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Abstract

Flexible Matrix Composite (F?MC) tubes are emerging technologies, which can provide
lightweight, compact vibration control when attached to a vibrating structure. This work presents a new
model for solving a problem of vibrations in cantilever beams with attaching F"MC tubes as patches that
provide passive vibration control. Mathematical model of the compound system of patches of F°MC
tubes integrated on the beam was derived. The governing equations depend on Euler-Bernoulli beam
theory and Lekhnitskii’s theory of elasticity. This study examined new model’s performance for damping
with variation in tube size; bonding position of the patches on the beam in two different cases: on the
beam through changing the distance between two them; one patch above and the other under the beam.
Analytical results demonstrate that the proper tuning the size of tubes as a function of inner layer radius;
and integration points are basic parameters for passive vibration control. They achieve reductions in
response amplitude at the first vertical bending mode effectively.

Keywords:- Passive vibration controller, Fluidic flexible matrix composite tubes, Mathematical model,
Damping, Frequency response function.

Nomenclature

d= the distance between the neutral axis of the Fu, F= Extension force on the F2MC patches
tubes and the centerline of the beam.

&l = Raidial strain of the inner layer. Gp=Transfer function of F?MC tubes
¢? =Raidial strain of the outer layer. L=Beam length
el = Axial strain of the inner layer. Lemc =Length of FZMC tube
e)'= Axial strain of the middle layer M1, M2= The moments that formulated on
the patches.
eb, =Tangential strain of the inner layer. P1= inner layer’s surface pressure
eg = Tangential strain of the middle layer. P.= Middle layer’s surface pressure
eg= Axial strain of the outer layer. Ps=Outer layer’s surface pressure
ey'= Radial strain of the middle layer Po= Internal surface pressure (fluid pressure)
o= Radial stress of the inner layer. T=axial Force on the F?MC tube
o2= Radial stress of the outer layer. T1, T2, T3= Individual forces on the layers of
F2MC tubes.
og= Axial stress of the outer layer. y(x,t) =beam displacement
oi= Tangential stress of the inner layer. ol,=axial stress of the inner layer.
og= Tangential stress of the outer layer. Vi=initial volume of the FZMC tubes
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1. Introduction

In advanced applications, the design of some structures, such as those in spacecraft, jet fighters
and automobiles which require lightweight strength and have highly structural damping properties, are
faced with great difficulty due to the fact that the decreased weight results in low rigidity and reacts with
vibration characteristics. Vibration must be effectively controlled, otherwise it could be uncomfortable
for human beings, increase fatigue, cause instability and could result in damage to the entire system [1].
Tuned Vibration Absorbers (TVAS) are important engineering tools for vibration suppression. They can
take the form of passive, semi-active or active vibration control devices[2]. TV As without damping that
are composed of springs and mass elements can overcome a specific amount of disturbance[3].

In advanced technologies, various vibration control technics have been used in modern vibration
control design for smart structures. Researcher [2], has been used Tuned Mass Dampers (TMDs) for
controlling vibrations over a small frequency ranges. Damping treatment of cantilever beams had been
studied by using electro-magnetic compressional damping treatment [4]. Another study[5], investigated
a theoretical control technique using piezo ceramic sensors and actuators along with Multi Input and
Multi Output Linear Quadratic Gaussian (MIMO LQG) controller. Experimental validations achieved
that MIMO LOG controller was efficient for the suppression of vibrations on cylindrical shells by 13dB.

Fluidic Flexible Matrix Composite (F?MC) tubes were made from a new type of lightweight and
adaptive smart materials. They are economic, use readily-available materials. These tubes have great
tailorability, high fluid pumping efficiency, and variable stiffness properties, with ease of integration on
structures. They first discovered as variable volume tubes with large modulus ratios [6, 7]. The main
parameters of a FPMC tube is the anisotropic composite laminated layer with fibres oriented at +a with a
longitudinal axis with their length. The places that the tubes are bonded on the structures, and valve
which controls a fluid flow also have an effective role for tailoring the tube’s behaviour. Philen, et al. [6]
showed that by tailoring the fibre orientation and fluid bulk modulus, these tubes can work as flexible
materials when the valve is open and as very stiff when the valve is closed. Ying Shan, et al. [8]
investigated F?°MC tubes for autonomous structural tailoring. A model of single F?MC tube has been
analyse and validated experimentally. their results showed the maximum modulus ratio can be obtained
by using a composite laminate fibre angle (o = 20°), or decreasing the tube thickness, or increasing the
fluid bulk modulus. Vashisth, et al. [9] evaluated a three-layered F?MC tube which was two millimetres
in diameter, consisted of polyurethane reinforced with braided stainless-steel wire in the middle layer,
surrounded by polyurethane layers. Blocked force, free strain and axial modulus of elasticity has been
examined. Lotfi-Gaskarimahalle, et al. [10] developed a 3D model for FPMC tubes and a lumped fluid
mass as a novel TVA. It provided a close form of isolation frequency depending on the orifice flow
coefficient and the orifice size. The results indicated that F"MC TV A is robust in terms of mass variations,
and increasing damping ratios are achievable with increase in the orifice viscous damping. Philen [11]
showed the F?MC tubes performance for base isolation mounts. Recently, through series investigations
these tubes performance as vibration absorbers has been studied. They has been connected with two
fluidic circuits, the first damped out vibrations over 20dB by using orifice; the latter circuit used an inertia
track and an accumulator, replaced the first mode resonance peak with a valley, reduced the resonant
response by 27dB, [12]. This was followed by a design of multi-layered FMC patch fixed on a cantilever
beam with a distance (x;) far from the fixed end, [13]. Water was used as working medium.
Investigations was made for different fluid bulk moduli, attachment location and flow coefficient. It
achieved 32 and 16 percent damping ratio for first and second modes respectively. While, Krott, et al.
[14] investigated the effect of tube compliance and volume change for these tubes. Their results showed
that soft and thin tube bladders of FZMC can provide damping. Miura, et al. [15] utilized an analytical
model with Monte Carlo methods for vibration isolation in cantilever beams by using F2MC tubes, with
modifications on fluidic circuit dimensions and F?°MC tube attachment locations, the moment and shear
transmission at the clamped end of the beam were reduced.

This paper sheds a new light on damping treatment of cantilever beams by using passive vibration
control. It re-examines the diameter of F?MC tubes by adding layer thickness ratios as a function of
damping treatment for cantilevered structures. Within the framework of these criteria it evaluates two
systems of F2MC tubes in two different new categories, which has not been studied before. First is by
bonding the two patches on the beam with examining the distance between them. And the latter is by
bonding one patch on the beam and the other under the beam in various places. The mathematical model
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presents a simple way for solving a complete system encompassing two F?MC tube patches. They are
connected separately with orifice through accumulator, filled with fluid. Each patch contains one F2MC
tube composed of three layers, the inner and middle layers are fiber reinforced laminate layers, with a
liner outer layer. Both patches are integrated on the uniform cantilever beam. The system transfer
function as a ratio of unit tip displacement per unit applied tip force was derived and plotted as Frequency
Response Function (FRF).

2. Mathematical modelling

This study deals with integrating two patches of FMC tubes on the uniform cantilever beam, each
consists of a single tube of three layered FZMC tube. The first two respective layers are composite
laminate fiber reinforced layers followed by an outer liner layer, surrounding a working fluid (glycerin).
The patches are integrated above the beam, one after he other. Flow inside each of them is controlled by
orifice through an accumulator. They are separated, the fluid inside them are not mixed together. they
act as two separate fluidic systems to suppress vibrations that occur by beam bending with an action of
applied point load.

2.1. Beam model

The Figures 1 and 2 show the patches of F2MC tubes. They assumed stiff and fixed very well
on the beam. So, when the applied load (F) acts on the beam. They remain fixed in their positions during
bending of the beam. This bending due to extension of the F2MC tubes in each system by an amount of
(F¢y,and Fy, ), and each results a formulation of a moments (M1) and (M2) in F2MC tubes bonding
position as;

Mletlxd (1)
M2=F,xd )
Using Euler-Bernoulli beam theory the governing equations of transverse displacement yy ¢ is
formulated as:
2 4

dy _dy _dvy
—+B —+EI—=0 for x€(0,L). 3
mdt2 m e or xe(0,L) (3)
Where
m=pxbxh 4
Taking the Laplace transform, and solving for zero initial conditions
d'y
mszY+BsY+EIF=O ®)
X

And rearranging
4

dy
Q—B“Y(X)ZO (6)
Where
2
4 s“m+sB 7
o (7
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Fig. 2 Free body diagram of cantilever beam with integrated F2MC tubes, explaining forces,
moments and attaching tubes locations on it.

The generalized solution of the beam has five domains:

( Y1(x,s)=Alsinpx+A2cosfx+A3sinhfx+Adcoshfx, for x1(0,x;)
Y2(x,5)=B1sinfx+B2cospx+B3sinhpx+B4coshPx, for x[1(x;,x,)
Y=< Y3(x,8)=Clsinpx+C2cospx+C3sinhfx+C4coshPx , for x[1(x,,x3) (8)
Y4(x,s)=D1sinpx+D2cospx+D3sinhpx+D4coshfx, for x[1(x3, X,)
Y5(x,s)=El1sinfx+E2cospx+E3sinhpx+E4coshpx, for x[1(x4, L)

The constants An, Bn, Cn Dn, and En for(n=1, 2, 3, 4) are found by using beam boundary conditions, [16]:

In the left side of the beam (x=0) the beam is

clamped, so
Y1(0,5)=0, 9)
Y1'(0,8)=0. (10)

Moment balance at x=x;
EI(Y2' (x1,8)-Y 1" (2;,8)=MI(s) (1)
where M(s)= LM(t), by continuity

63



Journal of University of Babylon for Engineering Sciences, Vol. (27), No. (4): 2019.

Y1(x;,8)=Y2(x1,8) (12)

Y1 (x1,8)=Y2'(x1.5) (13)

Y17 (%1,8)=Y2" (x4,5) (14)
Moment balance at x=x; led to

EI(Y2'(x,,8)-Y3' (x,,5)=M1(s) (15)
and the continuity due to

Y2(x5,8)=Y3(x5,8) (16)

Y2 (x,,8)=Y3'(x,,5) (7)

Y2" (2,8)=Y3" (x2,9) (18)
Moment balance at x=x3

EI(Y4' (x3,8)-Y3' (x3,5)=M2(s) (19)
and the continuity due to

Y3(x3,5)=Y4(x3,5) (20)

Y3 (x3,8)=Y4'(x3,5) (21)

Y3" (x3,8)=Y4" (x3.5) (22)
Moment balance at x=X4

EI(Y4 (x,,5)-Y5 (x,,8)=M2(s) (23)
and continuity gives

Y4(x,4,8)=Y5(x,,8) (24)

Y4 (x,,8)=Y5'(x,.5) (25)

Y4" (x,,8)=Y5" (x4,5) (26)
At free end, x=L

EIY5"(L,s)=F(s) (27)

EIY5'(L,s)=0 (28)

2.2. Three layered F2MC tube model

Figure (1) shows that the patches are integrated on the beam. Each patch consist of a pair of FPMC
tubes connected in parallel. The F?MC tube is modelled as a structure that consists of three coaxial
boundless length hollow cylinders perfectly bonded together: the inner and middle cylinders are FMC
laminate, both are made from polyacrylonitrile-based carbon fiber. They are orthotropic, with reinforcing
fibres oriented at +« to the axial direction of the tube; the outer liner cylinder is made from polyurethane
(Fig.3). Each cylinder represents a layer, and the radii of layers from inside to outside are c,,c,,
c; and c, respectively. The axial force exerted on the F?MC tube balances the force on the individual
tube layers,

T=T,+T,+T; (29)

For two layered F?MC tubes, the axial force can be found by summing only T1 and T..
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2.2.1. Inner and middle layers

Figure 3 highlights that the FMC inner layer is subjected to axial force (T,), internal surface
pressure (p,) and external surface pressure( p,). The axial force is:

2
T,=2n f olede, (30)
cl
Where o, represents the axial stress in the inner layer.

Furthermore, Lekhnitskii’s elasticity solution for homogenous orthotropic cylinders was used to
find the generalized stress distributions[17], as:

I+l k-1
P Py 4y Pi@ 'poak+1

i &1
Gll—_ 1 _aZk 1 -aZk I,L +AhK1 N (31)
k+1 k-1
i Po? Py P Pyl e g
Gy= e (T ok ka™ p'+ARK,, (32)
i 1 i i
0, = A—— (b13GI' + b23Ge), (33)
b33
Separate view T=T1+T2+T3

Inner Layer

QOuter Layer @

Fig. 3 Sketch of FMC tube with dimensions and loads on layers.

Where r, 6 and z indicate radial, hoop and axial directions (Fig.3),

€y
a= o (34)
2
_ C
W= & (35)
l311
l322
ba3-bi3
h: _’
Brbn (37)

65



Journal of University of Babylon for Engineering Sciences, Vol. (27), No. (4): 2019.

bis
Bllzbll'b_r (38)
33
b2s
by, 2 (39)
Bzz 22 b33
l_ak+l l_ak-l
k-1 k+1, k-1
K=l e, (40)
_ak _ak-l
Kp=1- 2 ko ke, (41)

The by;terms are three-dimensional effective compliance constants found from the homogenous
properties of the inner layer in the cylindrical coordinate system [18, 19]. The transversely isotropic
unidirectional reinforced (+a) and (—a) sub-layers are assumed for calculating the homogenous
properties of +a composite layers. Therefore, the layers have five independent elastic constants:
longitudinal and transverse modulus of elasticity E11, E22, Poisson’s ratio v;,and v,3 and longitudinal
shear modulus of elasticity G;,. Solving the equations (30-33) lead to finding the parameter (A) as a
function of ( Ty, py and p;). The strain distributions for the inner composite layer are:

&=b116;tb1,641b130, (42)
€h=b120, by, 641by30,, (43)
€,=b130;tby3051b3307, (44)

Similarly, the axial force (T,), stresses (o7, 0g', 03') and strains (e, eg', €5*) for the middle
reinforced layer are found by replacing (Ty, po, p1, €1 and c;) with (T, p1, p2, €, and c3) respectively in
Eqs. (30-44).

2.2.2. Outer layer

This layer is modelled as an infinitely long isotropic hollow cylinder with an axial force (Ty),

inside and outside surface pressures (p,) and (p; = 0) (Fig. 3). Therefore, relying on [20], the stress
distributions are:

o_ pzcg -Ps Cézl C%Ci(pz'p3)

T - s (45)
¢ e*(cicd)
o pZC%-pSC% C%C%(PQ'PQ
Op= + (46)
22 20022y °
c4-C5 c*(cs-c3)
o= 1 (47)
“ on(cid)’
The strains in each direction can be obtained by using Hooke’s law:
&= [0V, (c§+02)], (48)
5= [0g-vo(cP+oD)], (49)
£2=—[02-v, (o3 oD, (50)

Where (E.E,) and (v,) are Young’s modulus of elasticity and Poisson’s ratio for polyurethane
respectively.

2.3. Equilibrium equations

In this model, each F2MC patch follows a plain strain solution, as the beam extends uniformly in
an axial direction, therefore:

g,=em, (51)
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er=ey. (52)
At the interface between any two layers the hoop strains are identical,
86i|0:02: Semlc:q (53)

Sem|c:C3 = 890|c203

(54)

The axial force on each F2MC patch balances the loads on the end of the F2MC tube,
T1:%+ p et (55)
T pch (56)

Where (p,) is fluid pressure inside the tubes and (N) is the number of tubes. By given geometry
and material properties (Table 1), the axial and hoop strains of the inner layer can be calculated by solving
Eq. (51-56) as functions of (T and p,) as

€91 lr=c, =01 T1+D2p, (57)

€02l =901 To+P2p,, (58)
And

€,1=0;T+04p, (59)

£2=0;T)+04p, (60)

where &g, ¢ €,,and g,, are strains in hub and axial directions for first and second patches

respectively, and @,,0,, @; and @, are constants representing the geometry and material properties of
the F2MC tubes for all patches.

Table 1 Model parameters and material properties of FMC tubes
Parameter Symbol Quantity

Fiber reinforced layer

Longitudinal modulus of elasticity (GPa) En 40
Transverse modulus of elasticity (MPa) Ex 1.8
Poisons ratio v12 0.33
Poisons ratio v23 0.39
Modulus of rigidity (MPa) G 1.4
Fiber angle (°) a +27
Liner Layer

Modulus of elasticity (MPa) Eo 11MPa
Poisons ratio Vo 0.498

F2MC tube geometry and integration points

Inner layer internal radius(mm) cl 1 mm, (0.5-10) mm
Middle layer internal radius (mm) c2 1.7¢

Outer layer internal radius(mm) c3 18c¢c;

Outer radius (mm) c4 2.105¢;
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Length of first patch of FPMC tube’s (mm) Lemcs X1-Xa,
Length of second patch of F?MC tubes(mm) Lemc2 X3-X4
Attaching points: X1 0
X2 75mm
X3 (110-140) mm
X4 (185-215) mm
Beam geometry
Hight (mm) h 1.6
Width (mm) b 26
Length (mm) L 310
Beam material Aluminium
Modulus of elasticity (GPa) E 70
Damping constant (N s/m) C 0.2
Density (kg/M?) p 2700
Fluid properties
Type of fluid glycerine
Density (kg/M?) p 1260
Bulk modulus (gpa) B 4.35
Accumulator capacitance (m3/Pa) Ca 1.5 x 107°
Flow coefficient (m3/s Pa) Cq 2x10713

2.4. Fluid Behavior

The study includes multi-F>MC patch model in a closed valve scenario. It is assumed that the
tubes are filled with fluid, which are tight with no differential pressure with the bulk modulus (B) and
volume of (V). When the force (F) is applied, the volume of the F2MC tubes changes by the amount of
(AV¢) with the formation of (F,,and F,;). Depending on the volume change, the fluid differential
pressure changes from zero to (p). For first patch, this can be expressed as:

THB=py, (61)

But the volume change of F?MC tube is defined as:

AV=V;-Viy, (62)
Where

V=] (e e, Jo1 | G2x D) (142,) | (63)

V; =nc? (x2-x1). (64)
For second patch, the procedure is the same only the bonding positions are changed:

AV,=V,-V, (65)

Vo=n[(1+eg] )cl]z(x4—x3)(l+sz), (66)

Vp=nc? (x4-x3). (67)

68



Journal of University of Babylon for Engineering Sciences, Vol. (27), No. (4): 2019.

Then, the volume ratio for each FMC patch can be written as:
AV, ViV,

Vil Vil E‘c;zl—"_z'gellr:cp (68)
AV, Vp-V,
—=— fxg 42 69
Vi2 Vi2 €48 |FC1 ( )

The fluid volume that is pumped out of the first and second patches, which are composed of (N)
tubes, was assumed as the fluid volume flow rate and expressed as

Q,,= -N(AV,-AV)). (70)
Q,,= -N(AV,-AV)). (71)

By substituting each of AV, and AV,and AV, from equations (61), (62) and (65) respectively,
yields

Q,1=NFoT+NGqp, = Q. (72)
Where
Go=-(20,+05) Vi, (73)
1
Fo=-(@,+20,+ B Win (74)

here V;,, = Vj; or V;, , depending on the selected patch.

As the fluids inside both patches are the same type with the same configuration, the fluid volume
flow rate balances the change in fluid pressure inside the orifice and accumulator by,

Q,=Ca(py-py) (75)
And
Q,=C.pa (76)

Where (p,) is the internal pressure of the accumulator, (C,) the flow coefficient and ( C,) is the
accumulator capacity.

2.5. Over all system’s transfer function

The transfer function of patches can be determined by the ratio of the axial strain to the axial force
by solving each of equations (55), (59), (72), (75), and (76), also (56), (60), (72), (75), and (76) in the
Laplace domain with zero initial conditions for first and second patches respectively as follows:

&,1 ()= G,(8)Fy (s), (77)
£,(8)= Gy (8)Fpp(s) (78)
Where

(CaS+Cd)(®3FQ'®4GQ)'63 Cacd/N

G,(s)=
p(®) N(c,stcq)(FotneiGq)-cqcq

(79)

As required by Lekhnitskii’s theory of elasticity [17], the patches stretch uniformly in an axial
direction, and the total F2MC tube patch elongation can be calculated as,

dY,(s) dY,(s)
dx2  dxl 7
dY,(s)  dY4(s)
dx4  dx3

AL (8)=Lpmci€,1(8)= -d(

(80)

AL, (8)=Lpmca ()= -d( (81)

)!

Where Lgyic1=(x2-%1), and Lyico=(x4-x3)
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Substituting (Ft1) and (d) in Egs. (77, 80) into Eq. (1) then solving for moment (M1), and
substituting (Ft2) and (d) in Egs. (78, 81) into Eg. (2) then solving for moment (M2), yield the following
equations:

1 [dYay(s) dYa(s)
MI(S)_U1(5)[ dx2  dxl [ )
_ 1 dY4(S) dY4(S)
Mz(s)_uz(s)[ x4 3 I
Where
UL(s)="LG,(s) , U2(8)="H2 G, (s) (83)

Now, substituting equation (82) into the constant’s equations (9 —28)the following expression can
be obtained:

Jw=b F(s), (84)
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Where
ro 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
B T T s B Ty Ui
Jo o Ji T Jis Jas T s
Isi Jso Iy Jsa Jss Js¢ Js7 s
Joo Joo Jes Jea Jes  Jes  Je1 Jss
0 0 0 0 s Ji Jp I
0 0 0 0 Jgs Jg Jgr I
0 0 0 0 Jos Jog Jo7 Jog
- 0 0 0 0 Jys Jios Jio7 Jios
0 0 0 0 0 0 0 0
0O 0 0 O 0 0 0 0
o 0 0 O 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0O 0 0 O 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0O 0 0 O 0 0 0 0
0O 0 0 O 0 0 0 0

And

J5,=UIEIBSPx,

J5,=UIEIBCPx,

J33= — UIEIBShpx,

J5,= — ULEIBChx,

J35= — ULEIBSPx; — CBx,o+CPx,
T36= — UIEIBCBx, +SBx, — SPx,
J5,=UIEIBShpx, — Chpx,+Chpx,
J3=UIEIBChBx, — ShBx,+Shpx,
J;5= — U1EIBSPx, — CPx,+CPx;
J76= — UIEIBCPx,+SPx, — SPx;
J;7=U1EIBShPx, — Chpx,+Chpx;
J55=U1EIBChBx, — ShBx,+Shpx,
J50= ULEIBSPx,

T710= UIEIBCBx,

J;= — ULEIBShBx,

J;= — UIEIBChBx,

J110 = U2EIBSPx,

Tii1o = U2EIBCPxs

Ji11 = —U2EIBShpxs

Ji11, = —U2EIBChBxs

Ji113 = —U2EIBSPx; — CPx4 + CPx;
Ji114 = —U2EIBCPx; + SPx4 — SPx;3

J1115 = U2EIBShBX3 - ChBX4 + ChBX3
J1116 = U2EIBC1’1BX3 - ShBX4 + ShBX3

Jis13= — U2EIBSPx, — CPx4 + CPx;
J|5|4: - U2EIBCBX4 + SBX4 - SBX3
J1515=U2EIBShPx, — ChPx, + Chpx;

cocoocoo
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Jso
Jog
Ji09
T
Ji29
Ti30
Jia9

cococoo

S o oo o
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Js10
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Ji21a
Ji31a
Jia14
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Ji61a
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Jisiz Jisia
0 0

0 0

Jis
UBIE
UETE
e
Jis13
Ti613

cococoo
cococoo

J41=SPBx;
J=CPxy
J413=ShBx,
J44=Chpx;
Jis= — SPx;
Jis=— CPxy
J47= — ShPx;
J4s= — ChBx,
Jss = SPx,
Js6 = CPx,
Jg7 = ShPx,
Jgs = ChPx,
Js9 = —SPx,
Js10 = —CPx,
Js11 = —Shpx,
Js12 = —Chpx,
J120=SPx3
J1210=CPx3
J1210=ShpPx3
J1212=Chpx3
J1213= — SPx3
J1214= — CPx3
J1215= — ShPx3
J1216= — ChPxs
J1613=SPx4
J1614=CBx,4
J1615=Shpxy
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J1516=U2EIBChPx, — ShPx, + Shpxs J1616=Chpx, J1716=Shpxy J1g16=Shpxy
J1517=U2EIBSPxy Jis17= — SPxy Jin7= — CPxy Jig17= CPxy
J1518=U2EIBCPxy Jis1s= — CPxy4 Ji718= SPx4 Jigis= — SPxy
Jis19= — U2EIBShPx, Ji610= — Shpxy Ji710= — Chpx, Jigro= — Chpx,
J1520= — U2EIBChpxy Ji620= — Chpx,y J1720= — Shixy Jis20= — Shfxy
J1917= — EICBL J2017= — EISPL

J1915=EISBL J2018= — EICPL

J1010=EIChBL Jy91o=EIShBL

J1020=EIShBL Ty020=EIChBL

Where S, C, Sh, Ch, U1, and U2 are sin, cos, sinh, cosh, U1(s), and U2(s) respectively.

The total deflection at the free end of the beam is

Y (L,s)= ElsinBL+E2cospL+E3sinhfL+E4coshpL (86)
In addition, the overall transfer function of the FAMC structure is
Y(L,s) |
=a,J b=H 87
P o bHE) (87)

With
a,=[0 0 0 0 0O 0OOO O O OO O 0 0 0 sinpL  cospL sinhpL coshfL],
and the FRF is represented by [H(jo)|.

3. Model validation

As producing FPMC tubes samples are difficult. It requires sophisticated devices because of their
size and layer thickness, the derived model validated theoretically by performing some illustrative
examples and the results were compared with the existing data available in the literature to demonstrate
the accuracy of the present model. As an example, comparisons are made between the FRF plot obtained
from the previous studies [13] for a patch of F?MC tubes integrated on the cantilever beam (Fig. 4). It
could be seen, the present results are in well agreement with similar ones available in previous studies in
the reference, which had been agreed with their experimental validations. This agreement improved the
proposal of a new model, strong enough to be used for future studies. Then this model has been modified
for two patches of the tubes integrated on the beam instead of one.
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Fig. 4 Frequency response plot for studied model for comparison purpose [13].
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4, Parametric studies

4.1 Studying the integration points of the second patch

In a previous study of FAMC tubes, the integration points of a single patch of FAMC was concluded
with sensible reduction in amplitude of vibration in FRF plot. This was obtained by locating the first
bonding position (x1) on the fixed end of the beam [13]. Because in this point maximum moment was
recorded. This study aimed to achieve higher reductions in amplitude of resonance in the first mode
shape, by integrating two similar patches (Lemci=Lemcz=75 mm) of F2MC tubes. The first patch’s
integration point (x:=0, x2=75mm) is fixed, because of achieved results in the literature. While, the
second patch’s integration points have been examined. The study started with integrating it on the free
end of the beam (x3=235, x4=310) then these values were reduced enough to make the two patches close
to each other. The minimum possible studied distance between the patches was (35 mm). As the patches
being closer to each other more damping was obtained, because as the patches are bonded on the positions
near to fixed end of the beam. The transverse vibrations that obtained by beam bending will lead to
increase in the fluid flow into the patches then the volume of the tubes is expanded and damping would
increase. Whereas, when the second patch was so far from the first patch (on the free end), the fluid
entering into the second patch is eliminated, thus the beam damped under the action of only one patch,
and the undamped vibrations were recorded. Figure 5, shows the reductions in the first mode shape’s
resonance amplitude with reducing the distance (x) between the patches. The distance (x) is directly
proportional with amplitude of resonance and inversely proportional with frequency of resonance. This
result was supported by other researchers, [21]. In contrast, by reducing the distance between the two
F?MC tube patches, the reduction achievement in first mode amplitude was 7.25dB with 4.55 Hz wider
resonance frequency. The maximum reduction in pick amplitude was obtained with the smallest distance
between the two patches, which was plotted by solid line in the Fig 5. With this distance, the recorded
amplitude of first mode shape was -50.3dB, which is larger than the reductions recorded by Zhu et al.
through getting benefit of inertia track length. [22]. The present model in this paper is more efficient in
reducing vibrations with regard to sizes used, as compared with study done by Krott, et al. [14]. While
comparing this result with reduction obtained by Multi Input Multi Output Linear Quadratic Gaussian
Controller MIMI-LQG, the present reduction was greater than MIMO-LQG controller [5].

After fixing the distance between the patches, then the next step is examining the integration of
the second patch under the beam with two configurations: in the same integration point with the first
patch (x1=x3=0, x2=x4=75mm); and at the fixed distance (x=35mm) between the patches. The
mathematical modelling of the system with patches under the beam follows the same procedure listed in
section 2. Only their will be a change in sign of the second patches’ transfer function Egs. (82-83). It

defines as U2(s)= _LZQ"CQ G, (s). This outline contributed significant vibration suppression in terms of the

peak amplitude reduction in FRF during comparison with a patch contains pair of F2MC tubes [12],
which was assumed as base line model in Fig. 6. The comparison of each studied cases with base line
model shows that, the first configuration reduced first resonance amplitude by 9.44 dB, with a very small
reduction in its frequency, whereas, the second configuration achieved significant reductions in both
amplitudes and frequency of resonance in all mode shapes. As it can be notified from the Fig.6 the first
mode shape’s reductions in amplitude and frequency of resonance are 10.12 dB and 11.4Hz, respectively
with second mode shape’s overall gain reduction.
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Authors in this study relating the resulted reductions to the positions that the patches have been
integrated with the beam. In the first case study the second patches’ bonding points comes in agreement
with the results that previously discussed that vibration elimination by damper would be more powerful when
dampers installed in the locations with maximum mode displacement happens,[23].

On the other hand, when the two configurations of integrating the patches under the beam are
compared with a model of integrating the patches on the beam, the comparison result in Fig. 7 shows the
similar responses in first mode shape between integrating the patches above and under the beam. In both
cases the integration points were the same (x1=0, x2=75, x3=110, and x4=185 mm), the only difference was
in the second patches’ place (above or under the beam) which results in change in sign of Eq. (82-83) as
explained before. As it can be notified from mathematical modelling, in the case of bonding the patches on
the beam, both patches will elongate in the same direction and producing different moments, while in the
case of integrating one above and the other under the beam, the second patch will act under compression
which directly reduces the amplitudes of mode shapes, This change in the second patches transfer function
might has direct effect on reducing the resonance amplitudes that recorded. Joining the F2MC tube patches
above the beam is good for reducing amplitude of vibrations. In the case of using the tubes in low frequency
range applications, integrating the patches as first configuration is better to be avoided, Fig.7. Furthermore,
when a pair of F2MC tubes was used in each path and compared with previous case, when single tubes were
used. The resulted plot shows that single tubes highlight lower amplitudes of resonance in all mode shapes
as compared a pair of tubes. The reason of this behavior is due to the lower pressure generation of fluid inside
the tubes, because the same amount of fluid would enter two tubes instead of one. The fluid distribution
between the two tubes, directly reduced the amount of fluid flow entering each tube and minimizes the
moments M1 and M2 that found in bonding points; following a resulted lower beam damping (Fig.8).

Tip displacement per unit tip force,dB

-100 T T T T
0 10 20 30 40 50

Frequency Hz

Fig. 5 Zoomed view for the first mode shape in
FRF response of two patches bonded on the
cantilever beam, the first patch fixed whereas the
second patch’s integration point was varied; solid
line for the distance between the patches x=35mm,
dashed for x=45mm, dash-dotted for x=55mm,
and dotted for x=65mm.
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Fig. 6 FRF response of two patches integrated
under the beam: 1%t configuration (solid) on the
same axis, x;=x3=0,x,=x,=75mm' and 2™
configuration (dashed), on the different axis, x;=0,
X,=75mm, x3=110mm and x,=185mm. Base line
model (dash-doted), one patch of a pair FAMC tubes
bonded on the beam, x1=0, x2=150mm.
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Figure 7 FRF response comparison between the two configurations with a model of two
patches integrated on the beam: (A) Normal view, (B) zoomed view of 1%t and 2" mode
shapes.

4.2 The size of FMC tubes

This case deals with the second configuration model when the patches bonded one above and the other
under the beam with bonding locations x; = x; = 0;and x2 = x4 = 75mm, respectively. Fabrication of
F2MC tubes with a very small size are practically difficult [14]. For this reason, the authors examined bigger
sizes that practically possible to be produced. The F2MC tubes with different sizes have been examined, the
tubes’ inner radius from (0.5-10 mm) are studied, for each value of inner radius (c1), the other radii, c,,
¢3, and ¢4 were selected as:1.7¢;,1.8¢;, and 2.105¢; respectively. Figure 9 shows the integrated system’s
FRF response for several values of c1, it can be notified that by reducing the inner radius from 10mm to 1
mm, the first resonance amplitude of the response is decreased by 8 dB (24% reduction achieved) with
shifting resonance frequency by 2 Hz. This result is acknowledged by another study, through examining the
ways for obtaining maximum modulus ratio, which is due to shrinkage in longitudinal strain, and increasing
F2MC tubes axial strain. It increases the moments in the tubes bonding locations with the cantilever beam as
in Eq. (1, 2 and 82). In addition to more fluid entrance to the F2MC tubes and higher internal pressures (Eq.
61), [24]. But further reducing inner radius (c1) to 0.5 mm, the tube’s internal cavity was restricted so much,
blocked the fluid flow into the tubes due to a low generation of pressure difference, so, the tube’s ability to
dissipate energy was lost. Because the tube walls have high authority to volume change [25], the resulted
first resonance amplitude of the response was 4 dB higher, but the second amplitude reduced clearly with an
overall gain reduction by 5Hz.
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— N1=N2=1

-150

Tip displacement per unit tip force,dB

0 100 200 300 400 500
Frequency,Hz

Fig. 8 FRF response of the system of two
patches integrated above the beam, with
different number of tubes: solid line for single
tubes were used, and dashed for a pair of tubes
used in both patches.

© c,=0.5mm

Tip displacement per unit tip force,dB

0 10 20 30 40 50
Frequency Hz

Fig. 9 FRF response of two patches of F2MC tubes
integrated on the cantilever beam, with different
tube sizes: inner radius ¢; = 0.5mm(dotted), Imm
(solid),2mm(dash-dotted), 5mm(dashed), and
10mm(dash-double dotted), the other radii c,,

¢3, and ¢, are selected as 1.7¢,,1.8¢;, and 2.105¢;
respectively.

Conclusion

In spite of most recent studies dealing with vibration control of cantilever structures focused active or
semi-active vibration control, this study shaded a new light on damping treatment of cantilever beams by
using passive vibration control. It analyzed a new approach for using F?MC tubes by integrating them as two
separate patches above or under cantilever beams. It presented a simple way for mathematical modelling
multi patches integrated on cantilever beam in different locations. A model of pair of F2MC tubes was
modified to study two patches of single FAMC tube with their exactly half of length of single patch. Increasing
the number of FAMC patches for controlling vibrations gives more desirable results than connecting several
F2MC tubes inside one patch. The present study took benefit from selected layer thickness ratio for examining
the sizes of F°MC tubes. Choosing the patch’s joining points depends on the parameters that requested for
controlling. For managing resonance frequencyi, it is better to bond the patches above and under the cantilever
structures, but for reducing amplitude of vibrations, integrating the patches on the beam is the best choice.
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