# Drug Design, In Silico-Profiling of New Pyrrole Derivatives: Promising Anticancer Agents Against Acute Myeloid Leukemia

Zaid Nazar Ibrahim\*, Ayad Kareem Khan\*, Mohammed Dheyaa Hamdi\*, Atheer Awad Mehde\*\*

#### Article Info:

Received July 2023 Revised Aug 2023 Accepted Sept 2023 Corresponding Author email: ayad@uomustansiriyah.edu.iq Orcid: https://orcid.org/0000-0002-2353-6444 **DOI:** https://doi.org/ 10.32947/ajps.v24i3.1063 Abstract:

Molecular docking simulation synthesis of five compounds of N2, N4bis (2-(4-substituted phenyl)-4oxothiazolidin-3-yl)-3,5-dimethyl-1Hpyrrole-2,4-dicarboxamide was carried out to evaluate their theoretical binding affinities. targeting acute myeloid leukemia (AML). The chemical structure of the molecules was accurately drawn using ChemDraw Professional software.

The designed compounds were evaluated for their selectivity towards FLT3's ATP pocket (PDB ID:6JQR) in comparison with the reference ligand (Gilteritinib) by using GOLD suite from the Cambridge Crystallographic Data Centre (CCDC) software (Version 2021.2.0). All the designed compounds exhibited good binding energies with the receptor active pocket and had promising activity. Compounds 2E and 3E showed the highest PLP Fitness (83.30, 80.86 respectively) and it is higher than that of Gilteritinib (71.91). In-silico ADME and drug-likeness studies were performed by using the Swiss ADME server. The results showed that most of the designed compounds expected to be absorbed from the GIT. Compounds 2B-E have high expected GI absorption. All the investigated compounds have no predicted BBB penetration. Additionally, compounds 2A, 2C, 2D, and 3A are not a substrate to P-gps which may indicate a lower expected incidence of resistance by cancer cells in vitro studies. Finally, all of the investigated compounds are not considered to inhibit CYP1A2 enzyme, except for compounds **2A** and **3D**.

**Key words:** in silico-profiling, pyrrole derivatives, Schiff bases, thiazolidinones, acute myeloid leukemia

التصميم الدوائي وتحديد السمات الحاسوبي لمشتقات البيرول الجديدة: عوامل واعدة لمكافحة سرطان الدم النخاعي الحاد

> زيد نزار ابراهيم\*، اياد كريم خان \*، محمد ضياء حمدي \*، اثير عواد مهدي \* \* \* فرع الكيمياء الصيدلانية/ كلية الصيدلة/ الجامعة المستنصرية

\*\* جامعة ساكاريا ، مركز أبحاث وتطبيقات المواد الطبية الحيوية والمغتاطيسية وأشباه الموصلات/ ساكاريا/ تركيا



<sup>\*</sup> Department of Pharmaceutical Chemistry, College of Pharmacy, Mustansiriyah University, Baghdad,

<sup>\*\*</sup> Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187, Sakarya, Turkey.

#### الخلاصة:

تم اجراء محاكاة الالتحام الجزيئي لخمسة مركبات من (-4- (oxothiazolidin-3-yl) -3,5-dimethyl-1H-pyrrole-2,4-dicarboxamide (oxothiazolidin-3-yl) -3,5-dimethyl-1H-pyrrole-2,4-dicarboxamide النظري للارتباط الخاص بها لاستهداف سرطان الدم النخاعي الحاد. تم رسم التركيب الكيميائي للجزيئات بدقة باستخدام بر نامج FLT3 (معرف 19.1 الاحترافي وتم تقييم المركبات المصممة من حيث انتقائها لجيب ادينوسين ثلاثي الفوسفات الخاص ب FLT3 (معرف بنك معلومات البروتينات: JQR6) بالمقارنة مع دواء Gilteritinib كمصدر مرجع (Gilteritinib) باستخدام مجموعة بنك معلومات البروتينات: JQR6 (Gilteritinib) باستخدام مجموعة طاقات ربط جيدة مع الجيب النشط للمستقبل وكان لها نشاط واعد أظهر المركبان (E3) و (E3) أعلى مستوى الفاعلية PLP طاقات ربط جيدة مع الجيب النشط للمستقبل وكان لها نشاط واعد أظهر المركبان (E3) و (E3) أعلى مستوى الفاعلية الخاصة ب (الامتصاص والتوزيع والتمثيل الغذائي والإفراز (ودراسات مشابّهة الادوية باستخدام خادم Swiss ADME وأظهرت (الامتصاص والتوزيع والتمثيل الغذائي والإفراز (ودراسات مشابّهة الادوية باستخدام خادم (E2) و (E2) نسبة عالية من الجهاز المضمي. تحتوي المركبات (B2) و (E3) مما قد يشير إلي الامتصاص المتوقع بالجهاز الهضمي. جميع المركبات التي تم فحصها ليس لها اختراق متوقع لحاجز الدم في الدماغ بالإضافة الخلك المركبات (C2) و (C2) و (C3) و

الكلمات المفتاحية: تحديد السمات الحاسوبي، مشتقات البيرول، قاعدة شف، ثاياز وليدينون، سرطان النخاع الحاد

## Introduction

Cancer is the world's second significant cause of death. Overall, the incidence of cancer is growing. As a result, cancer is a severe issue that affects the health of all human communities. Unfortunately, it is a tissue-level variety disorder, and this variation is a big problem for its particular diagnosis, followed by therapy effectiveness (1). Tumors are uncontrolled cell growth, some of which may be benign, when tumor cell proliferation is restricted to the area of origin, it is less dangerous unless it is located close to any major organs. Others are malignant tumors when the cells are unusual and have the potential to expand out of control (2). Most mutations cause functional loss. However, the overall effect of mutations that alter an inhibitory pathway may be an increase in function. Such a loss often causes malignant cells to proliferate more and/or have the capacity to attack nearby structures or expand outside of the original tissue (metastasize). Tumor cells exhibit morphological changes in their cytological appearance (cellular atypia) and growth pattern (dysplasia). Understanding how the cell manages its growth may help prevent and treat the tumor (3).

Problems in Antineoplastic Drug Development include creating medications that specifically target tumor cells rather than healthy cells. Despite targeted therapy has come a long way, there remain a lot of inevitable side effects, one distinguishing feature of cancer is being resistant to many treatments <sup>(4)</sup>.

Despite medical and scientific advances, there are still few effective ways to cure cancer. Cancer metastasis and recurrence are major causes of morbidity and death, but their underlying processes have yet to be elucidated. (5). Acute myeloid leukemia (AML) is a rare disease that can be very dangerous and has historically high death rates. The standard of care hasn't changed in decades, but recent discoveries regarding the genetic causes of disease development have made new medicines for AML possible. Studies are working hard to personalize treatment by finding molecular targets, finding risk factors that are unique to each patient and disease, and determining which combination of procedures and medicines responds effectively (6).

AML research and treatment have advanced considerably in recent years. There have been nine agents authorized for use in AML

© **⊕** 

between 2017 and 2021. Targeted therapies such as venetoclax, FLT3 inhibitors, IDH inhibitors, and others were among those used <sup>(7)</sup>.

Type III receptor tyrosine kinase FMS, first identified as the gene implicated in Feline McDonough Sarcoma, links to macrophage or monocyte colony-stimulating factor (M-CSF or CSF-1). This binding trigger signal cascade that promotes the survival, multiplication, and differentiation of the monocyte/macrophage lineage. diseases have been linked to overexpression of CSF-1 and/or FMS, including the development of metastasis in several cancer types, the promotion of osteoclast development in bone osteolysis, and numerous inflammatory conditions (8).

Fms-like Tyrosine Kinase 3 (FLT3) is a receptor tyrosine kinase found mostly in the hematopoietic component that has been associated to a number of illnesses, including the appearance of metastasis in numerous cancer types. FLT3 expression modification are significantly and associated to the development occurrence of AML. It has been found that FLT3 alterations appear in around 30% of recently identified AML patients (9).

FLT3 stimulatory mutations may include potentially the juxta membrane domain [internal tandem duplication mutations tyrosine (FLT3-ITD)] or the kinase domain (FLT3-TKD) (10). FLT3 inhibitors of type I can stop both FLT3-ITD and TKD but type II inhibitors can only stop FLT3-ITD and not TKD. The first-generation FLT3i drugs aren't specific for FLT3 and stop many downstream RTKs from working. This could lead to more side effects that aren't intended. FLT3i's of the second generation work better and more specifically on FLT3 and have less of an effect on other things (11).

Gilteritinib, an FDA-approved secondgeneration targeted FLT3 inhibitor with efficacy in recurring or refractory FLT3-mutated AML, was discovered to be linked to FLT3's pocket (PDB ID:6JQR) (12)(13).

Multiple molecules with anti-inflammatory, antimicrobial, anti-dyslipidemia, anticancer properties have been related back to the pyrrole moiety<sup>(14)</sup>. The pyrrole carboxamide core possesses characteristics and has been subjected to limited research until now. It plays a crucial role in numerous marine natural products, such as (agelastatin A and vatakemycin), which have demonstrated anticancer properties (15). The synthetic pyrrole carboxamides have been observed to exhibit a range of pharmacological effects, including the inhibition of tyrosine kinase (16)

Schiff bases are recognized in biological chemistry for their broad range of biological actions, including anticancer properties<sup>(17)</sup>. Several thiazolidinedione derivatives are currently being studied due to their diverse biological activities, which include antibacterial, anti-diabetic, and cytotoxic activities on various cell lines<sup>(18)</sup>.

Given these results, as well as the remarkable biological capabilities of thiazolidinones and Schiff base derivatives, a reasonable structure of five novel compounds containing oxothiazolidin and the five Schiff bases from which they were generated was proposed. This technique may result in an improvement of the suggested compounds' pharmacological properties, particularly their anticancer activity.

# **Experimental work**

Five new compounds were designed by selecting pyrrole as core scaffold which is linked symmetrically to two substituted thiozolidinone moieties, a scheme was proposed to synthesize the designed compounds **3A-E**, **Scheme 1**, which was constructed by using ChemOffice software

(ChemDraw Professional 19.1). Basically, it includes

- base-promoted ester aminolysis reaction of starting material (1,1'-(3,5dimethyl-1H-pyrrole-2,4-diyl) bis(propan-1-one)) (10 mmol, 2.11g) was mixed with (20 ml) of 99% hydrazine hydrate and 5 ml distilled water (DW) in a round bottle flask and the mixture boiled under reflux for 2 hrs, then allowed to cool and washed with diethyl ether then filtered. The residue was recrystallized by ethanol, filtered, and collected. resulting in the formation of hydrazide the intermediate (19).
- then the formation of Schiff bases through an acid-catalyzed imine formation by reacting the tydrazide intermediate (1 mmol, 0.21 g) with different aldehydes (2 mmol) which occure by dissolving them in 14 ml methanol and 6 ml DW with continuous stirring. A few minutes later, three drops of acetic acid were applied. The combination was warmed up to 60 °C under reflux for 2 hrs. Afterward, solvent evaporated, and the residue was washed with DW (to get

- rid of the MPC) and allowed to dry. The resulting powder was washed with diethyl ether (to remove the excess unreacted aldehyde), filtered, and collected (20)
- (Compounds 2A-E). Finally, undergo intramolecular ring cyclization to yield bisheterocyclic (thiozolidinone) pyrrole compounds **3A-E** (ring closure reaction by reacting them with thioglycolic acid (TGA)) (21), they were solubilized within a 3-milliliter volume of thioglycolic acid (TGA) then heated to 60°C under reflux for 14 hrs then stirring at room temperature overnight. Afterward, 5 ml ethyl acetate was poured into the mixture and subsequently transported to separating funnel. The organic layer underwent a series of three washes with a saturated solution of sodium bicarbonate, each wash utilizing a volume of 20 milliliters. Subsequently, it was further rinsed with a volume of 10 milliliters of distilled water and concentrated by a rotatory evaporator to give an oily residue which was washed with diethyl ether to give the final compounds.

© (1)

TGA= Thioglycolic acid MPA= 3,5-dimethyl-1*H*-pyrrole-2,4-dicarbohydrazide

Scheme 1. A proposed pathway for synthesizing the designed compounds 3A-E

### **Molecular docking**

Molecular docking is a type of computer modeling that enables the prediction of the preferable binding position of one molecule (e.g., ligand) to another (e.g., Receptor) when the two interact to create a stable complex (22). The goal of molecular docking is to determine the most likely method of ligand binding to a specific molecular (protein). This partner is becoming increasingly important in the development process as more protein structures are identified experimentally methods using such as X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy (23).

Drawing of the 2D chemical structure of the designed compounds and their energy minimization were carried out by ChemDraw Professional 19.1 and they were saved as SYBYL2 (mol2) format. The 3D

structure of the target enzyme (FLT3, PDB ID: 6JQR) was obtained and retrieved from the protein data bank (PDB) website (https://www.rcsb.org/) and uploaded to the GOLD software program 2021.2.0.). Hydrogen atoms were added and unnecessary metals, ligands (except the reference ligand, Gilteritinib), enzyme chains (except chain A), and water molecules were deleted. The binding site was defined by the reference ligand and cavity size was determined by all atoms within 10 A. The saved compounds (2mol format) were uploaded and the GOLD run was allowed to proceed. When the run ended, the highest PLP scores for each compound and their images (which show the interaction of each compound with the amino acid residues in the binding site) were recorded. Docking scores and images

**©** •

were shown in table 1 and Figures 1 and 2, respectively.

Computational methods for the characterization of the investigated molecules by the ADME program

Early ADME (absorption, distribution, metabolism, and excretion) screening tests developed for low cost and high throughput in pharmaceutical research and manufacturing facilitate the discovery of the most potential lead compound since poor pharmacokinetics (PK) and toxicity are the most frequent reasons for drug discovery failure (24).

The SwissADME server was used to predict **ADME** parameters (Absorption, Distribution, Metabolism, and Excretion) and the other physicochemical properties of the investigated molecules (25). ChemAxon's Marvin JS was used to draw the chemical structures of the investigated compounds, 2A-E and 3A-E, and their SMILES notations. The BOILED EGG was used to passive assess the possibility of gastrointestinal absorption and brain penetration, or the polarity and lipophilicity of the investigated compounds, Figure 3 and 4 (26).

#### **Results and Discussion**

All the investigated compounds, 2A-E and 3A-E showed a comparable binding pattern with the amino acids' residues of the active site of FLT3 (PDB ID: 6JQR) to the reference ligand, Gilteritinib, as shown in Figures 1 and 2, and Table 1. However, they have higher PLP fitness scores than Gilteritinib might be due to covalently binding to amino acid residues of the active site in addition to electron rich aromatic and heterocyclic rings that could fill the pocket high possibility of with producing hydrophobic interactions more giltertinib except for compounds 2A and 3A, as shown in Table 1. Moreover, Compound 2E, which is a bishydroxybenzaldehyde Schiff base compound 1, recorded the highest docking score (83.3). This may indicate that this compound has the highest FLT3 inhibitory among the other activity designed molecules. The highest predicted activity of compound 2E may be due to the interaction of this compound with three amino acid residues (Cys 694, Asp 698, Val 624 with bond distances 2.237, 3.065 and 2.855 A, respectively). These interactions maximize the binding affinity and the docking score, as shown in table 1 and Figure 1.

Table 1. Docking scores of Gilteritinib, compounds 2A-E and 3A-E, and their interaction with the amino acid residues in the active site of FLT3 (PDB ID: 6JQR).

| interaction with the animo acid residues in the active site of FL13 (1 DB ID: 03QR). |              |                                                       |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------|-------------------------------------------------------|--|--|--|--|
| Compound                                                                             | ER binding   | Amino acids residues involved in the interaction with |  |  |  |  |
|                                                                                      | energy       | FLT3's pocket (PDB ID:6JQR)                           |  |  |  |  |
|                                                                                      | (PLPfitness) |                                                       |  |  |  |  |
| 2A                                                                                   | 67.97        | Cys 694, Asp 698,                                     |  |  |  |  |
| 2B                                                                                   | 80.72        | Cys 694, Val 675                                      |  |  |  |  |
| 2C                                                                                   | 75.48        | Cys 694, Leu 616                                      |  |  |  |  |
| 2D                                                                                   | 72.29        | Cys 694                                               |  |  |  |  |
| 2E                                                                                   | 83.30        | Cys 694, Asp 698, Val 624                             |  |  |  |  |
| 3A                                                                                   | 80.86        | Glu 692, Asp 698, Tyr 696, Cys 695                    |  |  |  |  |
| 3B                                                                                   | 80.43        | Glu 692                                               |  |  |  |  |
| 3C                                                                                   | 79.04        | Cys 694                                               |  |  |  |  |
| 3D                                                                                   | 77.31        | Cys 694, Leu 616, Tyr 693                             |  |  |  |  |
| 3E                                                                                   | 69.47        | Cys 694                                               |  |  |  |  |
| Reference Ligand:                                                                    | 71.91        | Glu 692, Cys 694                                      |  |  |  |  |
| Gilteritinib                                                                         |              |                                                       |  |  |  |  |

© **⊕** 

The SwissADME server was employed for the prediction of the physicochemical and ADME properties of the investigated pharmacokinetic molecules. The parameters of the investigated molecules have been recorded and there was a variation in properties according to chemical structures, as illustrated in Tables 2 and 3. As shown from the predicted results, all of the Schiff bases don't violate drug-likeness parameters, except compound 2A (1 violation, 1 violation: TPSA>131.6) might be due to the polarity of hydroxide moiety and compound 2B (1 violation 1 violation: MR>130). Therefore, compounds 2A-E displayed a predicted GI absorption, except compound 2A. The low predicted GI absorption of compound 2A is due to its high TPSA (139.17) which is a violation to

Egan parameter (TPSA>131.6). Compounds **3A-E** have low expected GI absorption due to their violation to all the drug-likeness parameters. The low expected oral bioavailability of compounds **2A** and **3A-E** may indicate that these compounds should be administered parentally or could be evaluated for colon targeting in the future.

All of the proposed compounds don't show an expected penetration though the blood brain barrier (BBB). Furthermore, compounds **2A**, **2C**, **2D**, and **3A** are not a substrate to P-gps which may indicate a lower expected incidence of resistance by cancer cells in vitro studies (27)(28). Finally, all of the investigated compounds are not considered to inhibit CYP1A2 enzyme, except for compounds **2A** and **3D**, as shown in table **2** and **3**.

Table 2 ADME and drug-likeness parameters of compounds 2A-2E and 3A-3E

| Compound     | MW     | nHBD | nHBA | MR     | TPSA   | ĞI   | BBB | P-gp      | CYP1A2    |
|--------------|--------|------|------|--------|--------|------|-----|-----------|-----------|
|              | (g/    |      |      |        | (Å)    |      |     | substrate | inhibitor |
|              | mol)   |      |      |        |        |      |     |           |           |
| 2A           | 419.43 | 5    | 6    | 117.11 | 139.17 | Low  | No  | No        | Yes       |
| 2B           | 473.57 | 3    | 4    | 141.48 | 105.19 | High | No  | Yes       | No        |
| 2C           | 447.49 | 3    | 6    | 126.05 | 117.17 | High | No  | No        | No        |
| 2D           | 415.49 | 3    | 4    | 122.99 | 98.71  | High | No  | No        | No        |
| <b>2</b> E   | 529.68 | 3    | 4    | 160.70 | 105.19 | High | No  | Yes       | No        |
| 3A           | 567.64 | 5    | 6    | 153.94 | 205.67 | Low  | No  | No        | No        |
| 3B           | 621.77 | 3    | 4    | 178.31 | 171.69 | Low  | No  | Yes       | No        |
| 3C           | 595.69 | 3    | 6    | 162.88 | 183.67 | Low  | No  | Yes       | No        |
| 3D           | 583.69 | 3    | 4    | 159.83 | 165.21 | Low  | No  | Yes       | Yes       |
| 3E           | 677.88 | 3    | 4    | 197.54 | 171.69 | Low  | No  | Yes       | No        |
| Gilteritinib | 552.71 | 3    | 7    | 168.43 | 121.11 | High | No  | No        | No        |

Table 2. Drug likeness parameters for SAHA and compounds 2A-E

| Compound     | Drug likeness according to |                        |       |                            |        |  |  |
|--------------|----------------------------|------------------------|-------|----------------------------|--------|--|--|
|              | Lipinski                   | Ghose                  | Veber | Egan                       | Muegge |  |  |
| Gilteritinib | Yes                        | Yes                    | Yes   | Yes                        | Yes    |  |  |
| 2A           | Yes                        | Yes                    | Yes   | 1 violation:<br>TPSA>131.6 | Yes    |  |  |
| 2B           | Yes                        | 1 violation:<br>MR>130 | Yes   | Yes                        | Yes    |  |  |
| 2C           | Yes                        | Yes                    | Yes   | Yes                        | Yes    |  |  |
| 2D           | Yes                        | Yes                    | Yes   | Yes                        | Yes    |  |  |

| 2E | 1 violation:  | 3 violations:   | 1 violation: | Yes          | 1 violation:  |
|----|---------------|-----------------|--------------|--------------|---------------|
|    | MW>500        | MW.480, MR.130, | Rotors>10    |              | XLOGP3>5      |
|    |               | #atoms>70       |              |              |               |
| 3A | 2 violations: | 2 violations:   | 1 violation: | 1 violation: | 1 violation:  |
|    | MW>500,       | MW>480,         | TPSA>140     | TPSA>131.6   | TPSA>150      |
|    | NorO>10       | MR>130          |              |              |               |
| 3B | 2 violations: | 3 violations:   | 1 violation: | 1 violation: | 2 violations: |
|    | MW>500,       | MW.480, MR.130, | TPSA>140     | TPSA>131.6   | TPSA>150,     |
|    | NorO>10       | #atoms>70       |              |              | MW>600        |
| 3C | 2 violations: | 2 violations:   | 1 violation: | 1 violation: | 1 violation:  |
|    | MW>500,       | MW>480,         | TPSA>140     | TPSA>131.6   | TPSA>150      |
|    | NorO>10       | MR>130          |              |              |               |
| 3D | 1 violation:  | 2 violations:   | 1 violation: | 1 violation: | 1 violation:  |
|    | MW>500        | MW>480,         | TPSA>140     | TPSA>131.6   | TPSA>150,     |
|    |               | MR>130          |              |              |               |
| 3E | 2 violations: | 3 violations:   | 2            | 1 violation: | 3 violations: |
|    | MW>500,       | MW.480, MR.130, | violations:  | TPSA>131.6   | TPSA>150,     |
|    | NorO>10       | #atoms>70       | TPSA>140     |              | MW>600,       |
|    |               |                 | Rotors>10    |              | XLOGP3>5      |

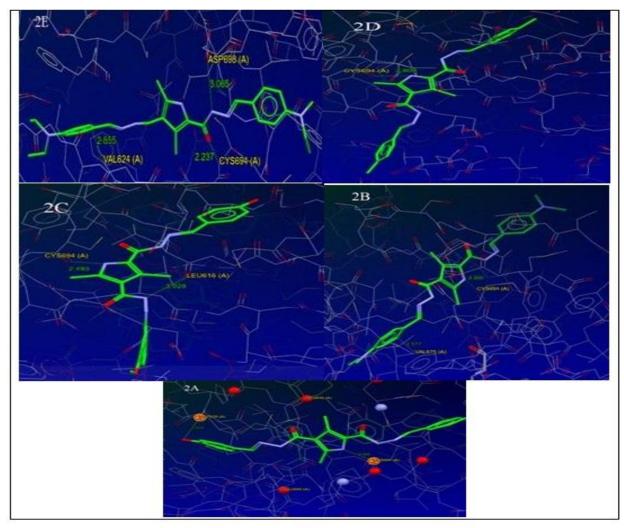



Figure 1. Interaction of Compounds 2A-E with the amino <u>acids</u> residues of FLT3 catalytic pocket (PDB ID: 6JQR)



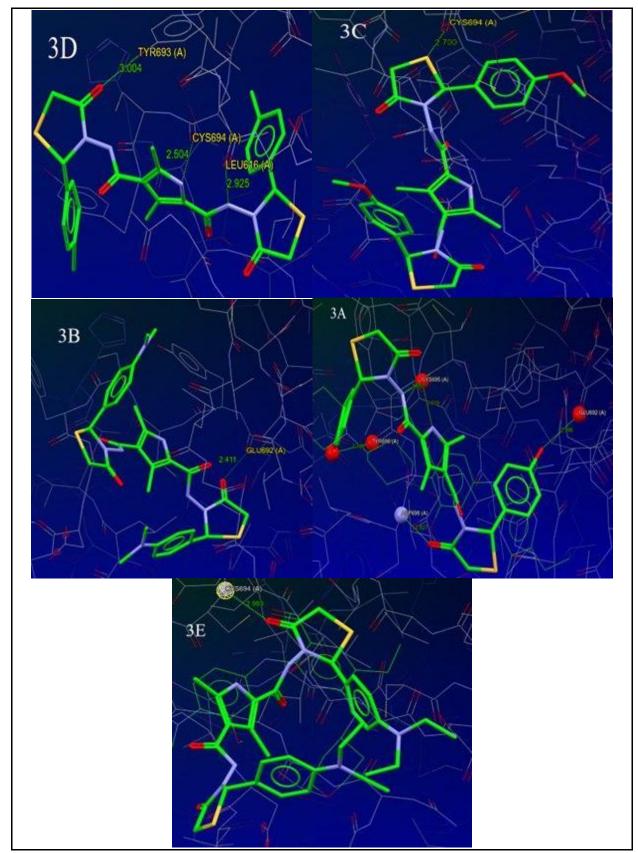



Figure 2. Interaction of Compounds 3A-E and Gilteritinib with the amino acids residues of FLT3 catalytic pocket (PDB ID: 6JQR)



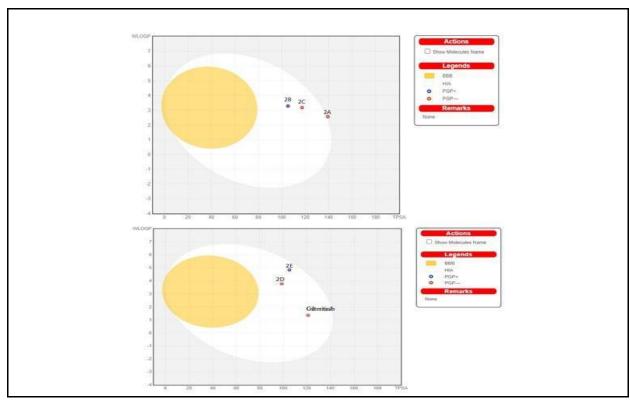



Figure 3. Overview of the BOILED-Egg construction for Gilteritinib and compounds **2A-E** 



Figure 4. Overview of the BOILED-Egg construction for compounds 3A-E



#### Conclusion

New compounds containing pyrrole as a scaffold and linked symmetrically to either various aromatic Schiff bases or substituted thiazolidinones were designed investigated to evaluate their binding to FLT3 (PDB ID: 6JQR) and to predict their physicochemical properties and the other ADME parameters. All the investigated compounds displayed a higher binding affinity to FLT3 (except compounds 2A and 3E) compared with the reference ligand, Gilteritinib. Compounds 2B-E have high expected GI absorption. All the investigated compounds have no predicted BBB penetration. Additionally, compounds 2A, 2C, 2D, and 3A are not a substrate to P-gps which may indicate a lower expected incidence of resistance by cancer cells in vitro studies. Finally, all of the investigated compounds are not considered to inhibit CYP1A2 enzyme, except for compounds 2A and 3D. These interesting results were found to be encouraging for the synthesis of the designed compounds in the future and performing further evaluation studies such as, in vitro and in vivo biological studies.

# **Conflicts of interests**

The authors declare no conflict of interests.

# References

- 1- Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract. 2017;4(4):127–9.
- 2- Sinha T. Tumors: Benign and Malignant. Cancer Ther Oncol Int J. 2018;10(3).
- 3- Kanar Muthanna Alawad, Monther Faisal Mahdi, Ayad M.R. Raauf. Molecular Docking study, and In vitro Evaluation of Antitumor Activity of Some New Isoxazoline and Pyrazoline Derivatives of Nabumetone against breast cancer cell line (MCF-7). Al Mustansiriyah J Pharm Sci. 2022;22(3):24–34.
- 4- Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-Based Drug

- Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci. 2020;7.
- 5- Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85.
- 6- Newell LF, Cook RJ. Advances in acute myeloid leukemia. BMJ. 2021; n2026.
- 7- Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, et al. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021;11(2):41.
- 8- El-Gamal MI, Anbar HS, Yoo KH, Oh CH. FMS Kinase Inhibitors: Current Status and Future Prospects. Med Res Rev. 2013;33(3):599–636.
- 9- Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312.
- 10-Yamamoto Y. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97(8):2434–9.
- 11-Daver N, Venugopal S, Ravandi F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J. 2021;11(5):104.
- 12-Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3 -Mutated AML. N Engl J Med. 2019:381(18):1728–40.
- 13- Kawase T, Nakazawa T, Eguchi T, Tsuzuki H, Ueno Y, Amano Y, et al. Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget. 2019;10(58):6111–23.
- 14-Ramos P, Bentires-Alj M. Mechanismbased cancer therapy: resistance to



- therapy, therapy for resistance. Oncogene. 2015;34(28):3617–26.
- 15-Lazo JS, Skoko JJ, Werner S, Mitasev B, Bakan A, Koizumi F, et al. Structurally Unique Inhibitors of Human Mitogen-Activated Protein Kinase Phosphatase-1 Identified in a Pyrrole Carboxamide Library. J Pharmacol Exp Ther. 2007;322(3):940–7.
- 16- Bhosale J, Dabur R, Jadhav G, Bendre R. Facile Syntheses and Molecular-Docking of Novel Substituted 3,4-Dimethyl-1H-pyrrole-2-carboxamide/carbohydrazide Analogues with Antimicrobial and Antifungal Properties. Molecules. 2018;23(4):875.
- 17- Ceramella J, Iacopetta D, Catalano A, Cirillo F, Lappano R, Sinicropi MS. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics. 2022;11(2):191.
- 18- Rahman RMA, Alharbi AS, Alshammari NA. Synthesis of Novel 4-Thiazolidinone and Bis-Thiazalidin-4-One Derivatives Derived from 4-Amino-Antipyrine and Evaluated as Inhibition of Purine Metabolism Enzymes by Bacteria. Int J Org Chem. 2019;09(02):85–95.
- 19- Daud S, Abid O ur R, Sardar A, Shah BA, Rafiq M, Wadood A, et al. Design, synthesis, in vitro evaluation, and docking studies on ibuprofen derived 1,3,4-oxadiazole derivatives as dual α-glucosidase and urease inhibitors. Med Chem Res. 2022;31(2):316–36.
- 20-Nafie MS, Boraei ATA. Exploration of novel VEGFR2 tyrosine kinase inhibitors via design and synthesis of new alkylated indolyl-triazole Schiff bases for targeting breast cancer. Bioorg Chem. 2022; 122:105708.

- 21-Mahdi MF, Kadhim FAH. Design, Synthesis and Acute Anti-Inflammatory Evaluation of New Non-Steroidal Anti-Inflammatory Agents Having 4-Thiazolidinone Pharmacophore. J Nat Sci Res. 2015;5(6):21–9.
- 22- Agarwal S, Mehrotra R. An Overview of Molecular Simulation. JSM Chem. 2016;4(2):1024–8.
- 23-Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017;9(2):91–102.
- 24-Fowler S, Chen WLK, Duignan DB, Gupta A, Hariparsad N, Kenny JR, et al. Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization. Lab Chip. 2020;20(3):446–67.
- 25- Allawi MM, Mahdi MF, Raauf AMR. Synthesis, anti-inflammatory, molecular docking and ADME studies of new derivatives of ketoprofen as cyclooxygenases inhibitor. Al Mustansiriyah J Pharm Sci. 2019;19(4):125–39.
- 26-Daina A, Zoete V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016;11(11):1117–21.
- 27-Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Farahani MV, Hushmandi K, et al. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today. 2022;27(2):436–55.
- 28- Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon. 2022;8(6): e09777.

