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ABSTRACT 
The objective of the current research is to investigate the developing laminar flow of a 

Newtonian incompressible fluid and heat transfer in the entrance region of a two 

parallel plate channel were investigated. The continuity, x-momentum, and energy 

equations were solved as a steady state in two dimension equations. The 

dimensionless technique was used. These equations have been represented by finite 

difference technique. This model has been solved by using the new method of implicit 

scheme, which would minimize the solution errors. The velocity profile becomes fully 

developed at approximately 
Re05.0a2L

e
====

, and the temperature distribution 

becomes fully developed at approximately Pr.Re05.0a2L
et

==== , as expected. The 

computational algorithm is able to calculate all the hydrodynamic properties such as 

velocities. Also the computational algorithm is able to predict all the thermal 

properties such as the temperature, bulk temperature, and local Nusselt number. The 

validity of thermal results for constant wall temperature and constant wall heat flux is 

verified and shows that there is a good agreement between the results of the present 

numerical solution and the correlation related to it. 
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ِّحسابات انتقال الحرارة للجريان الطبائقي المستقر المتطور بين صفيحتين 
 متوازيتين

أحمد علي شاكر، عادل عباس الموسوي ، تحسين علي الحطاب   

  الخcصة
) يخـضع لقـوانين نيـوتن(ّهو دراسة الجريان الطبائقي غير تـام التطـور لمـائع غـير قابـل للانـضغاط  الحالي الهدف من البحث

تم الحــل لمعادلـة الاســتمرارية و معادلــة الــزخم .  الحــرارة لمنطقــة النمـو خــلال مجــرى متكــون مـن صــفيحتين متــوازيتينوانتقـال
هـذه المعـادلات . تم اسـتخدام تقنيـة الحـل اللابعـدي. باتجاه المحـور الـسيني و معادلـة الطاقـة للحالـة المـستقرة ذات البعـدين

ج حـل باسـتخدام طريقـة جديـدةهـذا النمـوذ.  المحـددةتمُثلت بتقنيـة الفروقـا شـكل توزيـع . الـتي تقلـل مـن أخطـاء الحـل، ُ
Re05.0a2L(السرع يصبح كامل النمو عند حوالي 

e
وشكل توزيع درجات الحرارة يصبح كامل النمو عند ) ====

Pr.Re05.0a2L(حـــــوالي 
et

إمكانيـــــة الحـــــل العـــــددي تتـــــضمن حـــــساب جميـــــع الـــــصفات . كمـــــا متوقـــــع، )====
و كذلك تتضمن إمكانية الحل العددي القدرة على تنبؤ جميع الصفات الحرارية ، الهيدروديناميكية مثل منحنيات السرعة

الحراريــة لحالــة تم التأكــد مــن صــحة النتــائج . مثــل توزيــع درجــات الحــرارة و متوســط درجــة الحــرارة و رقــم نــسلت الموضــعي
التسخين بثبوت درجة حرارة الجـدار و ثبـوت الفـيض الحـراري للجـدار حيـث كـان هنالـك توافـق جيـد بـين الحـل العـددي 

  .لباحثين سابقيناالحالي والعلاقات التجريبية و النظرية المتعلقة به 
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INTRODUCTION 

Heat transfer in the combined entry region of non-circular ducts is of particular 

interest in the design of compact heat exchangers. In these applications passages are 

generally short and usually composed of cross-sections such as triangular or 

rectangular geometries in addition to the circular tube or parallel plate channel. Also, 

due to the wide range of applications, fluid prandtl numbers usually vary between (0.1 

< Pr < 1000), which covers a wide range of fluids encompassing gases and highly 

viscous liquids such as automotive oils. 

Closed form solutions do not exist for the problem, hydrodynamically and thermally 

developing laminar flow between two parallel plates. Thus, this problem can be 

solved by using numerical methods. A numerical solution is obtained by considering 

the momentum and energy equations and the continuity equation. The solution 

presented here is an attempt to provide a complete picture of the hydrodynamic and 

thermal variation in the flow within the entire channel. 

Laminar flow solution for entrance region non-isothermal flow and heat transfer to 

power-law fluids with rectangular coordinates transformed into new orthogonal 

coordinates and the finite difference technique for arbitrary cross-section ducts were 

studied by Lawal (1989). Al-Ali and Selim (1992) studied developing laminar flow 

and heat transfer in the entrance region of a parallel plate channel with uniform 

surface temperature by a new integral method. Unlike earlier Karman-Pohlhausen 

analyses, the new analysis provides solutions which are free from jump discontinuities 

in the gradients of the velocity and temperature distributions throughout and at the 

end of the entrance region. The hydrodynamic and thermal results from the present 

analysis therefore join smoothly and asymptotically to their fully- developed values. 

The heat transfer results obtained are further found to agree well with previously 

published numerical solutions. Lakovic, Stefanovic, Ilic, and Stojiljkovic (1997) 

investigated convective heat and mass transfer in the part of hydrodynamic 

stabilization of the flow through the channel formed of two parallel plates. The 

solution is given for the boundary conditions of the first kind. The similarity method 

between this problem and corresponding potential flow is applied, in order to obtain 

the solution. Silva, Guerrero, and Cotta (1999) studied the boundary layer equations 

for steady incompressible laminar channel flow by integral transform method, 

adopting the stream function-only formulation of the governing equations, instead of 

the more commonly used primitive variables formulation. This hybrid numerical-

analytical approach provides benchmark results under user-prescribed accuracy 

targets and is recognized in the validation of purely numerical schemes. The relative 

merits of the stream function formulation are illustrated through numerical results for 

the convergence behavior in the case of a plane Poiseuille flow. Adachi and Uehara 

(2001) investigated the correlation between heat transfer and pressure drop in 

channels with periodically grooved parts along the streamwise direction for various 

channel configurations by assuming two-dimensional and periodically fully developed 

flow and temperature fields. Streamwise periodic variations of the cross-section 

induce the bifurcation from steady-state flow to oscillatory one. Heat transfer is 

enhanced significantly after the bifurcation with the increase of pressure drop. An 

efficiency defined as the ratio of the heat transfer enhancement to the increase of 

pressure drop is considered. It is found that the channels with expanded grooves 

perform efficiently while the channels with contracted grooves inefficiently. Barber 

and Emerson (2002) studied the role of the Reynolds number on the hydrodynamic 

development length at the entrance to parallel plate micro-channels. The entrance 
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development region is almost 25% longer than that predicted using continuum flow 

theory. 
MATHEMATICAL MODEL 

The mathematical analysis is presented for the Partial Differential Equations which 

describe developing laminar fluid flow and heat transfer in parallel plate channel. 

Incompressible and constant property flow is assumed for developing velocity and 

temperature profile in the entrance region of  the two parallel plates channel. The 

parallel plate channel has been chosen for initial consideration because the 

formulation illustrates the techniques used for confined flows without the 

complicating geometrical and three-dimensional factors of other configurations. 

 

Assumptions 

The parallel plate channel will be expressed in Cartesian Coordinates System. This 

study will be achieved for two cases, Constant Wall Temperature and Constant Heat 

Flux respectively. For two dimensional developing, steady state, incompressible 

laminar flow in parallel plate channel the effects of heat conduction, body force, free 

convection, heat generation and viscous dissipation within the fluid are neglected. 

 

Governing Equations 
The following formulation is based largely on the work of Bodoia and Osterle 

[mentioned by Hornbeck, 1973] and [Incropera, 1996]. The equations of motion are 

assumed to be 

Continuity equation: 

0=
∂
∂

+
∂
∂

y

v

x

u                                                                                                                     (1) 

x-momentum equation:  

2

21

y

u

dx

dp

y

u
v

x

u
u

∂
∂

+−=
∂
∂

+
∂
∂

ν
ρ

                                                                                        (2) 

Equation (2) is the x-component of momentum equation for a steady, two 

dimensional, laminar, constant-property boundary-layer flow of a Newtonian fluid in 

forced convection. The two terms on the left hand side are the nonlinear convection 

terms. The two terms on the right hand side arise from inertial forces and viscous 

shearing forces, respectively. 

The energy equation for incompressible, constant property flow is uncoupled 

from the momentum equation once the velocity distribution is known. When viscous 

dissipation is neglected, the energy equation may be written as 

Energy equation: 

2

2

y

T

y

T
v

x

T
u

∂
∂

=
∂
∂

+
∂
∂

α                                                                                                     (3) 

The Dimensionless Quantities  
Before undertaking a numerical solution, the first step should invariably place the 

equations to be solved in a dimensionless form having as few parameters as possible. 

This may be accomplished for equations (1), (2) and (3) by employing the following 

dimensionless variables :- 
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For the Constant wall temperature, the thermal boundary condition will be:                                                                                

 

wo

w

TT

TT

−
−

=θ                                                                                                               (5) 

 

For the Constant wall heat flux, the thermal boundary condition will be:   

 

( )oTT
qd

k
−=θ                                                                                                         (6) 

 

The following dimensionless quantities will be used in the present work: 

Reynolds number:                  

 

µ
ρ duo ..

Re =                                                                                                               (7)    

 

Prandtl number: 

 

α
νµ

==
k

cp
Pr                                                                                                            (8) 

 

Nusselt number: 

k

dh
Nu

.
=                                                                                                                  (9) 

 

Dimensionless Governing Equations 

The continuity equation may be made dimensionless by the choice of the 

dimensionless variables shown in equation (4): 

Continuity equation: 

0=
∂
∂

+
∂
∂

Y

V

X

U
                                                                                                          (10) 

The x-momentum equation may be made dimensionless by the choice of the 

dimensionless variables of (4) and (7): 

X-momentum equation: 
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                                                                            (11) 
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The energy equation for constant wall temperature may be made dimensionless by the 

choice of the dimensionless variables of (4), (5), (7) and (8) and for constant heat flux 

(4), (6), (7) and (8):  

Energy equation: 

2

2

Re.Pr

1

YY
V

X
U

∂
∂

=
∂
∂

+
∂
∂ θθθ

                                                                                      (12) 

 

Boundary Conditions 

The boundary conditions may be made dimensionless by the choice of the 

dimensionless variables (4), (5) and (6): 

Entrance region Dimensionless Boundary Conditions: 

Uniform temperature and velocity profile at the entrance region of parallel plate 

channel is assumed. All entrance boundary conditions can be written as follows 

[Hornbeck, 1973]: 









=

=

=

1)0(

0),0(

1),0(

P

YV

YU

                                                                                                             (13) 

For the Constant wall temperature, the thermal boundary condition will be: 
1),0( =Yθ                                                                                                  (14)                                                                            

For the Constant wall heat flux, the thermal boundary condition will be: 
0),0( =Yθ                                                                                                 (15)                                                  

Wall Dimensionless Boundary Conditions: 

All dimensionless velocity components are zero at walls, hence: 





=

=

0)1,(

0)1,(

XV

XU
                                                                                                              (16) 

 

A number of dimensionless temperature boundary conditions at the wall are possible:  

For the Constant wall temperature, the thermal boundary condition will be: 

0)1,( =Xθ                                                                                                                   (17)                                                                                     

 

For the Constant wall heat flux, the thermal boundary condition will be:  

 

1)1,( =
∂
∂

X
Y

θ
                                                                                                              (18)                                                                                                   

 

Centerline of duct dimensionless Boundary Conditions: 

At centerline of the duct the dimensionless boundary conditions are: 
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Bulk Temperature 
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In order to solve for the heat transfer in confined flow situation, it is first necessary to 

find the bulk (mixed-mean) temperature. This quantity is defined for the parallel plate 

channel as  

 

∫

∫
≡

a

a

dyu

dyTu

bT

0

0

.

..

                                                                                                          (20)  

 

The dimensionless bulk temperature is 

∫

∫
≡

1

0
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θ                                                                                                           (21) 

 

Dimensionless Bulk Temperature: 

 

∫
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where ∫ =
1

0

1.dYU   

 
Local Nusselt Number 
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=                                                                                                           (23) 

where    
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The dimensionless variables for constant wall temperature boundary condition are: 
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The dimensionless local Nusselt Number for constant wall temperature: 
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b
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The dimensionless variables for constant wall heat flux boundary condition are: 
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The dimensionless local Nusselt Number for constant wall heat flux: 

 

wb

uxN
θθ −

−
=

2
                                                                                                    (29) 

 

Numerical Formulation for Momentum and and Continuity Equations 

The special Finite Difference Method will be used to solved the momentum equation 

for a steady, two-dimensional, laminar, constant-property boundary-layer flow of a 

Newtonian fluid in forced convection. The two terms on the left side are the nonlinear 

convection terms. The two terms on the right side arise from inertial forces and 

viscous shearing forces, respectively. The numerical formulation for x-momentum 

equation is [Hornbeck, 1973] 
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A somewhat unusual representation of equation (10) is chosen for a reason which will 

become clear shortly. The form is 
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 Equations (30) and (31) are written for j=0(1)n constitute (2n+2) equations in the 

(2n+2) unknowns (Ui+1,0,….,Ui+1,n; Vi+1,1,….,Vi+1,n); and (Pi+1). The number of 

unknowns can be reduced materially by writing the continuity equation (31) for 

j=0(1)n and adding together all of these equations. The resulting equation is 
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Since equation (32) does not involve (V), equation (32) together with equation (30) 

written for j=0(1)n now constitute (n+2) equations in the (n+2) unknowns 

(Ui+1,0,….,Ui+1,n) and (Pi+1). To aid in obtaining a solution, it is convenient to rewrite 

equation (30) as 
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                                                                                                                             (33) 

 

Equations (33) [written for j=0(1)n] and (32) may be written in matrix form as  
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After the set (34) has been solved for (Ui+1,0,….,Ui+1,n) and (Pi+1), equation (31) may 

be employed in the form  
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which may be marched outward from the channel centerline to give the values of 

(Vi+1,1,….,Vi+1,n). 

 

Numerical Formulation for Energy Equation 

Equation (12) may now be expressed in an implicit finite difference form similar to 

that used for the momentum equation in the preceding section. This difference form is 
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Equation (42) can be rewritten in a more useful form as 
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           Equation (43) is written for j=0(1)n forms as a set of (n+1) simultaneous linear 

equations in the values of (θi+1,j). If the wall temperature is known (Constant Wall 
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Temperature case), then these (n+1) equations involve (n+1) unknowns. The 

resulting matrix equation is 
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where 

( ) ( )2

,'

Re.Pr

1

2 YY

V ji

j
∆

−
∆

−
=ε                                                                                                 (45) 

( )2

,'

Re.Pr

2

YX

U ji

j
∆

+
∆

=β                                                                                                   (46) 

( ) ( )2

,'

Re.Pr

1

2 YY

V ji

j
∆

−
∆

=Ω      (j>0)                                                                                 (47) 

X

U jiji

j ∆
=Φ ,,'

θ
                                                                                                               (48) 

( )2

'

0
Re.Pr

2

Y∆

−
=Ω            (j = 0)                                                                                  (49) 

           For the Constant Heat Flux case, the wall temperature (θi+1,n+1) is unknown, 

resulting in (n+2) unknowns. The additional necessary equation (18), which expresses 

the heat flux at the wall, may be written in difference form as 

( )
1

2

43 1,1,11,1 =
∆

+− −++++

Y

ninini θθθ                                                                               (50)                                                                     

The matrix equation (4.14) may be modified to include the additional 

unknown and equation by adding on an additional row and column. 
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where the elements are defined as in (44). 

           The element 1/2(∆Y) in the last row makes the matrix in (51) nontridiagonal. 

However, the matrix may be made tridiagonal by eliminating this element. This can 

be accomplished by dividing the last equation by 1/2(∆Y), multiplying it by )( nε , and 

subtracting the next to the last equation from it. The results are 
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Calculation of Bulk Temperature 

The dimensionless bulk temperature (θb) is calculated numerically by employing 

Simpson's rule: 
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=
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=
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jijiiiib UUU
Y
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(53) 

Equation (53) requires an even number of spaces across the half channel (n must be 

odd). 

 

Calculation of Local Nusselt Number 

The Nusselt number is given by equation (23). The local Nusselt number for Constant 

Wall Temperature boundary condition is given by equation (27), which is written in a 

finite difference form as,  
( )
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2

43
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(54) 

The local Nusselt number for Constant Heat Flux boundary condition is  given by 

equation (29), which is written in a finite difference form as, 

11

2

++
−
−

=
iwib

uxN
θθ

                                                                                                                             

(55) 

Results and Discussion 

Results include velocity profile, temperature distribution, bulk temperature, local 

Nusselt number for two cases of heating Constant Wall Temperature and Constant 

Heat Flux. The results of the present work are compared with the previous works by 

[Incropera, 1996] and [Holman, 1999] present in Table (1), (2) and (3). 

 

Development of Velocity Profiles 

Figures (1.a), (1.b), (1.c), (1.d) and (1.e) show the velocity profiles which manifest 

stages of developing the hydrodynamic boundary layer for Reynolds numbers 

(Re=100), (Re=500), (Re=1000), (Re=1500) and (Re=2000) at different sections of 

parallel plate channel. 

The velocity in the inlet section is uniformly distributed over its width and that its 

magnitude is (U=Uo=1). The velocity at wall equals zero but with an increase distance 

in y-direction from the surface, the x-direction velocity component of fluid (U), must 

then increasing until it approaches maximum in centerline of channel. In the fully 
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developed region the vertical velocity component (V) is zero and the gradient of the 

axial velocity component 







∂
∂
X

U  are everywhere zero. 

The velocity profiles become fully developed at approximately Re05.0
2

=
a

Le    

The resulting velocity profile consist of two boundary layer profiles on the two walls 

joined in the center by a line of constant velocity. Since the volume of flow the same 

for every section, the decrease in the rate of flow near the walls which is due to 

friction must be compensated by a corresponding increase near the axis.  

 

Temperature Distribution 
The dimensionless temperature for Constant Wall Temperature in the inlet section is 

uniformly distributed over its width and that its magnitude is (θ=θo=1). The 

dimensionless temperature at the walls equals zero but increases with increasing 

distance in y-direction from the surface, until it approaches the maximum in the 

centerline of the channel. The dimensionless temperature for Constant Heat Flux in 

the inlet section is zero over its width. The dimensionless temperature at the walls 

equals maximum value but decreases with increasing distance in y-direction from the 

surface, then it decreases until it approaches minimum in centerline of channel. The 

temperature distribution becomes fully developed at approximately Pr.Re05.0
2

=
a

Let . In 

the fully developed region the gradient of the dimensionless temperature 







∂
∂
X

θ  , is 

everywhere zero because of the reaching of the fluid temperature to a value close to 

the wall temperature. 

Prandtl number effected on the shape of the dimensionless temperature distribution. 

The Prandtl number is given by 
α
ν

=Pr  . It is a ratio of kinematic viscosity to thermal 

diffusivity. Physically, it relates the viscous effects to the thermal effects. When (Pr > 

1.0) then (ν > α) and a momentum disturbance propagates farther into the free stream 

than a thermal disturbance.   

 

Overall Heating 

Maximum dimensionless bulk temperature for Constant Wall Temperature equals to 

(0.94) at the first step and decreases this value with increasing the axial distance from 

inlet. Minimum dimensionless bulk temperature  for Constant Heat Flux 

approximately equals to zero in the first step and increases with increasing axial 

distance from inlet and reaches maximum value of approximately (0.091). For low 

Prandtl number the dimensionless bulk temperature is faster the reach to the minimum 

value (for Constant Wall Temperature) or maximum value (for Constant Heat Flux) 

because small thermal entry length and the reverse is true for high Prandtl number. 

The dimensionless bulk temperature (dimensionless mean temperature) depends on 

Prandtl, Reynolds number, and the axial distance (X). 

 

Local Nusselt Number 

Nusselt number has the maximum value at the start of entrance region (first step) and 

then decreases gradually until it will be close to thermal fully developed region. The 

boundary layer thickness is zero at the start of entrance region, hence, there is no 

resistance against heat transfer which leads to raise the heat transfer coefficient value 

to maximum. So the heat transfer coefficient decreases when the boundary layer 

begins the process of developing until it reaches a constant value. The length at which 
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the thermal boundary layer is fully developed increases with increasing Reynolds and 

Prandtl numbers. 

It is noted that the local Nusselt number for the Constant Heat Flux case is greater 

than the local Nusselt number for Constant Wall Temperature case, however, the flow 

field is similar for all studied cases (same Reynolds and Prandtl numbers). The local 

Nusselt number changes along the length of the channel, this is confirmed by the 

result shown in figures (from (5-41) to (5-48)). Results of this numerical procedure 

appear to be in a close agreement with the correlation related to it [Incropera, 1996] 

and [Holman, 1999].  

 

CONCLUSIONS 

The maximum velocity at the centerline of the channel, in the fully developed region 

the vertical velocity component (V) is zero and the gradient of the axial velocity 

component (∂U/∂X) are everywhere zero, hence, the axial velocity component 

depends only on (Y). It can be seen that the boundary layer developed faster for the 

lower Reynolds number. However, the flow field is similar for all studied cases. At 

fully developed region the shape of velocity profile becomes parabolic over the width 

of the channel. The velocity profile becomes fully developed at approximately 

Re05.0
2

=
a

Le . The maximum dimensionless temperature for constant wall temperature at 

the centerline of the channel but for constant wall heat flux boundary condition is at 

the walls. The thermal boundary layer developed faster for lower Reynolds and 

Prandtl numbers, however, the flow field is similar to the studied cases. The 

dimensionless temperature distribution becomes fully developed at approximately 

Pr.Re05.0
2

=
a

Let . If (Pr > 1), the hydrodynamic boundary layer develops more rapidly 

than the thermal boundary layer (Le < Let), while inverse is true (Pr < 1), but if (Pr = 

1) the hydrodynamic and thermal boundary layers are the same (Le = Let). The Nusselt 

number has the maximum value at the start of entrance region (first step) and then 

decreases gradually until it will be close to thermal fully developed region, because of 

the high velocities near the walls at the entrance and decreases these velocities with an 

axial direction. The Nusselt number of constant wall heat flux boundary condition 

greater is than Nusselt number for constant wall temperature boundary condition case, 

however, the flow field is similar for all studied cases. 
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NOMENCLEATURE: 

Symbol Definition Unit 

a The Distance Between Centerline and Wall of Duct m 

C.H.F Constant Heat Flux  

C.W.T Constant Wall Temperature  

d The Distance Between Two Parallel Plate Channel m 

D Diameter of Circular Duct m 

h Heat Transfer Coefficient W/m2K 

k Thermal Conductivity W/mK 

L Length of Channel m 

Le Hydrodynamic Entry Length m 

Let Thermal Entry Length m 

m Number of Grid Nodes in the Axial Direction  

n Number of Grid Nodes in the Vertical Direction  

Nu Nusselt Number  

Nux Local Nusselt Number  

p Pressure N/m2 
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P Dimensionless Pressure  

Pr Prandtl Number  

Q Heat Transfer Rate W 

qs" Heat Flux W/m2 

r Radial Direction of Circular Duct m 

Re Reynolds Number  

T Temperature co

 
Tb Bulk Temperature co

 
θ Dimensionless Temperature  

θb Dimensionless Bulk Temperature  

u Velocity in Axial Direction m/s 

U Dimensionless Velocity in Axial Direction  

v Velocity in Vertical Direction m/s 

V Dimensionless Velocity in Vertical Direction  

x Axial Direction of the Duct m 

X Dimensionless Axial Direction of the Duct  

∆x The Distance Between Two Nodal Points in the Axial 

Direction 

m 

∆X The Dimensionless Distance Between Two Nodal 

Points in the Axial Direction 

 

y Vertical Direction of the Duct m 

Y Dimensionless Vertical Direction of the Duct  

∆y The Distance Between Two Nodal Points in the 

Vertical Direction 

m 

∆Y The Dimensionless Distance Between Two Nodal 

Points in the Vertical Direction 

 

Greek Symbols 

Α Thermal Diffusivity m2/s 

Ν Kinematic Viscosity m2/s 

Μ Dynamic Viscosity N.s/m2 

Ρ Density of Fluid kg/m3 

Cp Specific Heat at Constant Pressure J/kg.K 

∆ Hydrodynamic Boundary Layer Thickness m 

δ t Thermal Boundary Layer Thickness m 

Subsxripts 

i, j The Index Increment Along the Axial and Vertical 

Direction 

 

o Inlet  

w Refers to Wall  

s1 Refers to First Surface  

s2 Refers to Second Surface  

 

 

 

 

 

 

 



Al-Hattab et al, The Iraqi Journal For Mechanical And Material Engineering, Vol.8, No.1, 2008 

 39 

Table (1) Comparison the hydrodynamic entry length with previous work 

 hydrodynamic entry length (Le) 

Incropera  Le =0.05 D Re 

Holman  Le =0.05 D Re 

Present work Le =0.05 d Re 

 

 

Table (2) Comparison the thermal entry length with previous work 

 thermal entry length (Let) 

Incropera  Let =0.05 D Pr Re 

Holman  Let =0.05 D Pr Re 

Present work Let =0.05 d Pr Re 

 

 

Table (3) Comparison the Nusselt number with previous work 

Nusselt number (Nu) 

Maximum value Minimum value 

 

C.W.T C.H.F C.W.T C.H.F 

Incropera  13 14.8 3.66 4.36 

Holman  12.8 14.6 3.66 4.364 

Present work 12.8 18 4.3 5.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1): Problem Configuration and Coordinate System for Parallel Plate Channel 
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Fig. (2): Finite Difference Grid For Parallel Plate Channel 
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Fig. (3) Laminar, hydrodynamic velocity profile development in a parallel plate channel for 

different Reynolds number 
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Fig.(4) Developing and fully developed 

temperature distribution in a parallel plate 

channel for constant wall temperature, 

Re=100, different Prandtl number 
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Fig.(5) Developing and fully developed 

temperature distribution in a parallel plate 

channel for constant wall temperature, 

Pr=0.7, different Reynolds number 
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Figure (6) Developing and fully developed 

temperature distribution in a parallel plate 

channel for constant heat flux, Re=100, different 

Prandtl number 
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Figure (7) Developing and fully developed 

temperature distribution in a parallel plate 

channel for constant heat flux, Pr=0.7, different 

Reynolds number 
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Fig.(8) Bulk temperature in a parallel plate 

channel for constant wall temperature, 

Re=100, different Prandtl number 
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Fig.(9) Bulk temperature in a parallel plate 

channel for constant heat flux, Re=100, 

different Prandtl number 
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Fig.(12) Local Nusselt number in a parallel 

plate channel for constant heat flux, Pr=0.7, 

different Reynolds number 

100 300 500 700 900 1100
0 200 400 600 800 1000 1200

X

5.0

7.0

9.0

11.0

13.0

15.0

17.0

19.0

4

6

8

10

12

14

16

18

20

Nux

C.H.F
Pr=6

Re=100 Re=500 Re=1000 Re=1500

Re=2000

Fig.(13) Local Nusselt number in a parallel 

plate channel for constant heat flux, Pr=6, 

different Reynolds number 
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Fig.(10) Local Nusselt number in a parallel 

plate channel for constant wall temperature, 

Pr=0.7, different Reynolds number 
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Fig.(11) Local Nusselt number in a parallel plate 

channel for constant wall temperature, Pr=6, 

different Reynolds number 


