Generalized SF-Rings

Raida D. Mahmood¹ and Abdullah M. Abdul-Jabbar²

¹ Department of Mathematics, College of Computer and Mathematical Science, University of Mosul, Mosul, Iraq ² Department of Mathematics, College of Science, University of Salahaddin-Erbil, Kurdistan Region, Iraq

Abstract:

In the present paper we define a new generalization of flatness it is called generalized flat, also we define a new generalization of SF-rings due to Rege M. B. in [8], it is called generalized SF-rings. Furthermore, we find several

Introduction:

Throughout this paper, R denotes an associative ring with identity and all modules are unital right R-module unless otherwise stated. For any non zero element a of a ring R, r(a) and $\ell(a)$ are denote the right and left annihilators of a, respectively. J(R) will be stand for the Jacobson radical of R. Recall that:

- (1) A ring R is called reduced if it contains no nonzero nilpotent elements
- (2) A ring R is called semi-prime if it contains no nozero nilpotent ideals.
- (3) A ring R is called π -regular (strongly π -regular) [2] if for every $a \in R$, there exists a positive integer n, depending on a and an element $b \in R$ such that $a^n = a^n ba^n (a^n = a^{n+1}b)$. Or equivalently R is strongly π -regular if and only if $a^n R = a^{2n} R$ [1]. It is easy to see that R is strongly π -regular if and only if $Ra^n = Ra^{2n}$.
- (4) A ring R is called fully right(left) idempotent if every right(left) ideal of R is idempotent.
- (5) An ideal I of a ring R is called left semi π -regular [1] if for every $a \in I$, there exists $b \in I$ and a positive integer n such that $a^n = b a^n$ and $\ell(a^n) = \ell(b)$.
- (6) A ring R is called right(left) SF-ring[8] if every simple right(left) R-module is flat.

Now, the following lemma which is due to Rege in [8] is the basic result for our new definition.

Lemma:

Let I be a right(left) ideal of R. Then, R/I is a flat right(left) R-module if and only if for each $a \in I$, there exists $b \in I$ such that a = ba (a = ab).

Generalized SF-Rings:

In this section we define a new generalization of flatness, it is called generalized flat right(left) R-module and depend on it we define a new generalization of SF-rings due to Rege in [8], it is called generalized SF-ring. Furthermore, we find several properties for them.

We start this section with the following definitions.

Definition 2.1:

Let I be a right(left) ideal of R. Then, R/I is a generalized flat right(left) R-module if and only if for each $a \in I$, there exists $b \in I$ such that $a^n = ba^n (a^n = a^n b)$, for some positive integer n.

Definition 2.2:

A ring R is called generalized SF-ring if every simple right R-module is generalized flat.

We define a condition (*) as follows:

properties for them. Finally, we find some main results for generalized SF-rings and we find the relation between such modules with certain rings.

Definition 2.3:

A ring R is satisfy condition (*) if $ba^n = 0$ implies $a^n b = 0$, for each a, $b \in R$ and a positive integer n.

Clearly every right SF-ring is a right generalized SF-ring, however the converse is not true in general as the following example shows:

Example (1):

Let \mathbf{Z}_{12} be the ring of integers modulo 12, M = {0, 2, 4,

6, 8, 10} and N = $\{0, 6\}$ are both maximal ideals of \mathbf{Z}_{12} ,

then both \mathbf{Z}_{12}/M and \mathbf{Z}_{12}/N are generalized simple flat,

but they are not simple flat. Thus, \mathbf{Z}_{12} is generalized SF-ring, but it is not SF-ring.

Proposition 2.4:

If R is a right generalized flat and I is a two-sided ideal of R, then the factor ring R/I is a right generalized flat. **Proof:**

Let R be a right generalized SF-ring and I a two-sided ideal of R. Therefore, for each a \in I, there exists b \in I

such that $a^n = ba^n$, for some positive integer n. We show that R/I is a right generalized SF-ring. Now, (b + I)

 $(a^{n} + I) = ba^{n} + I = a^{n} + I$. Therefore, the factor ring R/I is a right generalized SF-ring.

We now consider a necessary and sufficient condition for generalized SF-ring to be SF-ring.

Theorem 2.5:

Let R be a ring such that for every $a \in I$ and every positive integer n, $\ell(a^n) \subseteq \ell$ (a), then every generalized SF-ring is SF-ring.

Proof:

Let M be a maximal right ideal of R and for every $a \in M$. Since R is generalized SF-ring, there exists $b \in M$ such that $a^n = ba^n$, for some positive integer n. This implies that $(1-b) \in \ell(a^n) \subseteq \ell$ (a) and hence a = ba. Whence R is a right SF-ring.

Theorem 2.6:

Let R be a right generalized SF-ring and M a maximal right ideal of R. If $\ell(a^n) = a^n R$, for every $a \in M$ and a positive integer n, then $R = a^n R + bR$, for some $b \in M$. **Proof:**

Let M be a maximal right ideal of R containing a. Since R is generalized SF-ring, there exists $b \in M$ such that $a^n = ba^n$, for some positive integer n. Therefore, $(1-b) \in l(a^n) = a^n R$. Thus, $1-b = a^n R$. Whence $R = a^n R + bR$.

Theorem 2.7:

Let R be generalized SF-ring. If $\ell(a^n) = 0$, then a^n is a right invertible in R, for some positive integer n.

Proof:

Let $a \in R$ with $\ell(a^n) = 0$. If $a^n R \neq R$, there exists a maximal right ideal M of R containing $a^n R$, for every positive integer n. Since $a \in M$ and R/M is generalized flat, there exists $b \in M$ such that $a^n = ba^n$. Whence 1-b $\in \ell(a^n) = 0$, yielding $1 \in M$ which contradicts $M \neq R$. Therefore, $a^n R = R$ and hence a^n is a right invertible in R.

Theorem 2.8:

If R is a commutative ring such that R / I and R / J are generalized flat. Then, R / (I \cap J) is generalized flat. **Proof:**

Let $x \in I \cap J$, then $x \in I$ and $x \in J$. Since R / I and R / J are generalized flat. Then, there exists $y \in I$ and a positive integer n such that $x^n = yx^n$ and there exists $z \in J$ and a positive integer m such that $x^m = zx^m$. Hence, $x^{n+m} = yz x^{n+m}$. Since $yz \in I.J \subseteq I \cap J$, therefore, $R / (I \cap J)$ is generalized flat.

Theorem 2.9:

Let R be a ring such that $\ell(a^n)$ is also a right ideal. If R is generalized SF-ring, then R is π -regular.

Proof:

Let R be generalized SF-ring and $a \in R$. If $K = \ell(a^n)$, for some positive integer n, then K is also a right ideal by hypothesis. If M is a maximal right ideal of R containing $a^n R + K$. Since R/M is generalized flat, then $a^n = x a^n$, for some $x \in M$ and a positive integer n. Hence $(1-x) \in$ $\ell(a^n) = K \subseteq M$. This implies that $1 \in M$ a contradiction. Therefore, $a^n R + K = R$. So, $a^n r + k = 1$, for some $r \in R$ and $k \in K$. Since $ka^n = 0$, this gives $a^n = a^n r a^n$. Thus, R is a π -regular ring. Recall that R is said to be right (left) $s\pi$ -weakly regular

[7], if for each $a \in \mathbb{R}$, there exists a positive integer n = n(a), depending on a such that $a^n \in a^n \mathbb{R}$ $a^{2n} \mathbb{R}$ $(a^n \in \mathbb{R} a^{2n} \mathbb{R} a^n)$. R is called $s\pi$ -weakly regular if it is both right and left $s\pi$ -weakly regular.

The following result is a connection between generalized SF-ring and $s\pi$ -weakly regular ring by adding that R satisfy condition (*).

Theorem 2.10:

If R is a generalized SF-ring and satisfy condition (*), then R is $s\pi$ -weakly regular ring.

Proof:

Let $b \in \mathbb{R}$. We claim $\mathbb{R}b^{2n} \mathbb{R} + r(b^n)$, for some positive integer n. If not, there exists a maximal right ideal M of R containing $\mathbb{R}b^{2n} \mathbb{R} + r(b^n)$. Since R is generalized SF-ring. Therefore, \mathbb{R}/\mathbb{M} is a right generalized flat. Since $b \in \mathbb{M}$, there exists $c \in \mathbb{M}$ such that $b^n = c b^n$, for some positive integer n. Then, $1-c \in l(b^n) \subseteq r(b^n) \subseteq \mathbb{M}$ and

hence $1 \in M$, a contradiction. Whence, R is $s\pi$ -weakly regular.

Proposition 2.11:

Let R be generalized SF-ring. Then,

- (1) Any reduced a " n R of R is idempotent.
- (2) $R = Rc^{n} R$, for any nonzero divisor c of R.

Proof:

- (1) Let a "R be a reduced principal right ideal of R, for some positive integer n. For any $b \in a$ "R, $\ell(b^n) \subseteq$ $r(b^n)$ and if R $b^n R + r(b^n) \neq R$. Let M be a maximal right ideal containing R $b^n R + r(b^n)$. If R/M is generalized flat, then $b^n = c b^n$, for some $c \in R$ and a positive integer n. Then, $1-c \in \ell(b^n) \subseteq$ $r(b^n) \subseteq M$ yields $l \in M$, a contradiction. Therefore, R $b^n R + r(b^n) = R$, for any $b \in R$ and a positive integer n, which proves a "R = (a "R)².
- (2) If $\operatorname{Rc}^{n} R \neq R$, let M be a maximal right ideal containing Rc ⁿ R. Since $\ell(c^{n}) = r(c^{n}) = 0$, the proof of (1) shows that R/M is generalized flat leads to a contradiction. This proves that Rc ⁿ R = R.

Corollary 2.12:

If R is a right generalized SF-ring, then any reduced principal right ideal a "R of R is a fully right idempotent.

Proof:

Let T be a reduced principal right ideal a "R of R, I a right ideal of T. Then, by Proposition 2.11 (1), for any $b^n \in I, b^n R = (b^n R)^2 = (b^n R)^4$ and since $(b^n R)^2 \subseteq b^n T \subseteq I$, then $b^n \in I^2$, which proves that T is a fully right idempotent.

Theorem 2.13:

If R is a right generalized SF-ring without zero divisors, then R is a division ring.

Proof:

Let a be a nonzero element of R and a " $R \neq R$. Then, there exists a maximal right ideal M of R containing a "R. Since R/M is a right generalized flat, there exists b \in M such that a "= ba", for some positive integer n. This implies that (1-b) a "= 0 and hence 1-b $\in \ell(b^n)$. Since a is a nonzero divisor so is a ". Therefore, $\ell(a^n) =$ 0 implies $1 \in$ M and hence M = R, a contradiction. Therefore, a "R = R. Hence a "c = 1. Likewise we can show that ca "= 1. Therefore, a is invertible. Whence it follows that R is a division ring.

Main Results:

In this section we find some main results for generalized SF-ring and we connect it with condition (*), completely semi-prime ideal, strongly π -regular ring and other types of rings and ideals.

Recall that a right ideal I of a ring R is said to be completely semi-prime if for every positive integer n and

$a \in \mathbb{R}$ such that $a^n \in \mathbb{I}$, implies $a \in \mathbb{I}$.

Theorem 3.1:

Let R be a generalized SF-ring. If M is a maximal right ideal and completely semi-prime ideal of R. Then, $a \in M$ if and only if $M + \ell(a^n) = R$, for some positive integer n.

Proof:

Let M be a maximal right ideal of R and $a \in M$. Since R is generalized SF-ring, there exists $b \in M$ such that $a^n = ba^n$, for some positive integer n. This implies that $1-b \in l(a^n)$. Now, consider 1 = b + (1-b). Therefore, $R = M + l(a^n)$.

Conversely, assume that $R = M + \ell (a^n)$, for every $a \in R$ and a positive integer n. Then, 1 = b+c with $b \in M$ and $c \in \ell(a^n)$. Multiplying from the right by a^n we obtain $a^n = b a^n + c a^n$, so $a^n = b a^n$, this implies $a^n \in M$. Since M is completely semi-prime ideal, then $a \in M$. **Theorem 3.2:**

Let M be a maximal right ideal of R. Then, R is generalized SF-ring if and only if for every $a \in M, M + l(a^n) = R$, for some positive integer n.

Proof:

Let M be a maximal right ideal of R and $a \in M$. Since R is generalized SF-ring, then by Theorem 3.1, $M + \ell (a^n) = R$, for some positive integer n.

Conversely, assume that $M+\ell(a^n) = R$, for every $a \in M$ and a positive integer n. Then, t+r = 1, for some $t \in M$ and $r \in \ell(a^n)$, so $ta^n + r a^n = a^n$, and this implies $a^n = ta^n$. Whence R is generalized SF-ring. **Theorem 3.3:**

Let R be a ring satisfy condition (*) and generalized SFring. Then R is a strongly π -regular.

Proof:

Let R be a right generalized SF-ring and a be any element in R. We shall prove that $a^n R+R(a^n) = R$. Suppose $a^n R+r(a^n) \neq R$. Let M be a maximal right ideal of R containing a. Since R is generalized SF-ring, there exists $b \in M$ such that $a^n = ba^n$, for some positive integer n. This implies that $(1-b) \in l(a^n)$. Since R satify condition (*), then $l(a^n) \subseteq r(a^n)$, for every $a \in R$ and a positive integer n. Therefore, $(1-b) \in r(a^n) \subseteq M$, thus $1 \in M$ a contradiction. Therefore, $a^n R+R(a^n) = R$. Inparticular, $a^n t + u = 1$, for some $t \in R$ and $u \in r(a^n)$. So, $a^n = a^{2n} t$. Thus, R is strongly π -regular. We recall the following result of [5].

Lemma 3.4:

Let R be a reduced ring. Then, for every $0 \neq a \in R$ and every positive integer n,

(1) $r(a^n) = \ell (a^n).$

(2)
$$a^n R \cap \ell(c^n) = (0).$$

The following result is the extension of Proposition 2.2 in [6].

Proposition 3.5:

If R is a right generalized SF-ring, then any reduced principal right ideal $I = a^n R$ of R is a direct summand for any $a \in R$ and a positive integer n.

Proof:

Let $I = a^n R$ be a principal right ideal of R, for any $a \in R$ and a positive integer n and let $a^n R+r(a^n) \neq R$. By a similar method of proof is usedn in Theorem 3.3, R is strongly π -regular, whence $a^n = a^{2n} r$. If we set $d = a^n r^{2n}$, then $a^n = a^{2n} r$. Clearly $(a^n - a^n d a^n)^2 = 0$ implies $a^n = a^n d a^n$ and hence I = eR, where $e = a^n d$ is idempotent element. Thus, I is a direct summed.

Theorem 3.6:

Let R be a reduced ring. Then, $R/a^n R$ is generalized SFring if and only if Ra^n is a left semi- π -regular ideal. **Proof:**

Let a be a non zero element in R. Then, $R/a^n R$ is a right generalized SF-ring, therefore, for every $c \in a^n R$, there exists $b \in a^n R$ such that $c^n = bc^n$, for some positive integer n. Now, to prove that $\ell(c^n) = \ell(b)$. Let $y \in \ell(c^b)$, then yb = 0 and hence $ybc^n = 0$, but $c^n = bc^n$, so $yc^n = 0$, thus $y \in \ell(c^n)$ so $\ell(b) \subseteq \ell(c^n)$. On the other hand, let $z \in \ell(c^n)$, then $z c^n = 0$, but $c^n = bc^n$. This implies that $z bc^n = 0$ and hence $zb \in \ell(c^n)$. But, $b \in$ $c^n R$, $z \in R$ implies $zb \in c^n R$, so $zb \in c^n R \cap \ell(c^n)$. Since R is reduced, then by Lemma 3.4(2), $zb \in c^n R \cap$ $\ell(c^n) = (0)$, this gives zb = 0, hence $z \in \ell(b)$, therefore, $\ell(c^n) \subseteq \ell(b)$. Thus, $\ell(c^n) = \ell(b)$ and hence $c^n = bc^n$, therefore, Raⁿ is a left semi- π -regular ideal. The converse part directly it is true.

Lemma 3.7:

Let R be a right generalized SF-ring. If M is a maximal right ideal of R and $M \subseteq J(R)$, then M is a nilideal. **Proof:**

Let M be a maximal right ideal of R and $a \in M$. Since R is a right generalized SF-ring, there exists $b \in M$ and a positive integer n such that $a^n = ba^n$. This implies that $(1-b)a^n = 0$. Since $b \in M \subseteq J(R)$, then $b \in J(R)$ and hence (1-b) is invertible, so there exists $u \in R$ such that u(1-b) = 1, and this implies that $u(1-b)a^n = a^n$. Therefore, $a^n = 0$. Whence M is a nilideal.

Theorem 3.8:

If R is a local generalized SF-ring such that $\ell(a^n) = 0$, for every $a \in R$ and a positive integer n, then the maximal ideal of R contains a unit element.

Proof:

Assume that R is a local ring. Since R is generalized SFring, then for the unique maximal ideal M of R, R/M is generalized flat. Therefore, for every $a \in M$, there exists $b \in M$ such that $a^n = ba^n$, for some positive integer n. Then, $(1-b) \in l(a^n) = 0$, hence b = 1. Thus, b is unit.

Theorem 3.9:

Let R be a reduced ring. If R is generalized SF-ring, then $r(a^n)$ is a direct summand for every $a \in R$ and a positive integer n.

Proof:

To prove $r(a^n)$ is a direct summand, for every $a \in R$ and a positive integer n. We claim that $a^n R + r(a^n) = R$. If this is not true, let M be a maximal right ideal containing

References:

- 1. Al-Kouri M. R. M. (1996), On π -regular rings, M. Sc. Thesis, Mosul University.
- 2. Azumaya G. (1954), Strongly π-regular rings, J. Fac. Sci. Hokkaida Univ. vol. 13, 34-39.
- 3. Camillo D. M. and Yu H. P. (1994), Weakly regular rings, *Comm. Algebra*, 22(10), 4095-4112.
- Kim N. K., Nam S. B. and Kim J. Y. (1999), On simple singular GP-injective modules, *Comm. Algebra*, 27(5), 2087-2096.

 $a^n R + r(a^n)$. By a similar method of proof is used in Theorem 3.3 we obtain $a^n R + r(a^n) = R$. Since R is reduced, then by Lemma 3.4(2), $a^n R \cap r(a^n) = (0)$. Whence $r(a^n)$ is a direct summand for every $a \in R$ and a positive integer n.

- 5. Mahmood A. S. (1990), On von Neumann regular rings, M. Sc. Thesis, Mosul University.
- 6. Mahmood R. D. (2004), Rings in which every simple right R-module is flat, *Raf. J. Of Comp. Sc. And Math is.*, Vol. 1, No. 1.
- 7. Mahmood R. D. and Abdul-Jabbar A. M., sπ-weakly regular rings, *Accepted In Raf. J. Of Comp. Sc. And Math*'s.
- 8. Rege M. B. (1986), On von Neumann regular rings and SF-rings, *Math. Japonica* 31, No. 6, 927-936.

الحلقات من نوع SF المعممة

رائدة داؤد محمود و عبدالله محمد عبد الجبار

¹ قسم الرياضيات، كلية علوم الحاسبات والرياضيات، جامعة الموصل، الموصل، جمهورية العراق ¹ قسم الرياضيات، كلية العوم، جامعة صلاح الدين، اربيل، جمهورية العراق

الملخص:

في هذا البحث نحن عرفنا المسطح المعمم وكذلك قمنا بتعميم الحلقة -SF وأخيرا وجدنا بعض المستخدمة من قبل الباحث .Rege M. B في المصدر [8] وسميت الحلقة مع حلقات أخرى. SF المعممة نحن وجدنا بعض الخواص لهذه الحلقة.

وأخيرا وجدنا بعض النتائج للحلقة المعممة وأيجاد العلاقة بين هذه الحلقة مع حلقات أخرى.