (P450s) in liver through 

changing over it to 6-Hydroxy-MLT as a final 

product and is cleared through the liver after a 

single passage, a little amount is discharged into 

urine and a small amount is found in saliva (25). 

3. Melatonin receptors and signaling pathway 

         Melatonin receptor 1 (MTNR1) is referred 

to the first type of MLT receptors which is cloned 

and has characterized (26). It is mediate inhibition 

of the cAMP through a G protein-coupled 

receptor (27). According to the same researchers, 

the the pituitary gland specially pars tuberalis 

(PT) contains a vast number of MTNR1. It also 

presents in PMH, that considered as a target 

structure of MLT for it is reproductive effects 

(28). 

         Melatonin receptor 2 (MTNR2) refers to the 

ovine MLT2 receptor, it is a ‘pertussis toxin 

(PTX)-sensitive (Gi) protein-linked receptor’, 

which is able of inhibit cGMP and cAMP 

production, it also spurs ‘Protein Kinase C 

(PKC)’ action in SCN, additionally, the receptor 

was expressed in PT, choroid plexus and retina 

(29). Both MLT receptors have a general motif 

and which have 7 trans-membrane á-helical 

sections containing a (20- 25) hydrophobic 

residues, these á-helical segments span the cell 

membrane, and it associated with extra and 

intracellular loops, the structure also bind with the 

amino acids at the end of the external membrane 

side and on the ‘carboxyl term group’ at the 

internal side (30). About 350 amino acids which 

encoded by MLT1 receptor gene and 362 amino 

acid by MLT2 receptor gene, additionally, two 

consensus locales for ‘N-terminal asparagine 

connected glycosylation’ demonstrated by MLT1 

receptor and single site in MLT2 receptor (31). 

The inner receptors (2 n) have consensus sites for 

regulatory signal enzymes like PKC, casein 

kinase I and casein kinase II at carboxyl end (32). 

             The signaling pathway of both MLT 

receptors are firmly associate to the Gi/cAMP 

path that inhibits cAMP production via Gi 

proteins, so the activation of both MLT receptors 

diminishes cAMP formation by forskolin 

stimulation (33). The signaling of MTNR1 can 

couple to both Gi and ‘PTX-insensitive (Gq) 

proteins’ (34). The activation of MTNR1 

diminishes forskolin-stimulated cAMP formation 

via Gi protein, therefore, the inhibition includes 

‘Protein kinase A(PKA)’ and ‘cAMP responsive 
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element-binding protein (CREB)’ (35). Godson 

and Reppert (1997) (36) mentioned that the βγ 

subunit of Gi protein of MTNR1 mediate the 

phospholipase via prostaglandin F2α (PGF2α) 

stimulation that prompts to increment in 

phosphoinositide (PI3) turnover. The intracellular 

calcium is rised by activation of the endogenous 

MLT1 receptors in PT cells of sheep, this 

mechanism happened through Gi proteins/ PI3 of 

MTNR1 likewise control ion fluxes pathway (37) 

(Figure 2). 

           The MTNR2 signaling inhibits both of 

cGMP and cAMP forming (38). In SCN, MLT 

activate the MTNR2 signaling throughout PKC, 

this pathway mediates the MLT at both night and 

dawn (phase-shifting effects of MLT) (39). The 

MTNR2 signaling by Gi proteins pathway can 

shut down the ‘PKC-mediated c-fos induction’ in 

the PT cells (40). Additionally, MTNR2 inhibit 

neurotransmitter liberation in the retina by 

through intracellular calcium regulation (41) 

(Figure 2). 

 

Figure 2: A- Signaling pathways of MLT1A 

through activation of the MTNR1, B- Signaling 

pathways of MTNR2 activation (42). PLC: 

phospholipase C. PKA: protein kinase A, PGF2α: 

prostaglandin F2α, GTP: guanosine triphosphate, 

DAG: diacylglycerol, PIP2: phosphatidylinositol 

bisphosphate, GMP: guanosine monophosphate. 

4. Mechanism of action of melatonin  

4.1. Effect on GnRH 

            In ewes, the large environmental factor 

that controls the breeding is the day length 

(photoperiod) (43). The day light exposure 

variance modify the production and releasing of 

MLT from PG, and in turns that binds to the 

nuclei of hypothalamus and regulate the pulses 

releasing of GnRH (44). 

          Despite the fact that MLT work at several 

aspects of the reproductive system in ewes, the 

MLT principle activity in the premammillary 

region of the caudal hypothalamus within the 

central nervous system (45).  

           In the ewes, Malpaux et al (2001) (46) 

listed various evidences about the target site of 

MLT is pre-mammillary nucleus of 

premammillary hypothalamus (PMH) to which 

acts to modulate GnRH/gonadotropin releasing 

and regulate reproductive actions. While, the 

short time MLT administration into central 

nervous system of ewes does not spur GnRH and 

LH secretion during seasonal anestrus (47). 

         The ovine PMH region of the cerebrum 

engages the caudal district of Arcuate region 

(ARC) and the ARC containing an intensive 

population of kisspeptin cells (45). These cells are 

responsible for Kisspeptin output by the 

expression of the Kiss1 gene, its a peptide 

hormone that empower GnRH production (48) 

(49). 

         The MLT treatment control the expression 

of Kiss1 in cell lines (50). The expression of 

Kiss1 was higher three time in the ARC region in 

Soay ovary-intact ewes that placed in a 

photoperiod of 16 dark hrs. and eight hrs. light 

(16D:8L) than other ewes on longer photoperiods 

(51). In ewes, a minimize kisspeptin function is 

related with loss of cyclicity at non-breeding 

period or season, and the kisspeptin injection in 
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such animals can prompt ovulation (52). 

Additionally, Kisspeptin treatment stimulate the 

hypothalamic–pituitary– gonadal axis during 

non-breeding season in goat, the removal of 

inactivity is associated with rising of plasma 

testosterone concentration (53).Otherwise, 

Median Eminence (ME) is also the target of MLT 

in ewes, the MLT caused block the TH activity (is 

a crucial enzyme in dopamine synthesis), so the 

MLT induce alteration (decline)  in TH function 

on the dopamine secretory ME neurons can 

regulate GnRH pulsatile secretion because an rise 

in dopamine inhibits of GnRH and therefore LH 

secretion is diminish, these opinion was 

confirmed by the experiment of  Viguie et al 

(1998) (54), they find that LH secretion was 

stimulated by suppress of TH in the ME long day 

inhibited ewes. In addition, Goodman et al (2012) 

(55) support the speculation that dopamine 

prevents synthesis and release of GnRH and LH 

at anestrum phase in sheep by exert a 

repressing role on the ‘ARC kisspeptin neurons’ 

because these neurons are critical for 

reproductive function and seasonal changes.  

             A new observation is suggested that MLT 

control of season through its effect on 

Gonadotropin-inhibitory hormone termed RFRP-

3 that influence the GnRH neurons (negative 

correlation) (56). In sheep, RFRP3 expressing 

cells are found transcendently in the specific part 

of hypothalamus (dorso-medial nuclei) and these 

cells project to the ME, that region of GnRH cells 

(57). In ewes model, the increases in RFRP-3 

gene expression happen at long daylight hrs. 

(20L: 4D) (58). In addition, the impacts of season 

on RFRP-3 hormone seemed to be based on on 

seasonal MLT fluctuations and the response to 

photoperiod is anticipated by pinealectomy 

and neutralized by MLT treatment (59).Morever, 

the melatonin implantation give a good results for 

improving seminal quality in Holstein bulls, 

conception rate and reproductive performance in 

cows (60)(61). 

4.2. Effect on Prolactin  

          In seasonal mammals, PT plays a direct 

role in regulating the annual PRL cycle (62). The 

researchers reported a PRL releasing factor called 

Tuberalin, which is released by the ovine PT 

specific thyrotrophs that impacts on increment of 

c-fos gene expression and to stimulate PRL 

promoter activity in a subpopulation of 

lactotrophs to prompt Messenger Ribonucleic 

acid (mRNA) expression and PRL secretion (63) 

(Figure 3). Over 90% of ovine PT cells are 

chromophobe cells that produce Tuberalin (64).  

            In ewes, the PT has a high concentration 

of MLT receptors (65). The hypothalamo-

pituitary-disconnected rams showed well-defined 

seasonal cycles in PRL release with low PRL 

blood concentration under short day conditions 

(66). On the other hand, the MLT implants in 

post-partum ewes caused a decline in PRL 

secretion under long photoperiod occurred in 

spite of the high stimulation of suckling (67). 

             The release of Tuberalin is enhanced by 

forskolin and the cAMP that activated Tuberalin 

secretion is inhibited by MLT that lead to 

decrease in PRL production (63). Because of the 

absence of MLT receptors on lactotrophs, it is 

reasonable to propose that PT may mediate the 

monitored effect of MLT by secretes Tuberalin 

and proposed that endocrine effect of Tuberalin 

which is necessary in the pituitary mechanism of 

MLT activity specially in regards to the 

regulation of the seasonal cycle of PRL (68). 
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Figure 3: Regulation of PG the secretion of MLT 

by photoperiod and Model of intra-pituitary 

mechanisms driving photoperiodic PRL secretion 

(69)(70). 

5. Factors effecting melatonin biosynthesis and 

secretion  

          The biosynthesis and secretion of MLT 

follow a circadian rhythm with high level at night 

and low levels during the day in both blood and 

CSF (71). The exposure to light quickly inhibits 

MLT synthesis and its secretion into the blood 

(72). Hence, because of changes in the time of 

night and day, the rhythm of MLT secretion is 

effected by the cycle of the seasons (73).  

          The concentration of MLT secretion varies 

highly between species, the sheep and Siberian 

hamsters considered type C animals; that mean 

the MLT levels reach a peak slightly after the 

onset of the dark night (10-30 min.) and stay 

elevated along the entire night and decline at the 

time of the light onset (74). In sheep which kept 

in the same conditions, the night-time 

concentration in circulating blood varies between 

individuals of similar age, which is originated 

from the variances in MLT production but not 

from catabolism (2). This changeability is under 

hereditary control because of the heritability 

coefficient which was observed to be 0.53 in 

humans and 0.45 in sheep (75).  

         There are several factors that effect on MLT 

like location of sampling, pregnancy status, flock, 

ewe age interaction (76). The MLT concentration 

in old age ewes lower than ewes in 12-18 months 

old and in three years old ewes (77). Furthermore, 

Redondo et al (2003) (78) point out that the 

plasma MLT levels are higher in pubertal sheep 

than in infants or matured sheep. On the other 

hand, a decline in reproductive activity is 

observed correlated in the aging sheep with 

decease in MLT concentration that is restored by 

administration of MLT (79). The daily MLT 

concentration is different between in Seasonal 

and Aseasonal ewes. Hatif and Laith (2018a) (80) 

clarified that the relative MLT level was 

significant higher in non-seasonal as a compare 

with seasonal Awassi ewes under same 

circumference. 

          The MLT secretion may be affected by 

extra factors, since the precursor tryptophan is 

provided to the PG by the circulating blood, 

dietary intake of tryptophan may impact MLT 

fluctuation (81). In spite of the fact that the AA-

NAT is a rate limiting enzyme, serotonin 

availability is one of the major factor that play an 

important regulatory role in MLT synthesis (82) 

and some evidences supposed that MLT synthesis 

is a part under serotoninergic control (83). In 

addition, MLT is inhibited by benzodiazepines 

via benzodiazepine receptors in the PG (84). 

Moreover, many reports pointed out that the 

polymorphism (genetic effect) in AA-NAT and 

MLTR genes influenced the sheep seasonal 

reproduction via effect on MLT output and 

affinity of its own receptor (85) (86) (87). 

6. The use of MLT in Reproductive 

Techniques 

         The earlier induce reproductive activity in 

ewes showed by persistent MLT implant 

treatment (88), therefore, it been used in vivo to 

induce oestrus.  



 

128 
 

Review Article  
 

Vol. 12              Issue:2, (2019)             ISSN: P-1999:6527 E-2707:0603 

           Melatonin was utilized to to enhance 

embryo production in Ovine multiple ovulation 

and embryo transfer (MOET) technique (89). The 

MLT implant was used for 3 months to promote 

the collected embryos viability and the ratio of 

oocyte reaching blastocysts for Rasa Aragonesa 

breed (90). In another way, the MLT has been 

demonstrated to keep most favorable conditions 

for homeostasis and mitochondrial function (91). 

This happen by reducing mitochondrial oxidative 

stress and consequently restrict subsequent 

apoptotic events and cell death (92), therefore, the 

MLT uses to improving oocyte quality in sheep 

superovulation (93). Both ovulation rate and the 

retrieve embryos number from ewes were 

significantly improved after MLT used (93). 

            Melatonin implicated in in vivo oocyte 

maturation, this suggestion came because 

existence of MLTR in granulosa cells (94). Its 

stimulate ovarian steroidogenic gene expression 

(95) and luteinisation of graffian follicle (96). 

During the anoestrous period, MLT regulate a 

follicular growth (have a strong role in regulation 

and development) and oocyte efficiency (97).  

Exogenous MLT conserve cumulus cells from 

DNA damage during In vitro maturation (IVM) 

(98) (99), and the MLT supplementation to the 

IVM and culture medium can reduced Reactive 

oxygen species (ROS) (antioxidant effect) and 

get better competence of oocytes, which led to 

rise the quality and quantity blastocyst 

proportions and improve the embryos quality. 

Conclusions 

        Based on this review, there were a vast 

benefit for MLT uses. The induce estrus during 

breeding season by effect on GnRH is the major 

role for MLT. Its a part of IVM medium, because 

its preserve the oocyte competence and improve 

the embryo quality. The litter size is important in 

sheep industry, so the using of MLT showed a 

partial advantage. 
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