In silico Study of New Five-Membered Heterocyclic Derivatives Bearing (1,3,4-oxadiazole and 1,3,4-thiadiazole) As Promising Cyclooxygenase Inhibitors

Safa A. Mahmood*, Monther F. Mahdi*, Ayad M.R. Raauf**, Talal Aburjai*** * Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mustansiriyah, Baghdad, Iraq.

Al-Farahidi University / College of Pharmacy, Baghdad, Iraq. *Natural Product ChemistryAnalysis of N. P. and Phytotherapy School of Pharmacy, The University of Jordan

Article Info:	DOI : https://doi.org/10.32947/ajps.v24i3.1060 Abstract :
Received July 2023 Revised Aug 2023 Accepted Sept 2023 Corresponding Author email: <u>drmontherf71@gmail.com</u> Orcid: <u>https://orcid.org/0000-0002-2069-4121</u>	A novel series of pyrazole, oxadiazole and thiadiazole bearing Nabumetone moiety were designed, synthesized, and evaluated for their anti-inflammatory activity against cyclooxygenase enzyme 2, after Insilico assay (by molecular docking study) a best set has been synthesized and characterized.

The activity of the compounds was predicted by a molecular docking research utilizing the GOLD software tool from the Cambridge Crystallographic Data Base. We tested them in real in vivo as anti-inflammatory agents using egg white procedure. Due to their hydrogen bonding interaction with crucial amino acids in COX-2 isozymes Arg120, Tyr355, and Ser530, all tested compounds in molecular docking demonstrated significant activities compared with diclofenac, naproxen, and 6MNA as reference drugs. The data obtained from docking studies were highly correlated with that obtained from the in vivo assay in which compounds 3c, 6c, and 7c showed the best docking PLP fitness which were 91.35, 89.66, and 92.09 respectively with COX-2. Other compounds 2c, 4c, 5c, 6a, 6b, showed a PLP fitness above 80. Many of the non-steroidal anti-inflammatory drugs (NSAIDs) currently marketed produce severe gastro-toxic side effects and have low selectivity toward COX-2 enzyme. The benefits of producing NSAIDs without these side effects and with higher selectivity are obvious, particularly for patients requiring long-term therapy. The aim of this investigation was to produce novel NSAIDs, based on Nabumetone, that exhibit little or no gastro-toxicity and higher selectivity. This research offered helpful direction for the identification of novel pyrazole and thiadiazole anti-inflammatory compounds.

Key Words: Cambridge Crystallographic Data Center, Lipinski Rule, Molecular Docking, Nabumetone.

استخدام الحاسوب (للالتحام الجزيئي) لدراسة مشتقات حلقية غير متجانسة جديدة مكونة من حلقة خماسية (3،4،1-أوكساديازول و4،3،1-ثياديازول) كمثبطات واعدة لانزيمات السيكلواوكسجينيز. صفا عدنان محمود*, منذر فيصل مهدي*, اياد محمد رشيد رؤوف**، طلال أبو رجيع*** *قسم الكيمياء الصيدلانية، كلية الصيدلة، الجامعة المستنصرية، بغداد، العراق. ** كلية الصيدلة، جامعة الفراهيدي، بغداد، العراق.

AJPS (2024)

237

 \odot

AJPS is licensed under a Creative Commons Attribution 4.0 International License

الخلاصة:

الكلمات المفتاحية: مركز بيانات التصوير البلوري في كامردج، قاعدة لبنسكي، الالتحام الجزيئي، نابيوميتون

Introduction

In recent vears. the design and development of novel pharmaceutical agents have been significantly driven by computational methods and tools that facilitate in silico studies (1). One such area of research focuses on the synthesis of heterocyclic compounds, particularly those bearing the 1,3,4-oxadiazole and 1,3,4thiadiazole moieties, which have shown immense promise potential as cyclooxygenase (COX) inhibitors (2). The inhibition of COX enzymes, specifically COX-1 and COX-2, has been a key therapeutic for strategy various inflammatory conditions, pain relief. osteoarthritis, low back pain, rheumatoid arthritis and as chemo-preventive agents in cancer (3).

1,3,4-oxadiazole and 1,3,4-thiadiazole are five-membered heterocyclic ring systems that have garnered considerable attention due to their diverse pharmacological activities and structural versatility. These heterocycles are characterized by the presence of nitrogen, oxygen, and sulfur atoms, allowing them to exhibit a wide range of biological effects through interactions with specific molecular targets (4).

The 1,3,4-oxadiazole ring is composed of two nitrogen atoms and one oxygen atom, while the 1,3,4-thiadiazole ring contains two nitrogen atoms and one sulfur atom. This subtle difference in composition physicochemical imparts distinct properties to each heterocycle, making them attractive candidates for drug design and development. Researchers have found subtle modifications that to the heterocyclic structures can significantly influence the biological activity and selectivity of the compounds (5).

The inhibition of cyclooxygenase enzymes, particularly COX-2, has been a major focus in drug discovery, as COX-2 is associated with inflammation and pain, while COX-1 plays a vital role in maintaining physiological functions. including gastric mucosal integrity and platelet aggregation. Therefore, selective COX-2 inhibitors have been sought after to minimize adverse effects associated with non-selective COX inhibitors, such as gastrointestinal complications and bleeding disorders (6).

AJPS (2024)

238

The structure-activity relationship (SAR) is a critical aspect of drug design that focuses on understanding how changes in the molecular structure of a compound affect its biological activity. In the context of COX-2 inhibitors, SAR studies have revealed key structural features necessary for potent and selective inhibition include: the presence of a carboxylic acid group: The carboxylic acid moiety in COX-2 inhibitors forms hydrogen bonds with key amino acid residues in the active site. contributing to strong interactions and improved binding affinity, hydrophobic substituents: Hydrophobic groups attached scaffold enhance to the core the lipophilicity of the molecule, enabling it to fit snugly within the hydrophobic channel of the COX-2 active site, and size and flexibility: Optimal COX-2 inhibitors often possess a specific size and flexibility that allows them to access and interact with critical amino acid residues within the active site (7.8).

Strategies for Targeting COX-2 Enzyme includes: Selective COX-2 Inhibition: One of the primary strategies in targeting the COX-2 enzyme is to develop selective COX-2 inhibitors that spare COX-1 activity. This selectivity reduces the risk of adverse effects associated with nonselective COX inhibitors, such as gastrointestinal complications, covalent and Non-Covalent Inhibitors: COX-2 inhibitors can be designed as covalent or inhibitors. non-covalent Covalent inhibitors form a covalent bond with the enzyme, while non-covalent inhibitors rely reversible interactions, on such as hydrogen bonding and van der Waals forces, virtual Screening and Molecular Docking: In silico methods like virtual screening and molecular docking play a crucial role in identifying potential COX-2 Virtual screening involves inhibitors. screening large compound libraries to promising candidates, identify while molecular docking predicts the binding interactions between ligands and the COXactive site, natural Products 2 and Combinatorial Chemistry: Natural products have been a valuable source of lead compounds for COX-2 inhibition. Combinatorial chemistry techniques enable the synthesis of diverse compound libraries to explore new chemical space for potential COX-2 inhibitors, and finally; dual COX and LOX Inhibition: Some researchers have explored the dual inhibition of COX and lipoxygenase (LOX) enzymes as a strategy to achieve enhanced anti-inflammatory effects and reduce side effects (9,10).

To achieve the goal of developing potent and selective COX inhibitors, computational methods have proven to be invaluable. Molecular docking, a widely employed computational technique, allows to predict the researchers binding interactions between ligands and target proteins. [11] In this study, the GOLD suite was employed for molecular docking analysis to gain insights into the binding modes and affinities of the newly designed 1,3,4-thiadiazole 1.3.4-oxadiazole and derivatives with the active sites of COX enzymes (12).

Furthermore, in silico ADME (Absorption, Distribution, Metabolism, and Excretion) evaluation is crucial in the early stages of drug discovery assess the to pharmacokinetic properties of potential drug candidates. The Swiss ADME website is a reliable and user-friendly platform that aids researchers in predicting key ADME parameters, helping to identify compounds with favorable pharmacokinetic profiles and increased chances of successful development (13).

Methodology

The computational approach used in this investigation is further elucidated in figure 1. The investigation of molecular docking for the compounds (1-7c) **table 1**. was conducted using the CCDC GOLD Suite

AJPS (2024)

(version 2022.2.0). The visualization of protein structures, ligands, hydrogen bonding interactions, short contacts, and bond length estimates was performed using the CCDC Hermes visualizer program (version 2022.2.0). ChemDraw version 20.1 was used to generate two-dimensional representations of the ligands, whereas ChemBio 3D version 20.1 was employed

to construct three-dimensional models and optimize the ligands' energy. The Swiss ADME server was used to provide pharmacokinetic predictions on the characteristics, namely absorption, distribution, metabolism, and excretion synthesized (ADME), of the pharmaceutical compounds (14).

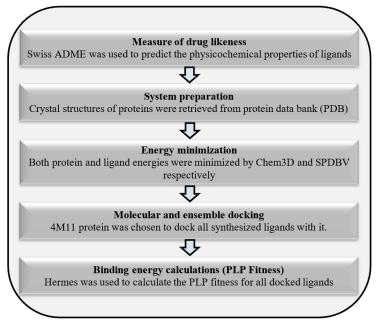


Figure 1: Outline of computational protocol.

	Table 1: Structures and names of synthesized compounds.						
Com	Structure	IUPAC/ Smile Name					
р.							
1	0	4-(6-methoxynaphthalen-2-yl)butan-2-one					
		COC1=CC2=CC=C(CCC(C)=O)C=C2C=C1					
2a	l l	(E)-2-(4-(6-methoxynaphthalen-2-yl)butan-2-ylidene)hydrazine-1-					
		carboxamide					
		COC1=CC2=CC=C(CC\C(C)=N\NC(N)=O)C=C2C=C1					
2b	\$	(E)-2-(4-(6-methoxynaphthalen-2-yl)butan-2-ylidene)hydrazine-1-					
	N N	carbothioamide					
		COC1=CC2=CC=C(CC\C(C)=N\NC(N)=S)C=C2C=C1					

Table 1: \$	Structures and names of synthesized compounds.	
noturo	HIDAC/ Smile Nome	Ì

AJPS (2024)

 \odot

Com	Structure	IUPAC/ Smile Name
p.	Structure	
2c		(E)-1-(2,4-dinitrophenyl)-2-(4-(6-methoxynaphthalen-2-yl)butan- 2-ylidene)hydrazine
		COC1=CC2=CC=C(CC\C(C)=N\NC3=C(C=C(C=C3)[N+]([O-])=O)[N+]([O-])=O)C=C2C=C1
3 a	H	4-formyl-3-(2-(6-methoxynaphthalen-2-yl)ethyl)-1H-pyrazole-1- carboxamide
		COC1=CC2=CC=C(CCC3=NN(C=C3C=O)C(N)=O)C=C2C=C1
3b	H,N	4-formyl-3-(2-(6-methoxynaphthalen-2-yl)ethyl)-1H-pyrazole-1- carbothioamide
		COC1=CC2=CC=C(CCC3=NN(C=C3C=O)C(N)=S)C=C2C=C1
3c		1-(2,4-dinitrophenyl)-3-(2-(6-methoxynaphthalen-2-yl)ethyl)-1H- pyrazole-4-carbaldehyde
		COC1=CC2=CC=C(CCC3=NN(C=C3C=O)C3=C(C=C(C=C3)[N +]([O-])=O)[N+]([O-])=O)C=C2C=C1
4 a		(Z)-4-(((hydrazinecarbonyl)imino)methyl)-3-(2-(6- methoxynaphthalen-2-yl)ethyl)-1H-pyrazole-1-carboxamide
		COC1=CC2=CC=C(CCC3=NN(C=C3\C=N/NC(N)=O)C(N)=O) C=C2C=C1
4b	H ₂ N = S	(Z)-N-((1-carbamothioyl-3-(2-(6-methoxynaphthalen-2-yl)ethyl)- 1H-pyrazol-4-yl)methylene)hydrazinecarboxamide
		COC1=CC2=CC=C(CCC3=NN(C=C3\C=N/NC(N)=O)C(N)=S)C =C2C=C1
4c		(Z)-N-((1-(2,4-dinitrophenyl)-3-(2-(6-methoxynaphthalen-2- yl)ethyl)-1H-pyrazol-4-yl)methylene)hydrazinecarboxamide
		COC1=CC2=CC=C(CCC3=NN(C=C3\C=N/NC(N)=O)C3=C(C= C(C=C3)[N+]([O-])=O)[N+]([O-])=O)C=C2C=C1
5a		4-(5-amino-1,3,4-thiadiazol-2-yl)-3-(2-(6-methoxynaphthalen-2-yl)ethyl)-1H-pyrazole-1-carboxamide
		COC1=CC2=CC=C(CCC3=NN(C=C3C3=NN=C(N)O3)C(N)=O) C=C2C=C1
5b		4-(5-amino-1,3,4-oxadiazol-2-yl)-3-(2-(6-methoxynaphthalen-2-yl)ethyl)-1H-pyrazole-1-carbothioamide
		COC1=CC2=CC=C(CCC3=NN(C=C3C3=NN=C(N)O3)C(N)=S) C=C2C=C1

AJPS (2024)

() BY

Com	Star of	HIDAC/Smile Nome
Com	Structure	IUPAC/ Smile Name
<u>р.</u>	įG ₂	
5c		5-(1-(2,4-dinitrophenyl)-3-(2-(6-methoxynaphthalen-2-yl)ethyl)-
	ha,	1H-pyrazol-4-yl)-1,3,4-oxadiazol-2-amine
	$\langle J J \rangle_{\gamma}$	COC1=CC2=CC=C(CCC3=NN(C=C3C3=NN=C(N)O3)C3=C(C
	N NH5	=C(C=C3)[N+]([O-])=O)[N+]([O-])=O)C=C2C=C1
6a	H ² H	(Z)-4-(((hydrazinecarbonothioyl)imino)methyl)-3-(2-(6-
		methoxynaphthalen-2-yl)ethyl)-1H-pyrazole-1-carboxamide
	N-N /	COC1=CC2=CC=C(CCC3=NN(C=C3\C=N/NC(N)=S)C(N)=O)C
	n S	=C2C=C1
6b	H ₂ N	(Z)-4-(((hydrazinecarbonothioyl)imino)methyl)-3-(2-(6-
		methoxynaphthalen-2-yl)ethyl)-1H-pyrazole-1-carbothioamide
	N-N -N	COC1=CC2=CC=C(CCC3=NN(C=C3\C=N/NC(N)=S)C(N)=S)C
	ŝ	=C2C=C1
6c	NO	(Z)-N-((1-(2,4-dinitrophenyl)-3-(2-(6-methoxynaphthalen-2-
UC		yl)ethyl)-1H-pyrazol-4-yl)methylene)hydrazinecarbothioamide
		yi)ettiyi)-iii-pyiazoi-+-yi)inettiyiene)iiyurazmeetti oottioatinde
	N-N NH2	COC1=CC2=CC=C(CCC3=NN(C=C3\C=N/NC(N)=S)C3=C(C=
	ll S	C(C=C3)[N+]([O-])=O)[N+]([O-])=O)C=C2C=C1
7a	F2V	4-(5-amino-1,3,4-thiadiazol-2-yl)-3-(2-(6-methoxynaphthalen-2-
/a	N-H	
		yl)ethyl)-1H-pyrazole-1-carboxamide
		COC1 $CC2$ CC $C(CCC2$ NN(C $C2C2$ NN(C(N))S2)C(N) O)
	or v v	COC1=CC2=CC=C(CCC3=NN(C=C3C3=NN=C(N)S3)C(N)=O)
71	H ₂ N	C=C2C=C1
7b		4-(5-amino-1,3,4-thiadiazol-2-yl)-3-(2-(6-methoxynaphthalen-2-
		yl)ethyl)-1H-pyrazole-1-carbothioamide
	N N N	COC1=CC2=CC=C(CCC3=NN(C=C3C3=NN=C(N)S3)C(N)=S)
	101	C=C2C=C1
7c		5-(1-(2,4-dinitrophenyl)-3-(2-(6-methoxynaphthalen-2-yl)ethyl)-
		1H-pyrazol-4-yl)-1,3,4-thiadiazol-2-amine
	N-N	
		COC1=CC2=CC=C(CCC3=NN(C=C3C3=NN=C(N)S3)C3=C(C=
		C(C=C3)[N+]([O-])=O)[N+]([O-])=O)C=C2C=C1
	N'N	

ADME Methods

Using the Swiss ADME program, which predicts physicochemical characteristics and pharmacokinetic features, we drew all of the ligands (1–7c) in Chem Sketch (v. 12). BOILED-EGG was utilized to determine the small molecule's lipophilicity and polarity (15,16).

Preparing protein receptor and ligands: AJPS (2024)

Swiss PDB Viewer (v. 3.7) was used to fill in missing atoms in the crystal structures of cyclooxygenase COX-1 [PDB ID: 3N8Z] and COX-2 [PDB ID: 4M11] from the Protein Data Bank (PDB). In order to assure the appropriate ionization and tautomeric states of amino acid residues, we rectified the crystal structures of the proteins obtained by downloading by

AJPS is licensed under a Creative Commons Attribution 4.0 International License

introducing hydrogen atoms. Our synthesized ligands' energies were minimized using the MM2 force field in CheBio3D (v.20.0).

Docking approaches:

Molecular docking was performed using the commercially available version of Genetic Optimization for Ligand Docking (GOLD) (v. 2022.2.0) (16,17). In addition, the receptors for the docking procedure were prepared using the Hermes visualizer program included in the GOLD Suite. All of the protein residues in the downloaded protein structure complexes within ten Ao of the reference ligands constitute the binding location used for GOLD docking. For the purpose of ensemble docking (18), five COX-2 proteins (1pxx, 4m11, 3LN1, 3KK6, and 5kIR) were downloaded from the PDB database. Therefore, 4m11 was selected for the docking study method. CCDC Superstar was used to locate the cavity and active site. The protein's reference ligand was utilized to calculate the active site radius (10 A°).

The experimental design used the chemscore kinase as the foundation. The assessment criteria were computed with the ChemPLP algorithm. The docking parameters were maintained at their normal values, and the solutions were assessed using the Piecewise Linear Potential (PLP) fitness function. The determination of protein-ligand steric complementarity is achieved by the use of ChemPLP, a computational algorithm that incorporates distance and angle-dependent hydrogen interactions. The evaluation of the interaction between the amino acid residues of the COX-1 and COX-2 proteins and the synthesized ligands was conducted by the analysis of docking data, including the binding mode, docked posture, and

binding free energy. The present study aimed to assess the interaction between the amino acid residues of proteins COX-1 and COX-2 and our manufactured ligands by investigating the docking data, including the binding mode, docked posture, and binding free energy.

Through the integration of molecular docking and ADME evaluation, this study aimed to identify new and potent COX inhibitors among the 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives, potentially paving the way for the discovery of safer and more effective anti-inflammatory agents.

Results

ADME Results

Adsorption, Distribution, Metabolism, and Excretion (ADME) analysis was performed on all produced chemical compounds **table2.** Orally given drugs, as a general rule, should have a molecular weight (M.wt) of less than 500, less than 5 hydrogen bond donor sites, and fewer than 10 hydrogen bond acceptor sites, according to the Lipinski rule.

Since topological polar surface area (TPSA) is an additional essential feature associated with drugs bioavailability, we computed it as well. Therefore, molecules having a TPSA >140 A° are assumed to have poor oral bioavailability since they are absorbed passively (19). Our results showed that compounds 2a-c, 3a-c, 4a, 4c, & 5a) have TPSA below 140, and the bioavailability for all ligands was 0.55 which mean that all ligands reach the systemic circulation, while compounds 4b, 5b, 5c, 6a-c, & 7-c have TPSA more than 140, with bioavailability score 0.55 except 4c, 5c, 6c, 7c showed bioavailability score 0.17.

	N 45-1-1						-		ed comp			
#		tatable box			MR		ilogp		S ESOL Solub) ESC	DL Solubility (mol
1	228.29	4	2	0	70.03	26.3	2.74	-3.37	9.8	0E-02	_	4.29E-04
2a	285.34	6	3	2	84.42	76.71	1.88	-3.01	2.7	6E-01		9.67E-04
2b	301.41	6	2	2	91.62	91.73	3.09	-3.49	9.7	1E-02		3.22E-04
2c	408.41	8	6	1	119.98	125.26	3.08	-5.65	9.0	7E-04		2.22E-06
3a	323.35	6	4	1	90.43	87.21	2.5	-3.47		9E-01		3.36E-04
3b	339.41	6	3	1	97.63	102.23	2.53	-3.95		0E-02		1.12E-04
			7	0								
3c	446.41	8			124.85	135.76	2.59	-5.38		6E-03	_	4.17E-06
4a	380.4	8	5	3	104.6	137.62	1.87	-3.13		1E-01		7.39E-04
4b	396.47	8	4	3	111.8	152.64	1.67	-3.61		5E-02		2.46E-04
4c	503.47	10	8	2	139.02	186.17	1.7	-5.05	4.4	6E-03		8.86E-06
5a	378.38	6	6	2	102.74	135.08	2.63	-3.68	7.9	2E-02		2.09E-04
5b	394.45	6	5	2	109.94	150.1	2.62	-4.16	2.7	5E-02		6.97E-05
5c	501.45	8	9	1	137.16	183.63	2.81	- 5. 57	1.3	6E-03		2.70E-06
6a	396.47	8	4	3	111.8	152.64	2.71	-3.61		5E-02		2.46E-04
6b	412.53	8	3	3	119	167.66	2.8	-4.09		8E-02		8.19E-05
6c	519.53	10	7	2	146.22	201.19	2.76	- 5. 53		3E-03	_	2.95E-06
7a	394.45	6	5	2	108.35	150.18	2.82	-4.16		1E-02	_	6.87E-05
7b	410.52	6	4	2	115.55	165.2	2.63	-4.64	9.3	9E-03		2.29E-05
7c	517.52	8	8	1	142.77	198.73	2.57	-6.05	4.5	9E-04		8.87E-07
#	ESO	L Class	Ali Log S	Ali Class i	cos-IT Log	GI absorptio	n BBB p	permeant	Pgp substrate	CYP1A2 inh	ibitor	CYP2C19 inhibit
1	So	uble	-3.3	Soluble	-5.35	High		Yes	No	Yes		Yes
2a	So	uble	-3.55	Soluble	-5.13	High		Yes	No	Yes		No
2b	So	uble	-4.49	erately sol	-5.32	High		No	No	Yes		Yes
2c	Moderat	ely soluble	-7.81	orly solub	-6.73	Low		No	Yes	No		Yes
3a	So	uble	-3.96	Soluble	-5.06	High		No	No	Yes		Yes
3b	So	uble	-4.89	erately sol	-5.25	High		No	No	Yes		Yes
3c	Moderat	ely soluble		orly solub	-6.64	Low		No	No	No		Yes
4a		uble		erately sol	-4.8	High		No	Yes	No		No
4b		uble		erately sol	-4.99	Low		No	No	No		No
4c		ely soluble		orly solub	-6.37	Low		No	No	No		No
5a		uble		erately sol	-5.7	High		No	Yes	Yes		No
5b		ely soluble		erately sol	-5.89	Low		No	No	No		No
50 50		ely soluble		porly solub	-7.26	Low		No	No	No		Yes
6a								No				No
		uble		erately sol	-4.99	Low			No	No		
6b		ely soluble		orly solub	-5.18	Low		No	No	No		Yes
6c		ely soluble		orly solub	-6.55	Low	_	No	No	No		No
7a		ely soluble		erately sol	-5.74	Low		No	No	No		No
7b 7c		ely soluble soluble		orly solub orly solub	-5.93 -7.3	Low Low	_	No No	No No	No No		Yes Yes
70	FOOIIy	Soluble	-0.00		-7.5	LOW		NO	NO	NO		165
#	CYP 2C		r CYP2		or CYP3			log Kp (cm/s) Lipinski #violations				
1		No	_	Yes		No		-5.51	0			0.55
2a		No		No		No		-6.41	0			0.55
2b		Yes		No		Yes		-6.08	0			0.55
2c		Yes		No		Yes		-4.94	0			0.55
3a		Yes		No		No		-6.51	0			0.55
3b		Yes		No		Yes		-6.18	0			0.55
3c		Yes		No		Yes		-5.84	0			0.55
4a		No		No		No		-7.42	0			0.55
4b		No		No		No		-7.09	0			0.55
4c		Yes		No		Yes		-6.74	2			0.17
5a		No		No		No		-7.07	0			0.55
5b		Yes		No		Yes		-6.75	0			0.55
5c		Yes		No		Yes		-6.4	2			0.17
		Yes		No		Yes		-7.09	0			0.55
6a		Yes		No		Yes		-6.76	0			0.55
6a 6b				No		Yes		-6.42	2			0.17
6b		Yes		NU		163						
6b 6c		Yes Yes										
6b		Yes Yes Yes		No No		Yes Yes		-6.74 -6.41	0			0.55 0.55

Table? ADME properties of synthesized compounds

AJPS (2024)

() BY

AJPS is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

Docking Results

The molecular interactions between the active binding sites of the protein target and the synthesized compounds 1-7c were investigated using docking studies conducted using the GOLD Suite program. These experiments aimed to estimate the selectivity and binding energies of the created compounds for COX-1 and COX-2.

The PLP fitness of compounds 1-7c, 6MNA, diclofenac, and naproxen was assessed in relation to their ability to form complexes in the active sites of COXs. The inhibitory action of these compounds was then compared. Table 3 presents the range of PLP fitness values for the docked compounds on COX 1 and COX 2, which vary from 49.32 to 72.71 and 62.35 to 92.09, respectively. Table 4 displays the 3D configurations of many compounds that were produced. These structures exhibit hydrogen bonding and establish close interactions with significant amino acids. The consistency between our docking findings and experimental data obtained from an in vivo examination is quite close.

In order minimize the potential for inadvertent selection of an unsuitable protein model, enhance pose prediction and virtual screening enrichments, and ensure the accuracy of the docking process, we conducted ensemble docking as the initial step, employing a set of five distinct COX-2 proteins.

Hydrogen bonds and short contacts were identified using docking analysis to be present between the final ligand library and the following residues: Arg120, Tyr355, Ser530, Val116, Tyr385, Gly526, Val523, Trp387, Ala527, Leu531, Leu534, Leu345, Leu539, Val89, and Val349.

The determination of short contacts and hydrogen bonding distances between a specific protein atom and our synthesized ligands (20) relies on the measurement of bond lengths below 3Å and the inclusion of GOLD.

The brief contacts are characterized by several interaction forces, including as van der Waals, electrostatic, steric, pi-pi stacking, and dipole-dipole interactions.

The binding of five authorized NSAIDs (as shown in Table 5) involves hydrogen bond interactions between Arg120 and Tyr355. These interactions are seen in compounds 2a, 2c, 3a, 3c, 4c, 5a, and 7a. Compounds 3c, 5c, and 6c have hydrogen bonding interactions with Ser530, which serves as binding for diclofenac, the site lumiracoxib, and tolfenamic acid. Compound 7c has a single hydrogen bond with Tyr355, similar to the hydrogen bonding seen in aspirin.

Table 3: The present study investigates the binding energies of Nabumetone derivatives and reference nonsteroidal anti-inflammatory drugs (NSAIDs) when docked with cyclooxygenase-2 (COX-2) ** and cyclooxygenase-1 (COX-1).*.

Compounds	COX-2	Amino Acids	Amino Acids Included in	COX-1
	(PLP	Included in H-	Hydrophobic Interactions	(PLP
	Fitness)	bonding		Fitness)
	Kcal/Mol			Kcal/Mol
1	60.22	Tyr355, Arg120	Gly526, Val523, Trp387, Arg120 and	67.36
			Tyr355	
2a	66.85	Tyr355, Arg120	Trp387, Gly526	65.12
2b	62.35	Arg120	Trp387, Tyr355, Arg120, Leu384	62.02
2c	80.97	Tyr355, Arg120	Arg120, Ser530, Tyr115	62.51
3a	74.75	Tyr355, Arg120	Trp387, Tyr355, Arg120, Ser530	68.03
3b	72.32	Tyr385, Arg120	Leu531, Arg120, Val523, Trp 387,	66.98

AJPS (2024)

245

AJPS is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

0 1	COVA		A ' A 'I T I I I'	COV 1
Compounds	COX-2	Amino Acids	Amino Acids Included in	COX-1
	(PLP	Included in H-	Hydrophobic Interactions	(PLP
	Fitness)	bonding		Fitness)
	Kcal/Mol			Kcal/Mol
			Leu 384	
3c	91.35	Arg120, Tyr355,	Tyr355, Arg120, Ser530,	49.36
		Ser530		
4a	80.47	Ala527, Tyr355	Ala527, Phe381, Val116, Val523,	61.52
			Tyr355	
4b	70.08	Tyr355, Tyr115,	Tyr115, Arg120, Tyr355, Ala527	63.25
		Ala 527		
4c	83.69	Tyr355, Arg120	Tyr355, Leu93, Val89, Arg120	51.89
5a	72.80	Tyr355, Arg120	Arg120, Tyr355, Val523, Gly526,	63.17
			Tyr385, Trp387, Leu384	
5b	68.98	Ala527, Arg120	Leu531, Ala527, Arg120, Leu359,	72.71
			Tyr355, Ser353	
5c	80.40	Ser530	Leu531, Leu93, Tyr355, Val 523	58.19
ба	85.06	Arg120	Val 523, Arg120, Leu359, tyr355	60.08
6b	84.56	Arg120, Ala 527	Leu359, Val349, Val116, Ala527,	59.87
		0	Arg120, Tyr355, Trp387, Leu384,	
			Gly526, Val523	
6c	89.66	Ser530, Tyr115	Leu531, Ser530, Tyr115,	51.79
7a	74.32	Tyr355, Arg120	Val116, Ala527, Arg120, Tyr355,	60.38
			Gly526, Leu384, Trp387,	
7b	72.47	Arg120	Ile345, Leu531, Val349, Ala527,	61.89
		C	Val523, Trp387	
7c	92.09	Tyr355	Val116, Ala527, Tyr355, Arg120	49.32
Diclofenac	71.7	Ser530, Tyr385	Ala527, Val349, Gly526 and Trp387	68.60
Naproxen	74.23	Arg120, Tyr355	Ser530, Ala527, Gly526, Val349,	63.12
			Leu352 and Val523	

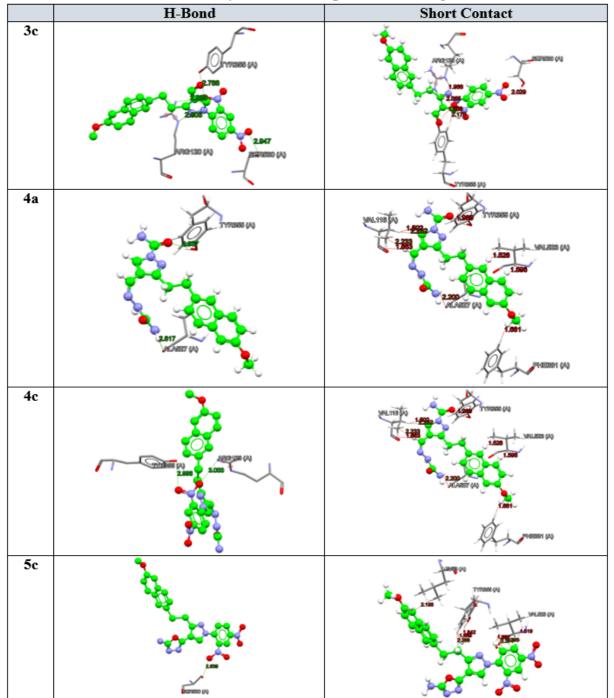


Table 4: 3D structure of some synthesized compounds* binding to active amino acids.

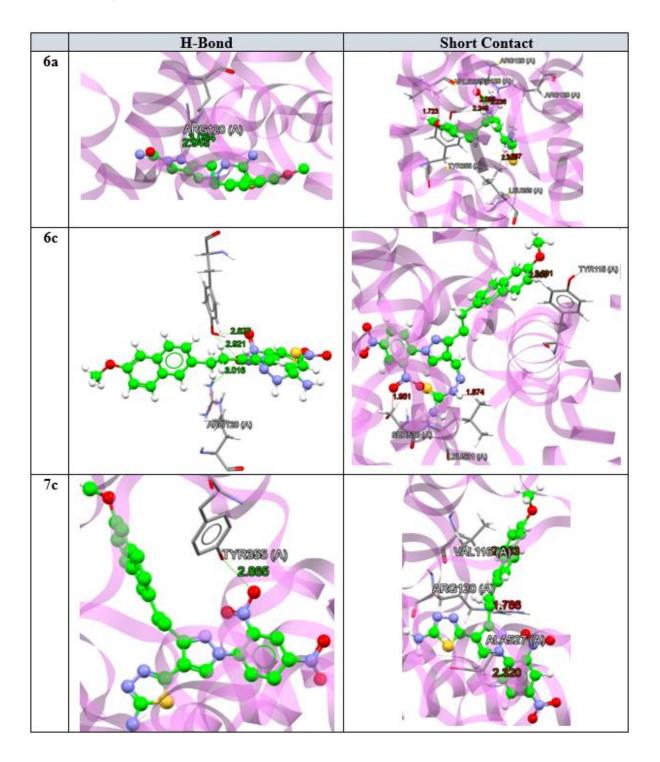


Table 5: The binding site interaction of the five approved NSAIDs showing H-bondingwith Arg120 and Tyr355.

Des-methylflurbiprofen (Arg120 &	Flurbiprofen (Arg120 & Tyr355)
Tyr355) [21]	[22]
	Valtavartijusta Alustra Levista H ₂ N H ₂
Indomethacin (Arg120 & Tyr355) [23]	Naproxen (Arg120 & Tyr355) [22]
Vectorian Aug 20A Aug 20A Vectorian Aug 20A Vectorian Aug 20A Vectorian Aug 20A Vectorian Aug 20A Vectorian Aug 20A	Argi20A Vui348A H ₂ N ⁻ -H H ₂ N ⁻ -H Tyr355A
Ibuprofen (Arg120 & Tyr355) [24]	
Arg120A Hight H Hight H H	

Discussion

All compounds in the study satisfied Lipinski's criterion, with the exception of compounds 4c. 5c. 6c. and 7c. Additionally, it satisfied the criteria of topological descriptors and molecular drug-likeness structural keys such as LogP and Log S. The measure of the amount of absorption of a molecule from the gut after oral delivery is known as the GI absorption score. The absorption would exhibit a high level of excellence if the outcome were to be significantly elevated. In the current investigation, it was seen that the

gastrointestinal (GI) absorption of the majority of compounds was found to be high, indicating their potential for efficient absorption from the intestinal tract. However, it should be noted that compounds 2c, 3c, 4b, 4c, 5b, 5c, 6a-c, and 7a-c exhibited lower GI absorption, suggesting a reduced likelihood of effective absorption from the intestine for these specific compounds.

Due to the disparity in size between the COX-2 active site and the COX-1 active site, the insertion of synthesized compounds with substantial structures into

AJPS (2024)

AJPS is licensed under a Creative Commons Attribution 4.0 International License

the COX-1 enzyme pocket poses a challenge. However, certain synthesized compounds exhibit favorable docking outcomes with COXs and are capable of fitting within the COX-2 active site, as evidenced by the data presented in table The compounds 3c, 6c, and 7c 5. exhibited the greatest docking PLP fitness values while interacting with COX-2, with respective values of 91.35, 89.66, and 92.09. Similarly, these compounds also shown high docking PLP fitness values when interacting with COX-1, with respective values of 49.36, 51.79, and 49.32. The PLP fitness values for the other compounds, as shown in table 3, exceeded 80. These compounds included 2c, 4c, 5c, 6a, and 6b.

Conclusion

In conclusion, the investigation of 1,3,4oxadiazole 1,3,4-thiadiazole and derivatives as COX inhibitors through in silico methods represents a promising drug discovery approach in and development. The computational tools utilized, such as the GOLD suite for docking and the Swiss ADME website for ADME prediction, significantly contribute to streamlining the identification and optimization of potential drug candidates. By exploiting the structural versatility and pharmacological properties of these heterocyclic rings, researchers strive to contribute to the advancement of pharmaceutical science and provide novel therapeutic options for various diseases and conditions.

References:

1- Sabe VT, Ntombela T, Jhamba LA, Maguire GE, Govender T, Naicker T, Kruger HG. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. European Journal of Medicinal Chemistry. 2021 Nov 15; 224:113705.

- 2- Palaska E, Şahin G, Kelicen P, Durlu NT, Altinok G. Synthesis and antiinflammatory activity of 1acylthiosemicarbazides, 1, 3, 4oxadiazoles, 1, 3, 4-thiadiazoles and 1, 2, 4-triazole-3-thiones. Il Farmaco. 2002 Feb 1;57(2):101-7.
- 3- Upadhyay A, Amanullah A, Joshi V, Dhiman R, Prajapati VK, Poluri KM, Mishra A. Ibuprofen-based advanced therapeutics: Breaking the inflammatory link in cancer, neurodegeneration, and diseases. Drug Metabolism Reviews. 2021 Jan 2;53(1):100-21.
- 4- Majhi S, Saha I. Visible Light-promoted Synthesis of Bioactive N, Nheterocycles. Current Green Chemistry. 2022 Dec 1;9(3):127-44.
- 5- Desai KR, Patel BR. Various Synthetic Strategies and Therapeutic Potential of Thiadiazole, Oxadiazole, Isoxazole and Isothiazole Derivatives. InN-Heterocycles: Synthesis and Biological Evaluation 2022 Apr 24 (pp. 221-274). Singapore: Springer Nature Singapore.
- 6- Ferrer MD, Busquets-Cortés C, Capó X, Tejada S, Tur JA, Pons A, Sureda A. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Current medicinal chemistry. 2019 Jun 1;26(18):3225-41.
- 7- Fitzpatrick, F. A., & Wynalda, M. A. (1990). Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro. Journal of Biological Chemistry, 265(19), 10937-10940.
- 8- Allawi MM, Mahdi MF, Raauf AM. Synthesis, anti-inflammatory, molecular docking and ADME studies of new derivatives of ketoprofen as cyclooxygenases inhibitor. Al Mustansiriyah Journal of Pharmaceutical Sciences. 2019 Dec 1;19(4):125-39.
- 9- Eddershaw, P. J., & Beresford, A. P. (2001). Design of selective COX-2 inhibitors: a journey into the structure-

 \odot

AJPS (2024)

250

activity relationships of a class of antiinflammatory drugs. Current Pharmaceutical Design, 7(15), 1509-1531.

- 10- Chandrasekhar, S., & Madhusudhan, G. (2016). Strategies and recent advances in the discovery of selective cyclooxygenase-2 inhibitors. Future Medicinal Chemistry, 8(5), 569-585.
- 11- Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. International journal of molecular sciences. 2019 Sep 4;20(18):4331.
- 12-Eren G, Macchiarulo A, Banoglu E. From Molecular Docking to 3D-Quantitative Structure-Activity Relationships (3D-QSAR): Insights into the Binding Mode of 5-Lipoxygenase Inhibitors. Molecular Informatics. 2012 Feb;31(2):123-34.
- 13- Jameel BK, Raauf AM, Abbas WA. Synthesis, characterization, molecular docking, in silico ADME study, and in vitro cytotoxicity evaluation of new pyridine derivatives of nabumetone. Al Mustansiriyah Journal of Pharmaceutical Sciences. 2023 Jul 20;23(3):250-62.
- 14- Smith, M. B.; March, J. In March's "Advanced Organic Chemistry, Reactions, Mechanisms, and Structure", 5th ed.; Wiley-Interscience: New York; 2001.
- 15-Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific reports. 2017 Mar 3; 7:42717.
- 16-Daina A, Zoete V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016 Jun 6;11(11):1117-21
- 17- Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible

docking. Journal of molecular biology. 1997 Apr 4;267(3):727-48.

- 18- Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of molecular biology. 1995 Jan 1;245(1):43-53.
- 19-Webb EF, Griswold DE. Microprocessor-assisted plethysmograph for the measurment of mouse paw volume. Journal of pharmacological methods. 1984 Sep 1;12(2):149-53.
- 20- Adeniyi AA, Ajibade PA. Comparing the suitability of autodock, gold and glide for the docking and predicting the possible targets of Ru (II)-based complexes as anticancer agents. Molecules. 2013 Mar 25;18(4):3760-78.
- 21-Patrick GL. An introduction to medicinal chemistry. 1st ed. Oxford university press; 1995, p.31.
- 22-Windsor MA, Hermanson DJ, Kingsley PJ, Xu S, Crews BC, Ho W, Keenan CM, Banerjee S, Sharkey KA, Marnett LJ. Substrate-selective inhibition of cyclooxygenase-2: development and evaluation of achiral profen probes. ACS medicinal chemistry letters. 2012 Aug 15;3(9):759-63.
- 23- Duggan KC, Hermanson DJ, Musee J, Prusakiewicz JJ, Scheib JL, Carter BD, Banerjee S, Oates JA, Marnett LJ. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nature chemical biology. 2011 Nov;7(11):803.
- 24- Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Penning TD, Seibert K, Isakson PC, Stallings WC. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996 Dec;384(6610):644.

 \odot

AJPS (2024)

251

AJPS is licensed under a <u>Creative Commons Attribution 4.0 International License</u>