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          The rescaling method is presented to allow us to establish nonnegative local solutions 

to the evolution of the Cauchy problem (CP) of the nonlinear degenerate parabolic p-

Laplacian process with conservation laws that are posed in one-dimensional space.  This 

equation has specific restrictions in the range of parameters, the non-negative advection 

coefficient, and a self-similarity representing the main feature. In this study, there are several 

regions to discuss the qualitative analysis for the local weak solutions and the asymptotic 

interfaces in irregular domains. The solutions of the CP for degenerate parabolic p-Laplacian 

type diffusion-advection equations are asymptotically equal to the solutions of p-Laplacian 

type diffusion or advection equations under some restrictions. Moreover, the blow-up 

technique, comparison method, and characteristic method are used to estimate the 

asymptotic local solutions to the CP and the interface functions.  The results of this paper 

can be used to solve problems in the oil and gas industries, such as estimating and 

controlling the size of oil and gas resources as they evolve through time. 
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Introduction with Statement of Problem 

The mathematical equation that describes the 

diffusion difficulties has attracted the attention of 

numerous academics over the years. Cherniha and Serov 

[1] were giving the non-linear diffusion equations a 

fresh analysis and accurate solution. New modification 

equations were derived by Kuske and Mileniski [2] for 

the hexagon-style in reaction-diffusion systems. These 

systems exhibit more non-linearities than Smith-

Hohenberg models or Rayleigh-Bernard convection.  

Matano et al. [3] investigated the interaction and 

diffusion equations using the spatially heterogeneous 

interaction term. If this reaction's term coefficient is far 

higher than the dispersion coefficient, the strong 

interface between two separate phases will be visible. 

They demonstrated that the motion equation for this 

interface includes a drift term even though drift was 

absent from the original diffusion equations.  
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The researchers in [4] investigated the uniqueness 

and existence of the solution to the self-similarity of 

diffusion equation. A study was performed to examine 

fast gas flow models by heating various materials using 

a microwave and by porous media. A source function 

and nonlinear diffusion-advection equation is being 

investigated in Alvarez et al. 1988 [13]; Aal-Rkhais et 

al. 2018 [6], and Abdulla et al. 2019 [7].  

c 0;
mu u u

bu
t x x x


    

    
      

               (1) 

According to [17, 19, 24], the general theory of 

the CP for equation (1) and qualitative analysis are 

established in irregular domains with compactly 

supported initial data. This paper represents the 

continuity of our previous study that we started in our 

earlier study, see [5]. We provide rescaling and blowing 

up techniques that are effective to estimate the self-

similar solutions. Also, comparison principle and 

characteristic methods are significant to handle our 

results. Let us introduce the nonlinear degenerate 
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parabolic p-Laplacian type diffusion PDEs equation as 

follows, 

2

c 0;

p
u u u u

u
t x x x x

     
    

      

L u            (2)   

0( ) ( ),0 ,   =0, u x u x t x R                                   
(3)

                                  
 

where the parameters 0,p 2,   0 T< , 0c  and 

0 ( ) 0u x  is continuous. Because the non-positive sign 

of the advection coefficient .c  In [14, 19, 23], There are 

several uses for fluid mechanics, plasma and quantum 

physics, and many other fields. One among the key 

characteristics of process (2) is the nonlinearity quality, 

and due to the gap created by nonlinear variables and 

irregular domains, the CP is occasionally discussed with 

peculiar growth condition. The equation (2) with 0,c 

is interpreted as a particular case of the p-Laplacian type 

diffusion equation. Recently it has attracted a lot of 

attention additionally it has established itself similar to a 

key concept during the study of parabolic PDEs. We 

provide the readers with  more details in several studies 

[16, 20, 26]. Also, the interface functions of the 

solutions to the CP(2)-(3) are separated regions and 

more studies to the behavior of interfaces, [5, 6, 7]. The 

local case for the initial data is 

0 ( ) 0( ; 0 ,)x x as xu  

   A A
               

(4)
   

where is a positive and is an inequality in two 

sides. Direction and behavior of the interface's 

movement are determined by a conflict between these 

two forces, p-Laplacian and advection. As demonstrated 

in [17], because 0u is a bounded initial  function that 

satisfies certain parameter restrictions as 0x , it is 

suitable for satisfying the general theory. Additionally, 

the study of a porous medium equation (PME) and a 

growth rate conditions to nonlinear parabolic PDEs 

clearly introduces the global initial data in 

0 ( ) ( ) ,   x x xu 

  A R
                     (5)  

This study is regarded as a classification of the 

evolution of the interfaces in our scenario, where 

advection dominates over p-Laplacian type diffusion 

force. Our main focus in the case when the advection 

force dominates over the diffusion force of the p-

Laplacian type. To estimate the interface and the 

solution near a shrinking or waiting time interface under 

restrictions, in Table1. Also, studying
 
the initial growth 

of interface ( ) { : ( , ) 0}x u xt t   and ( 00) ,  will be 

considered. To classify developing  interfaces and the 

local weak solutions of CP (2)–(5) close to the 

interfaces, we have to use the plane ( ),   in Figure 1 

where c 0.  

 
Figure 1. To classify qualitative analysis of the solution 

and interface to the CP(2)-(3). 

 

To make the calculation process easy, we impose 

1,q p  the study's discussion of interfaces and 

solutions are limited to three regions in Figure. Where 

from the table1, region(1) is restricted depending on 

rescaling technique and we get the p-Lapacian type 

diffusion dominates with expanding interface. Similarly, 

regions (2) is restricted and we get the p-Lapacian type 

diffusion and advection in balance with expanding 

interface. The regions (3) is restricted and we get 

advection force dominated with expanding interface. 

Finally, the sub-regions (4a),(4b) and (4c)  are restricted 

and we get stationary solution with WT interface. 

Table 1. Description of the Regions where  -

Laplacian type diffusion dominates.  

Reg

ion 
Restrictions Interface 

(1) 

1( min{ ,( 1) / 2}) ,q q q    

1  ; 
 

Expanding 

(2) 1( ) ,  q q    0 ( 1) / 2;  q    Expanding
 

(3) 

1 1( ) ( 1) ,q q q      

1 ( 1) / 2 ;  q    
Expanding

 

(4a) 
1( 1) ,q     1 ( 1) / 2;  q    WT 

(4b) 
1( ) ,  q q    ( 1) / 2  ;  q q    WT 
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(4c) 

1 12 ( 1) ( ) ,  q q q q     

( 1) / 2  ;  q q    
WT 

 

The weak solution to equation (2) is existed from 

the definition in [5], and we can get  some  significant 

definitions and preliminary results, such as super or sub 

solutions. 

 Let us consider the identity as follows 

1 2 2

1

0

0 1 1

1( ) ( )

( ) ( )

( , ,Ψ) 0,

qt t

t t

f u u f f
I u f u cu dxdt uf

x x x x x
dx

  




  

      
            
     (6) 

where 
2, 1

, C ),Ψ(x tf    i
| 0,

tx
f


 and 

1 2 0 1Ψ {( , ) :   ,     }.( ) ( )x xt t t t         

Additionally,   is called local sub-solution (or super-

solution) to the parabolic PDEs (2)  if ( , ,Ψ) 0uI f 

(resp. 0 ). The general theory of the IVP for (1) was 

studied in several papers [18, 20, 21, 22, 27]. The 

authors proved the qualitative properties using the 

energy and the optimal growth rate is a feature of 

equation (2) that can be achieved with       

Also, we need to consider some concepts that are 

significant in proof our results. Let n be a sequence 

of functions defined on a set .E  It is said to be 

uniformly convergent to ( )t  on 1E E  if for each 

0;  there exists ( )k  such that ( ) ( ) .nt t   
 

From the Arzela-Ascoli theorem, let  
1n n





be a 

sequence of real-valued continuous functions on a 

compact set E  that is ( ),n C E 
 
for all  ,  nn  is 

point-wise bounded on .E  and  n is equi-continuous, 

then  n is uniformly bounded and it has a uniformly 

convergent subsequence, see [30]. 

Governing of  -Lapacian Type Diffusion  

        Based on the above preparation and 

preliminaries in previous article in [5], we keep going 

and formulate our problem to evaluate the solutions near 

interfaces in different regions. The advection term with 

0c   is dominated over the p-Laplacian type diffusion 

factor with shrinking interface as shown in region (1), 

Figure 1. We will prove that situation in the theorem 

below as follows: 

Theorem 2.1. If 1( min{ ,( 1) / 2}) ,q q q     1 

and the interface is initially expanding as follows 
1

( 1) 1

*  0 ,,  q qt tas                            
(7)

  
 

where 
( 1)/( ( 1) 1)

* *  ,q q qA                                         
(8) 

and 
* * , ,( ) 0.A q    Then the p-Laplacian diffusion 

force dominates over the advection force and the local 

solution can be presented as follows 

( 1) 1 ( ,  )q qu t


    S                                             (9) 

along 
1

( 1) 1( ) ,q qx t t 

      where S is a shape function 

that depends on A . To prove theorem 2.1, we have to 

consider the auxiliary results in two lemmas as below. 

Lemma 2.1. The CP (2)-(4) has a solution u with 1,q 

10 ( 1)( 1)q q     , then it provides a self-similar 

solution  

( 1) 1 ( 1) 1
1

* ~ ( ),     ,( ,  ) q q q qu tx t t x


 


     S                   
(10)

  
1

1 ( 1)

0( ) ,
( ) 1

1

1

q

q q
q

qq

 




  
 
 




 
S S A

              

(11)

 

0 * 0  ,    sup{ :  0}( ) (1, ) ( ) 0.w       S S
  
(12)

 
where (10) satisfies the shape function S and w is a 

solution in special case. Additionally, if 0u satisfies (3), 

the CP(2)-(3) satisfies the results (7)-(9).
 

Lemma 2.2. If CP(2)-(5) has a solution ,u to equation 

(9) that is satisfied under the following restrictions 

a. 10 ( ) ,  0 ( 1) / 2.q q q         

b. 10 2 ( 1) ,  ( 1) / 2 .q q q q        

c. 10 2 ( 1) ,  .q q q      

Proof of lemma 2.2. From our previous techniques in 

proof of lemma 3.2 in [5]. 0,x 
 ٍ then 

α

0( ) ( ) ( ( + ),    .)u x x x x    
 ٍA  A  

        
   (13) 

By the continuity of solution to the parabolic PDEs(2) 

with initial data (3), ,x x 
 ٍ 0,  depends on  ٍ

and 0 t    we have 

 , ,( ) ( ( ),) ;x t u x t x tu u  
 ٍ  ٍ  ٍ  ٍ  ٍ                             

(14) 

From lemma 2.1 in [5], and (13)-(14), then 

  ,uu u  
 ٍ  ٍ  for 0 ,  t x x    

 ٍ           
(15)

   

Now, let us rescale the functions u  ٍ as follows, 
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1/ ( ( -1) 1)/  ,( )q

k

qu ku k k tx      

 ٍ

 ٍ                    
(16) 

u  ٍ 
solves the following Cauchy Problem: 

( )
1

0,
q q

q
u u

u ck
u u

t x x x x

 




 

     
  

    




 L

 

(17) 

( ,0) ( )( ) .u x x 

  A  
                                   

(18) 

Under the conditions of the definition 2.1 in [5], the 

local weak solution to the CP (17)-(18) is existed. Under 

the restriction ( ) 0,q q    the following formula 

should be true 

lim  ;   ( , ) [0, )k
k

v xu t R







    ٍ

 ٍ
                 

(19)
 

Let v   
sٍolve 

1

0,    

q
u u u u

t x x x x
u c

     
  

 
  

     

L
 
(20) 

( , ) ( ) ;    ( ) ( , ) 0,  u x t x u x t

    
 ٍ  ٍ

A  
    

(21) 

( ,0) ( )( ) ,  ,u x x x x
   

 ٍA                  (22) 

where,  0 , | | | | ,t x x  
 ٍ and ku  ٍ solve the following 

problem 

 
1

0,
q q

q
u u u u

x
u

x x x
c

t
k

 




 

     
  

    


 

 L (23)
 

1 1

( , ) ( )( ) ( , ) 0,  ,  u t k x uk x xk t     
 ٍ  ٍ  ٍ

A  (24)
 

1

( ,  0) ( )( ) ,   .xu k xx x
   

 ٍA  
                    

(25) 

where
 

 1 1

0 ,
q q

t k



  

  and
 

1
( -1) 11

{( , ) ;   < ,   }
q q

k t k k tx x x kx



 

 

   
 ٍ  ٍ  ٍ

D
 

The DPs (20)-(22) and (23)-(25) have unique 

solutions. Since the finite speed propagation property 

and 0  that is chosen such that 0 t   , then we 

choose ( , t) 0u x  . Applying lemma 2.1 in [5], and 

from (13),(14) and (15),(16) follows. Let us verify the 

sequence{ }ku  ٍ
converges by the assumption

    
 

2 /2( 1) 1( )  ,   , 0 .th e x x t      A R  0
 

Then we have 

( )
1

q q

k

q
u u

x x x

u u
u ck

t x

 




 

   
 
  

 
  
   

L_
 

                
22( 1)e (1 )t x


  A T
 
in k

 ٍD
 

where 1 ( )x R  T H , and 

( ) ( ) 2

2 12 ( 1) 2 2 11( ) 1 1( ) ( ) (( ) (2 1) 1) 
q q q q

t qq q qx k x ex x x
   

  
   

       H A

 

is a continuous function on k

 ٍD and for 
1

,x k x
 

tٍhus 

 xH
 
is uniformly convergesent where .k  Also,

( 1) 2

2( 1) 2 11 1( ) ( )tR x xce
 

  
 

   A
 
and hence

 

22( 1)(1 ) t

k u x e h


   L_ A T  

where 0 ,{( ) }:   0 .k k t tx   
 ٍ  ٍ

D D Then we have 

( )

( )
q q

R O k




 

   uniformly converges on 0

k

 ٍD as .k 

Thus for 0 1  
1

( ,0)( ,0)     ,ku h xx on k xx   ٍ

 ٍ  

        

1 1

   ,( ) ( , ) ,  0 .ku k x t h k x t t       ٍ

 ٍ  ٍ  
Since,

0 0 ( ),k k     
thus 0k k  and lemma 2.1 in [5] 

implies 

ku h  ٍ
 in

 0 .k

 ٍD
                                        

(26)
 

Suppose that 0{( , ) : ,  }x t x t t  P R   , and B P

where B is a compact region. If 0k is a large and 0k k , 

such that
k

0 .
 ٍD B.

 
Inequality (26) implies that{ }ku  ٍ

is 

uniformly bounded in B , v
 ٍis a subsequence ku  ٍ

converges such that 

                  
lim ,

k
k vu





 ٍ

 
 ٍon P . 

so, when 1,  advection term drops out as k  ,and 

v
 ٍsolves (9). 

Proof of theorem 2.1. By assumption of the theorem, let 

the restriction of  and be satisfied. Since the formula 

( ) comes from lemma 2.1. The lower bound of the 

interface satisfies as follows  
1

( ( )1) 1

*
0

liminf ( ) .q q

t
t t    








                     (27)                            

in order to get the interface's upper bound, on the other 

hand assume the arbitrary sufficiently small 0  and 

the CP(2) and (5) has a solution u
 wٍith 0c  . We will 

change A to A  , and first and second inequality of 

(14) and (13) respectively, that will be considered. We 

must now demonstrate that u
 ٍsupersolution of (2) is 

satisfied with 0c  , then we have 
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.
u

Lu c
x






 ٍ

 ٍ  Now we should prove 0.
u

c
x






 ٍ  Since 

the advection coefficient c is positive so only proving 

0
u

x






 ٍ is required. To solve CP(2)-(3), the technique of 

regularization should be considered with 0c   and 

( )( )xu 

  
 ٍ A  . Now, put u 

 ٍto prove 0
u

x






 ٍ

and assume that 

     ( +1)max  , 1) / ( +1) ,0 m 0( ax , ,ct ct qu ex qe c     
 ٍ

( +1) 1ct q ctLu e c u e
      

 ٍ ٍ L
 

1 0,ctc u e

     
 ٍ  

1

0

q

  


   

    
   
    
 

L  

It is clear that 0    and the reason is that 0c 

and 
1 0ctu e   

 ٍ . In addition, since is a classical 

solution, using the maximum principle to obtain 1u 
 ٍ

in ,D by reducing x
 

aٍnd to such small values and so 

0xu  
 ٍ

. Then it must be 0,u x  
 ٍ

so we get 

0   ,Lu in D
 ٍ

{( , );  ,   }.x t x x t 
 ٍD  

The r-h-s inequality of (15) holds, from a comparison 

principle along with (13), (14). And so we get 
11

( 1) ( 1) ( 1) ( 1)

*( ) ( ) ;  0
q

q q q qt tt    


     


   A   
 

1
( 1) ( 1)

*
0

lim ( )sup .q q

t
t t     




                            
(28)

                                  

Therefore, 
1

( 1) ( 1)

*~ ,  (   0) q qt tt      is valid, from 

(27) and (28).■ 

Example1. We consider the solution of CP (1)-(2) over 

the interface function 
 1/( 2 )

*( ) ,   
p p

t t


 
 

 with 

3, 0.5.p   This example to describe the situation 

where the diffusion dominates. Then we get three cases. 

If 
*=0, 1.8, 1.  4.  Firstly, ( ) 0,t  the interface has 

waiting time for the initial function (2). In second case, 

( ) 0.2t  and third case ( ) 0.4t  with the constant 

8C  and the interface is expending. 

 
Figure 2.  description of the solution where the diffusion 

dominates with expending interface. 

Let us take some values where
* 0, 0.5,1  ,1  .5;  to show 

behavior of the solution  (   ) near the interface 

function    α 2 )

*

1/(
,

p p
t t 

 
 with 3, 0.5;p   in the 

Figure 2. 

 

Balance Situation between p-Laplacian Type 

Diffusion and Advection 

          In the previous study in [5],  authors discussed the  

balance of the p-Laplacian type diffusion and advection 

forces in the case where the diffusion force stronger than 

advection force with the restriction (
*

)A A and no-

positive advection coefficient. On the other hand, we 

identify also in this section the same case but when the 

advection coefficient is positive, and under the 

restrictions of the parameters as shown in Figure 1 

(region(2) in table 1). 

Theorem 3.1. If 
1( )q q    with ( 1) / 2q   and  

1
1

* ( ) . [( ) c ]q

q

qq q    A
                           

(29)
  

And if the initial data 0u is satisfied (3) then the interface 

has the formula  
*, t 0~

q

t


 


  which is expanding 

according as *A A and * is a positive value. Also, the 

self-similar solution 

( 1) ( 1)
1

( ),  as ,  ( ) .~ S 0
q

q qxt t tu t 

      
   

(30)
 

whereS( ) 0  is a shape function for *  and 

( 1)( ) ( 1) 0.q q q q       It is evident from 

lemma 3.1 that global solution to CP (2),(4) satisfies 
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( )

( , ) S( ),    =
q q

u x t t t x


  
 

 x
                     

(31)
 

( )

* ,   0 ,
q

tt


  


   
                               

(32)
  

where, ( )t is expanding,S(0) 0 (see lemma 3.1), and 

for 0 ,  0 ,x t      such that
 

2 2 1 1( ) ( ) ,
q qq q

q qt tu      

   A A
         

(33)
 

which indicates
 
(34)

  
observing the r-h-s of (33) (respectively (34)) relates to 

(31) (respectively (32)).
 

Lemma 3.1. Under the restrictions of parameters 
1( )q q    and 0 ( 1) / 2;q    

then the CP(2), 

(5) has the self-similar form as follows 
(

( , ) ( )  ,
q q

u x t t xt


  



                       

(35) 

withS(0) 0 under the restriction  

Proof of lemma 3.1. The same technique in [5], we 

assume that rescaling function for 0,k   

( ,  ),
q

q q

k ku xk tku
  


                             

(36)
 

that satisfies CP(2),(5). Then the global solution of 

CP(2),(5) is existed and unique. Thus, 

( ,  ).
q

q qu xk tu k k
  

                                (37)
  

By choosing
q

k t  and assuming the shape function

S( ) ( ,1)u   solves the boundary value problem 

1 '(
( '   ')      (S ) 0,  

( 1) ( 1)

)

( 1) ( 1)

q S
S S c

q q q q

S  

 


    

     
  

(38) 

* *S( ) ~ ( ) ,  ;S( ) 0,        A                (39)
 

whereS satisfies (38)-(39). Thus, (31) and (32) are valid. 

Let us consider the initial data (4) and similar technique 

as proof of lemma 2.2, then (13), (14) are easily satisfied 

from (4). Therefore, from previous results, implies

 
,  ~ S( , ),  ( ( ) )   0

q

asu 

     

 
 ٍ A            (40) 

where ,qk t





 so from (40) and (15) , the formula (35) 

follows for the arbitrary value 0. ٍ  

Proof of theorem 3.1. Under the condition *,A A the 

CP(2),(5), has a unique solution and the self-similar 

form (31) in lemma 3.1 is satisfied. Assume that 

1( )~ ,     .
q

t iS n U 
                                       

(41)
 

To estimate L  in 
1{( ,  ) :  0 ,   0},

q

U x t x tt





   

where
 

0

1 0 0( ) ( )S
    A with some constants 0 0A > , 

0 0 > , 1

0 0( )q q     >. Calculating L  in U as 

follows 
( 1)( 1) 1

0

1,
q

SL t




  

 L
                                            

(42) 

0

1 1 1

(
( ) (

)
' )

q q
S SS












 L

                            
(43)  

1

1 1 1( ' ' ) (S ( ))( ) ( )
q

S S c   


    

By substituting the value 1( )S  in (43), 

 
( 1)( 1) 1 (1 )

0

1 0 0 0 * 0 0  1
( )

( ) ( )
q

q

q

q
qc q q

S
c








 

 
   

  

   




 

  
     

 
L A A A

if 1,  0c   . To estimate the r-h-s of (43), we choose 

10 10,    A A , then it becomes 

 
( 1) 2 ( 11) 1 )(

1

0

1 * 11 1( )  1
( )

q

q

q q

q
qc q q

c
S








 

 
  


  



 





 
  







 
 

L A A A

since 1 *A A  where  

1

2 ( 1)

1 11 * ,  and  0
( )

q
q q

q
q

c




  


 


 


 

  
 





A A , then 

  
( 1)

1 *1

0

1 1( ) .  1
q

q
qq

S
c  

   














  L A A A

 
(44)               

 
Therefore, from (42)-(44) then 

1

1

( ,  ) 0,    , 0.

( ,  ) 0    , 0;

q

q

L x t for x t

L x t f x

t

ttor

















   

   

                            (45) 

0( ,  0) ( ,  0) 0     0 ,x u x in x x                    (46)   

(0,  ) (0,  ) 0     0 ,t u t in t                      (47) 

where 0 0x  is arbitrary. We use (45)-(47) and by the 

comparison technique (lemma 2.1 in [5]) in the domain 

U . Thus the desired lower estimate in (34) follows. To 

estimate the l-h-s of (33), we choose as in previous 

situation
1

01,  ( 1) .q q      Choose 0 2 0 2, ,  A A

then 

 

 
( 1) 1 1 2 ( 1)

2 2 2

0

1 * 2  1 .
( )

( )
q q q

q q
qc q q

S
c

 

 
 

 
  


    

 



 
   

 
 


L A A A

   

It implies that 


(1 1)

10 1 1 1

1 212 2 2 2  (( ) 0) ( ) ( 1)
( 1)

q

q q

q
q q

q

q q
q

q
S c



  


   




   

   


 





L A A A

is satisfied if 2 *A A , where   

   
(1 )

1
1

2 * 2

1 12

1
1 .

( ) ( ) 1
( )

( )

q

q

q q q

q
q

q
q

c q






 











 








A A  

Thus, we obtain that 
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2

2

0    , 0;  

0   , 0;

q

q

L in x t

L i tx t

t

n

















  

  
 

with initial and boundary values conditions (46),(47). 

Moreover, the value 2 is arbitrary to estimate u . So, we 

have proved the lower estimation under 2 * 0A A  

for 1.  Thus 
*~ ,

q

t


 


 as 0t  is valid, from the 

upper and lower estimations and comparison theorem. 

Governing of Advection Force 

          Based on the above techneque and preliminaries 

and from our previous study in [5], we keep going and 

formulate our problem to evaluate the solutions near 

interfaces in different regions. The advection term is 

dominated over the p-Laplacian type diffusion factor 

with expanding interface as shown in region (3), Figure 

1.Now, let us prove the situation in the following 

theorem as follows: 

Theorem 4.1. If 1 1( ) ( 1) ,q q q       and 

1 ( 1) / 2q   and the interface is initially shrinking 

as follows 
1

1 ( 1)

*) ;    ( ~ 0 ,t t as t      where  

( 1)1 1 1
1 (1 ) 1 ( 1) 1 ( 1) 1 (1 )

* ( ) { (1 ) (1( ) ( ) })c
 

           


           A    
(48) 

and * * ,  ( ,  ,  ) 0.c   A Then the advection force 

dominates over the p-Laplacian type diffusion and the 

local solution
 

 

1
1 ( 1)1~ [ ,]u c G t x  

  

A[  
                                   

(49)
 

along
1

1 ( 1)x t     ; λ 1 .Gc     To prove theorem4.1, 

we have to consider the auxiliary results in the two 

lemmas as below:
 Lemma 4.1. The CP(2)-(4) has a solution u with 

1 ( 1) / 2,  0.q     Then, there exists * 0  for 

all *  , such that lim kk vu



  ٍ

 ٍsolves a 

nonlinear advection equation
 

0
v v

c
t x

 
 

                                    
(50) 

( )( )v x 

  A  
                             

 (51) 

Lemma 4.2. Let CP(50)-(51) have a local weak solution 

u for 0A and if 1 1( ) ( 1) ,q q q        

1 ( 1) / 2,q    then as 0,t   

1
1 ( 1)(0,  ) [ ]u t o t     

for all * ,  , )(  ;  A there exists 
ρ 0,G   such that 

1
1 ( 1)1[ ] ,  0  tG t xu c   


  

  A[  
        

(52) 

along 
1

1 ( )1( ) .x tt 

     In particular, if *,   

then (52) is satisfied 

* *

1/ 1 ( 1 1

*

/( ))[ ( 1) ] ,  and /  ( ).G Gc c   
         A

Proof of Lemma 4.1. Firstly, from the previous 

techniques in proof of lemma 3.2 in [5]; 0,x 
 ٍ  

then 

α

0( ) ( ))  ( ,u x x x        
 ٍA  A  

      (53) 

By the continuity of solution to the parabolic PDEs(2) 

with initial data(3), 0,  depends on  ٍand 0 t    

we have 

,( ) ( ) (, , ;)u x xt u t u x t  
 ٍ  ٍ  ٍ  ٍ  ٍ                        (54) 

From lemma 2.1 in (Aal-Rkhais et al., 2021), and (53)-

(54), then 

,    for  0 ,  u u t xu x       
 ٍ  ٍ  ٍ         (55) 

Now, let us rescale the functions u
 ٍas follows, 

1/ ( ( 1) 1)/  , ,( )k ku k ku x t      

 ٍ

 ٍ                       (56) 

u
 ٍsolves the following Cauchy Problem: 

( )
1( ) 0,| |

q q
qu u u u

Lu
t x x x

c
x

k
 




 

    

   

 



     (57) 

α( , 0) ( )( ) .u x x   A  
                                            (58) 

Under the conditions of the definition 2.1 in (Aal-Rkhais 

et al., 2021), the local weak solution to the CP (57)-(58) 

is existed. Under the restriction
 ( ) 0q q     the 

following formula should true 

 ;  ( ,  ) [0i ,  )l mk k v x tu R



     ٍ

 ٍ                   (59) 

Let u
 ٍsolves the problem 

1(| | ) 0,   qu u u u

t
cLu

x x x x


    


    

                                    (60) 

,  ) ( )(  ;  ( ,  ) 0 ,  ( )t xu u txx 

   
 ٍ  ٍ

A  
              (61)

 

( ,  0) ( )( ) ,  | | | | .u x x x x

   
 ٍA  

                         (62) 

Also ku  ٍ
solves the following problem 

( )
1(| | 0,   )

q q
qu u u u

Lu
t x x

k
x x

c
 




 

    

 

 



                        (63) 
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1 1
α

 ( ,  ) ( )( )   ( ,  ) 0; .u k t k ux x xk t 

    
 ٍ  ٍ

A  
            (64) 

1
α( ,0) ( )( .| |) ,  | |u xx x x k 

   
 ٍA  

        
(65) 

where                                                                                                                                                          
1 1 1 ( 1)

{( ,  ) ;    ,   0 }k x t k x x k x t k 

 


 

    
 ٍ  ٍ  ٍ

D

The DPs(60)-(62) and (63)-(65) have unique solutions. 

The finite speed propagation property, and let 0  be 

chosen such that 0 t   where ( ,  ) 0.u x t  Applying 

lemma 2.1 in [5], and from (53),(54) and (55),(59) 

follows. Let us verify the sequence{ }ku  ٍconverges by 

the assumption
 2 /2( 1) 1 x   ,   ,  0( ) .te x R t      A              

Then we have 

( )
1( )| |

q q

k

qL k c
t x x x x

 




 

    
  
      

2 /2( 1) (1 )  ;   kte x in  
 ٍA T D

 
where 1 ( ) ,x E  T H and 

( ) ( 1) 2

2 12 ( 1) 21 2 1( ) ( ) (( ) (( ) 1 1   2 1   1) )
q q q q

q t qq qx k x x e xq x
  

  
   

         H A  

is continuous and for
 

1

,k x x 
 ٍ

 thus 
( )

( )
q q

k
 



 

H  

uniformly converges where .k   Also,
 

( 1

2

) 2
( 1) 2 11 1( ) ( )tE x xce

 
  

 
   A and hence

 

22( 1)(1 ) t

k xL e


   A T   
 

where 0 ,  :   0) .{( }k k t tx   
 ٍ  ٍ

D D Then we have 

( 1) 1

O( )R k
 



 

 uniformly on 0

k

 ٍD as .k  Thus, for 

0 1,  ٍ  
1

( ,  0) ( ,  0)  ,kx u x on x k x  ٍ

 
 ٍ

1 1

   ( ,  )   ( ,  ) ,  0 .kx xk t u k t t       ٍ

 ٍ  ٍ
 

Since,
 0 0 ( , )   k k   

 
thus

 0k k  and lemma 2.1 in 

[5] implies 
k

0  . k iu n  ٍ

 ٍD
  

in
 0 .k

 ٍD
                             (66) 

Suppose that 0{( , ) :  ,  0 },x t x R t t   P   and 

B P where B is a compact region. If 0k is a large and
 

0 ,k k such that 
k

0 .
 ٍD B  Inequality (66) implies that

 

{ }ku  ٍ
is uniformly bounded in ,B such that there exists 

a subsequence ku  ٍ
converges to v   ٍthat means 

lim  on k ku v  ٍ

 ٍ P..  

So, when 1,   p-Laplacian type diffusion term drops 

out as ,k  and v   ٍsolves (50)-(51). 

Proof of Lemma 4.2. Let u solve (50)-(51) and assume 

that
1,v u then v solves 

 11+ 0,   ( ,  0 ( ) .)
v v

c v v x
y x

x
 





 
  

 
A

   
        

(67)
 

Applying the characteristic method for (67). Let 

( ,  y)z v x and consider the characteristic system 

  ,   (s,0) s;
dx

c z x
dt

 
   

  1,   (s,0) 0;
dy

y
dt

 
 

1 ( 1)  0,   (s,0 () s) .
dz

z
dt

   

  A
 

Since the Jacobian determinant is nonzero at the point

(s,0) then we obtain existence of local C
1
-solution. The 

system of ODEs has the following solutions
 

( ,  ) ( ,  ) ; ( ,  ) ;x s t c z s t t s y s t t  
           

1 ( 1)( )( , ) ,z s t s  



  A
 

then we get the implicit solution of (50) that is
 1[ ]u x u tc   

 A[
                                         

(68)
 

then the solution along 
1

1 ( 1)( )=x t t  

    is 

( 1)

1 ( 1) 1 ( 1) 1( ( ),  ) [ ( ( ),  ) ] .u t t t c t u t t
 

     

    
 

    

 At
      

(69)
 

By assuming that 1 ( 1)( ( ),  )u t t t G


 


 t is a solution of 

the implicit equation (69), then we get the following new 

implicit equation depends on a variable 0,G  where
                                              

1 1 ( 1)[ ] 0,    ( ( )) .G c G G c 

 



       A[
       

(70)
 

To find the optimal value of (70), we assume that 
1 1

1( ) ,M G G c G  

   


   A
                    

(71)
 

and under the restriction 1 ( 1) 2, 0;q    and
 

(0) 0,  M  ( )M    then there exists a minimum 

value 
*

0G  such that 
*

( ) 0,GM 
  where  

1 1)

*

1
( .[ ( 1) ]G c


  

       A
 
The value of * is coming 

directly from (71). Then for 1c G
   the function 

(69) along 1 ( 1)( )=t t


 

     solves the implicit
 
equation 

(68) as well as G solves (70), therefore (52) holds.
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Proof of theorem 4.1. The initial 0u satisfies (4) and 

assume that 0 ٍis arbitrary small, 0x 
 ٍ such that 

(52) is satisfied for .x x   
 ٍ Then let us consider a 

function 
11

1 ( 1) 1 ( 1)( , ) ( )[ ( ) ] ,x t Gt x


    


   

   A  A  where 

( 1)

1 ( 1)[ ( 1) ] 0.G c c
 

    


    To estimate L
 ٍ in 

 
1 1{( ,  ) :  ( ),  0 }x t x x t t     

 ٍD and 

1
(1 )( ) ,t t  

    where *   and *  satisfies (48). 

Also, for 0   is chosen such that 
  ( ) .x


  

 ٍ ٍ
We 

get 
1

{ };L 



 ٍ  ٍ

T
 

( ) 1 1
( )1 ( ) ( )( )

q
q q qq S c

 

    
 

 

     T A  A     
2( ) ( 1) 1 1

1 ( 1) 1 ( 1)
11 (1 )+ (1 ( 1)) ( )G t

   

       
   

   
 

   A  
 

where 
11

1 ( 1) 1 ( 1)( )M x Gt


   


     A   
Choose 0x 

 ٍ  with 

x
 

 ٍ sufficiently small, such that | | / 2T   in
 1D

 
that 

implies 
1

( / 2).L 



 ٍ  ٍ  ٍ  

Moreover, let us prove a 

relevant upper estimate by considering 
1

(1 )

1 ,1(( ,  ) ) ,t t inx x 






 A N
   

 

where, 
, ρ{( ,  ) :  0 ; },x t t x         N with 

*[ , )  
 
and from (49) for arbitrary *   and for 

0,  ( ,   ) 0      ٍ  ٍ  such that 
1

1 ( 1) 1 ( 1)

ρ ( ) ( )[ ( ;( ], ) ) t t t Gu
 

  


   

   A  A  

     

(72) 

 Calculating L in  

1 α )
1
(λ 1

,  1{( ,  ) ( ):   ,   },x t xt tt         N

1
1 ( 1) ;L t

 


  T;  

 
1

1 1

1 1 1( ) (1 )(1 1 ) ( ) ( ) )q q q

       


 


     


 


T A

  2

1 (

1

1)1

21 1 1( )
( )

q

q qq c
t

q q

 

 



 


 




 

 







 
    

  
A A

  

Let ( )   ٍ, be so small, then we have 

2

1 ( 1) λ

1 1 12 ,( ) 0
( )

q q

qq cq
t

q
in

q

 

  

 






 





   



  
     

 
T A A N

 

hence

 , .0L in  
 N

                                     
(73)

 

 
By using (73), we can apply [5, Lemma 2.1], in 

, , 0{ }x x   
  N N  for 0 0,x   such that 

, ,0   ,L in    
 N N

                                         
(74)

 
1

1 ( 1) 1 ( 1)( ,   ) ( ) [ ( ) ]  ,( )u tt t
 

    

 


   

   A  A  
                 

(75)
 

0 0( ,0) ( ,0) 0;  ( ,0) ( ,0) 0 u x x u x x         
    

(76)
 

since 0 0x  is arbitrary, from (73)-(76) and comparison 

theorem
 *, 0    ٍ there exists ( ,   )    ٍ such that 

1
1 ( 1)

1 1 ,(( , ) .)t inu x t x 

 
   

 A N
                   (77)

 Now, we shall prove the lower estimation by considering

 

1 1
1 ( 1) 1 ( 1)( , ) ( )[ ( ) ] .xx t G t


    


   

    
 ٍ A  A  

 From lemma 4.2, the formula (49) is satisfied along the 

optimal curve 
1

1 ( 1)( ) tt  

     where ( )   ٍ satisfies 

(48). Estimate L   ٍ
 in 

 
1

1 ( 1)

1 ( ) ( ) (( ,  ) : ( ); ) ( )x t t ttx x  

   

     
 ٍ  ٍ  ٍ

D   

Now to calculate :Lh   ٍ

1( ) (| | ( ) ) ( )q

t x x xL c 

      
 ٍ  ٍ  ٍ  ٍ  ٍ

 1 11
1 ( 1) 1 ( 1)

11 1(( ) (1 ( 1))A t   
      

  

 
    
 ٍ  ٍ

A  

 1 1( 1) ( )1(1 )( ) ( ) ( ) .
q q

qqq c  


  


  

     
 ٍA  A  

 

If 1/ 2    inT D  so 

1 1

1( 2)   (respectively)   < (3 2)   ,L L in 
  

 
 ٍ  ٍ  ٍ  ٍ

D  ٍ  ٍ 

0( ,0) ( ,0)  (respectively)   ( ) ( ,0),  .u x x u x x x x  
 ٍ ٍ  ٍ  

Because of the continuity of functions ,  ;u
 

 ٍ and 

1( ) (0, ]    ٍ  such that ( ,  )  ),(x tut x
 ٍ  ٍ  ٍ  

and 

since *   and 0 ٍ are arbitrary numbers. 

(respectively) ( ,  ( ),  0) ,  .x t xu tt    
 ٍ  ٍ  ٍ  

From 

lemma 2.1 in [5], it follows that
 
,  u x x   

 ٍ  ٍ  ٍ 

( ) ( )( ) ( ) ( ).t t t     
 ٍ  ٍ  

which implies (48).
 
Evidently, (49) is valid along ( )t  

such that
 

1 1
1 ( 1) 1 ( 1)

1( ) ( )  ,  0t t t t              ٍ
         (78) 

 
with 1 ( )   ٍ
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Stationary Situation with WT Interface 

         In this part, we consider the parameters when p-

Laplacian type diffusion and convection are in 

equilibrium. This parameters as shown in Figure 1 

(region(4) in table 1) and it is  presented in the following 

theorem. 

Theorem 5.1. Let 11 ,  1 ( +1) / 2,  ( ) q q      

and 1( ) ,  ( 11 ) / 2 ,q q qq    
 
then the advection 

force and the p-Laplacian type diffusion are in balance 

and  the interface is in WT. 

Proof of theorem 5.1. To estimate the upper-solution 

and sub-solution by assuming the functions 

0( )( )   and  ( )(( ) / ) ( )
q

qx t x  

         
 ٍ  ٍ

A  A  , 

where 0 ,  and 0.t      To estimate upper case, let 

assume that 
1( 1 ,) q    then we directly get 

( )( ) ( , ),  | 1. |
q

qx u x t if x

   
 ٍ A   

On the other hand, to get the lower estimate for u  let 
1( 1) q    

such that, 

1(( ) / ) ( )( )
q

t x   

    
 ٍ A  

 
1α

0 ( ) ( ,) ( )
q

u x x x 

    A A  

0,x 
 ٍ for 0,x x 

 ٍ  and by continuity of the solution 

there exist 0 
 ٍ  such that ( , ) ( , ).u x t x t

 ٍ  ٍ  ٍ  
Also, 

we get  

{( , ) }0, in : 0,   0 .L xx t x t 

     
 ٍ  ٍ  ٍ  ٍ

 

To calculate L   
wٍhen 

1

0 ) ,( 1q    it implies 

0 .  inL 

  
 ٍ  ٍ

 From the comparison technique and 

lemma 2.1 in [5], it implies that 
  ٍ

 is the lower 

estimation of .u Thus, we get .u  
 ٍ  ٍ 

 

Conclusion 

          The model of nonlinear parabolic p-Laplacian 

type diffusion equation with convection term under the 

condition of a non-negative convection coefficient was 

discussed by using self-similar form to local solutions in 

irregular domains. Classification of behavior of the 

interface and the local solution near the interface was 

clarified and estimated in four parts. Firstly, the p-

Lapacian type diffusion dominates over convection force 

with expanding interface(table1, region(1)). Secondly,  

the p-Lapacian type diffusion and advection in balance 

with expanding interface(table1, region(2)). Thirdly, The 

convection force is dominated over p-Lapacian type 

diffusion with expanding interface(table1, region(3)). 

Finaly, stationary solution and WT behavior of the 

interface were considered (table1, region(4)). The 

interest of this study is that model can be used in a 

variety of fields, including chemical process design, 

biophysics, plasma physics, quantum physics, and 

others. 

Nomenclature 

       To clarify the meaning of some notations to readers, 

we add the following notations. 

Notation Meaning 

ODE Order differential equation 

PDE Partial differential equation 

PME Porous medium equation 

IVP Initial value problem 

CP Cauchy problem 

DP Dirichlet problem 

WT Waiting time interface 

 ̅      

 ( ̅) 

Banach space of continuous functions 

on  ̅ with the norm ‖ ‖ ( ̅)  

   (   )  ̅ | (   )|  

    
   ( ̅) 

Banach space of continuous on  ̅ 

with  -derivatives up to the order     
and continuous  -derivative up to the 

order 1. 

   ( ) 
There exists a constant C such that 
| ( )|   | ( )| for all   sufficiently 

closed to     
( )     *   + 
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